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We derive the frequency shift for a forbidden optical transition J=0→J�=0 caused by the simultaneous
actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration
of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic
field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal
lattice polarization. Suppression of these shifts could considerably enhance the performance of the next gen-
eration of atomic clocks.
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I. INTRODUCTION

Optical clocks based on large numbers of neutral atoms
tightly confined in optical lattices are attracting considerable
attention due to their potential for extremely high stability
and accuracy �1�. Recently, lattice-based systems have dem-
onstrated record line Q’s ��2�1015� and have achieved in-
accuracies as low as 1 part in 1015, with considerable room
for still further improvement �2–5�. With the potential inac-
curacy for such systems projected to be 10−17 or lower, it is
critical to examine potential barriers and find ways, if neces-
sary, to overcome them.

For lattice-based clocks, one of the most serious concerns
arises from the lattice itself. The confinement from the lat-
tices results from tightly focused red-detuned, high power
laser beams. The resulting standing-wave potential wells
have depths of approximately 1 MHz, which affect both the
ground and excited states of the clock transition. Achieving a
fractional frequency inaccuracy of below 10−17 requires sup-
pression of the net shift for the clock transition by more than
eight orders of magnitude, so optimization of the lattice pa-
rameters �such as wavelength, polarization, and intensity�
plays a critical role in the design of lattice-based atomic
clocks. Fortunately, fairly straightforward techniques have
been developed that allow one to minimize the net lattice
shift on the clock transition to a value at or below the desired
level of fractional frequency inaccuracy �e.g., less than
10−17�.

In this work we address the following question: How does
the presence of a magnetic field modify these minimization
procedures? This question is significant because magnetic-
field-induced spectroscopy of forbidden transitions has
opened up an important new path for the lattice-based
clocks, as it enables the use of transitions in even isotopes
�5–7�. The even isotopes have several attractive features, in-
cluding experimental simplicity due to lack of magnetic sub-
structure �i.e., no optical pumping effects�, and reduced mag-

netic sensitivity. However, if the presence of a magnetic bias
field compromises our ability to minimize the effects of the
lattice fields on the clock transition, then we must understand
the limitations. Fortunately, as we will show, while the pres-
ence of the magnetic field indeed leads to new effects, the
resulting frequency shifts are very manageable. Moreover,
we find that even in the presence of the magnetic field, lattice
clocks based on even isotopes still have an additional degree
of freedom �lattice polarization� that enables further minimi-
zation of intensity-dependent shifts of the clock transition
frequency.

To understand these issues more fully, let us first consider
the net frequency shift of the clock transition induced by the
lattice in the absence of a magnetic field. We write the shift,
��, in a series of increasing powers of I, the intensity of the
optical lattice:

�� = �1��,e�I + �2��,e�I2 + ¯ , �1�

where the polarizability coefficients �i represent the differ-
ence in polarizability for the ground and excited states of the
clock transition, and depend on the lattice frequency, �, and
the lattice polarization, e. We note that the terms in this se-
ries decrease rapidly, so the most critical are those for the
lowest powers of intensity �8,9�. Thus, it is essential that the
lowest-order coefficients in Eq. �1� be reduced to the point
where the resulting frequency shifts do not limit clock per-
formance through sensitivity to lattice intensity effects �e.g.,
lattice light fluctuations, atom location in the Gaussian lattice
beams, or an atom’s motional state in its potential well�.

The reduction of these coefficients has thus far been
achieved through a judicious choice of clock transitions and
values for the lattice parameters. Specifically, to remove
what might otherwise be an unmanageable polarization sen-
sitivity in the first term, �1, lattice clocks use forbidden J
=0→J�=0 transitions �usually ones found in alkaline-earth–
like atoms� �1�. Then �1 can be reduced to a near-negligible
value by tuning the lattice frequency to a value for which the
ground and excited states experience equal shifts. At this
so-called “magic wavelength,” the clock transition is effec-
tively unperturbed by the lattice to first order in the lattice
intensity �8�. The use of the magic wavelength is now a
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standard part in existing lattice clock apparatus, and requires
an absolute frequency accuracy for the lattice of only 1 MHz
to achieve less than 10−17 uncertainty for the clock. It has
been proposed that the second-order term, �2, can be be
minimized in a similar way, but this time by tuning the po-
larization of the lattice �10�. This approach works because
even for J=0→J�=0 clock transitions, �2 has a polarization
dependence �associated with two-photon transitions to higher
lying states� that can be exploited for its minimization; for
some atoms, the various contributions to �2 actually have
opposite signs, leading to the existence of a magic ellipticity,
for which �2 vanishes.

For realizable clocks, however, it is of course necessary
for the J=0→J�=0 transition to be at least weakly allowed
in order to be able to transfer measurable population to the
excited state. In the odd isotopes of alkaline-earth–like at-
oms, a nonzero nuclear spin mixes a sufficient fraction of J
=1 states into the upper J�=0 state to make the spectroscopy
feasible. However, the hyperfine interaction leads to a non-
negligible polarization dependence for �1, the first-order co-
efficient in Eq. �1�, so e is usually chosen to minimize �1.
�This dependence can be further suppressed by alternating
between oppositely polarized spin states �11�.� With both �
and e fixed, however, there are no degrees of freedom left for
minimizing �2, thus the procedure described in �10� cannot
be applied. In this case, the I2 term in Eq. �1� can be reduced
only by lowering the lattice intensity, although this approach
is limited by the minimum lattice depth required to suffi-
ciently confine the atoms �12�. Even with this limitation,
however, resulting lattice shifts below a part in 1017 have
been shown to be achievable for the case of clocks based on
Sr �9�.

For the even isotopes, however, the situation is quite dif-
ferent. Since the nuclear spin of these isotopes is zero, the
required level mixing must be generated by an additional
field for single photon excitation �additionally several multi-
photon schemes have been devised �13–15��. It was proposed
in �16� that a single light field could generate the required
mixing, although considerable intensity is needed
�I�500 kW/cm2�. Alternatively, a modest magnetic bias
field �B�1 mT� can be used—this approach has been suc-
cessfully demonstrated for the case of 174Yb �5,6�. In this
case, however, the expression �1� becomes more compli-
cated, due to the possible dependence of the coefficients �i
on the magnetic field, B:

�� = �1��,e,B�I + �2��,e,B�I2 + ¯ . �2�

In this paper, we investigate the possible consequences of
this additional dependence by deriving the frequency shift
for a forbidden optical J=0→J�=0 transition caused by the
combination of static magnetic and elliptically polarized lat-
tice fields. Indeed, when combined with an elliptically polar-
ized lattice field, the possibility of non-negligible first-order
�in lattice intensity� frequency shifts can arise. However, we
find the existence of geometrical conditions for the mutual
orientation of polarization vector and magnetic field direc-
tion for which this shift practically vanishes. Fortunately,
these conditions are easily realizable and in fact correspond
to the preferred one-dimensional geometry already in use in

the experiments. Additionally and significantly, we find that
under these conditions, we have enough freedom in our
choice of polarization to minimize �2 in the one-dimensional
case. For two- and three-dimensional lattices, optimization of
the lattice polarization is certainly more challenging, but we
find that the presence of the magnetic field should not sig-
nificantly complicate the situation.

II. DERIVATION OF THE FREQUENCY SHIFTS

To understand the origin of these results, let us consider
an atom under the influence of a monochromatic, elliptically
polarized field with frequency �

E�t� = Re�Ee−i�t�, E = Ee , �3�

where E is the vector amplitude, which can be written as a
product of the scalar amplitude E and the complex unit po-
larization vector e, i.e., �e* ·e�=1. If the quantization axis Oz
is oriented orthogonally to the polarization ellipse, then we
have the following expansions in Cartesian �ex ,ey ,ez� and
spherical �e0=ez ,e±1= � �ex± iey� /�2� bases:

e = cos���ex + i sin���ey

= − sin�� − �/4�e−1 − cos�� − �/4�e+1. �4�

Here � is the ellipticity angle, which is defined in such a way
that 	tan���	 is equal to the ratio of minor and major axes of
the ellipse, and the sign of � defines the helicity. Note that
�=0 corresponds to linearly polarized fields, while �
= ±� /4 corresponds to circularly polarized fields. The lattice
potential is formed by the spatially inhomogeneous light
shifts in the field �3�, with the vector amplitude E dependent
on the position E�r�.

The atom-field interaction will be considered in the dipole

approximation −�d̂ ·E�. The atom also interacts with a static
magnetic field B=Bb, where B is the field amplitude and b is
the unit vector in the direction B. Such a problem statement
corresponds, for example, to the method of magnetic-field-
induced spectroscopy of forbidden optical transitions 1S0
→ 3P0 for alkaline-earth–like atoms in lattice-based optical
atomic frequency standards �6�. Under the action of the field
�3� each level of the forbidden transition Jg=0→Je=0 ac-
quires the energy shift �Ej �j=e ,g�. In the case of alkaline
earth-like atoms the levels with Jg=0 and Je=0 are the states
1S0 and 3P0, respectively. Let us now focus on the lowest-
order shifts �i.e., quadratic Stark shifts�, which are propor-
tional to the lattice intensity, I= 	E	2. In the presence of a
static magnetic field B these shifts can be written as a series
in powers of B:

�� j = �	 j
�0���� + 	 j

�1���,e,b�B + ¯ �	E	2. �5�

The first term in this expansion describes the quadratic Stark
shift in the absence of a magnetic field. For levels with J
=0 this term does not depend on the polarization, i.e., the
coefficients 	 j

�0���� are governed completely by the field fre-
quency �. The second and higher terms of the expansion
proportional to 	 j

�n��� ,e ,b�Bn in Eq. �5� at n
1 describe the
influence of the magnetic field B on the quadratic Stark shifts
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of the energy levels. The coefficients 	 j
�n��� ,e ,b� depend on

the frequency � as well as on the polarization vector e and
the magnetic field direction b. From Eq. �5� it follows that
the forbidden transition frequency �0 is shifted by the
amount

�� 
 ��e − ��g

= �	̃�0���� + 	̃�1���,e,b�B + 	̃�2���,e,b�B2 + ¯ �	E	2,

	̃�0���� = 	e
�0� − 	g

�0�, 	̃�1���,e,b� = 	e
�1� − 	g

�1�, . . . . �6�

From comparison with Eq. �2�, we see that the bracketed
expansion in Eq. �5� is equivalent to �1�� ,e ,B�. At the
magic frequency �m=2�c /�m, in the absence of a magnetic
field the quadratic Stark shift vanishes, i.e., 	̃�0���m�=0. Here
the dangerous term �from the metrological point of view� in
Eq. �6� is the first-order correction with respect to the mag-
netic field 	̃�1���m ,e ,b�B	E	2, which will be studied below.

Based upon a general analysis, we find that this correction
consists of two contributions:

	̃�1���,e,b�B	E	2 = A1 + A2. �7�

The first contribution, A1, results from the admixture of lev-
els with J=1 to levels with Jg,e=0. In particular, for alkali-
earth–like atoms the mixing of the levels 3P1 and 3P0 �see in
Fig. 1�a�� plays a crucial role in the method of magnetic-
field-induced spectroscopy �6�. In a manner similar to that of
an external magnetic field, the elliptically polarized lattice
field �3� can also cause mixing. As was shown in �16�, in
respect to the level mixing the lattice field is equivalent to an
additional static magnetic field Blat

�a�:

Blat
�a� = �ai�E* � E� = �ai�e* � e�	E	2, �8�

where the real coefficient �a is an individual characteristic of
the chosen element and of the specific level with Ja=1. The
direction of the vector Blat

�a� is governed by the real vector
i�e*�e�. Its value, in view of Eq. �4�, is 	i�e*�e�	
= 	sin�2��	, and its direction is orthogonal to the polarization
ellipse e. Note that in the general case of 2D and 3D lattice
fields with inhomogeneous polarization e�r�, the orientation
of the cross product i�e*�e� and the ellipticity parameter �

are also spatially nonuniform, i.e., they are local values.
In the case of a 1D standing wave with the spatially uni-

form elliptical polarization e and the scalar amplitude E
=E0 cos�k ·r�, the additional magnetic field �8� is directed
along the lattice wave vector k, and its value is modulated in
space with the lattice spatial period

Blat
�a� = �a sin�2��cos2�k · r�	E0	2k/	k	 . �9�

Obviously, in the case of linear polarization ��=0� the effec-
tive magnetic field is absent Blat

�a�=0.
Thus, considering the mixing of the specific level Ja=1

with levels Jg,e=0, we can formally suppose that an atom is
in an effective static magnetic field Beff

�a�:

Beff
�a� = B + Blat

�a�. �10�

This mixing leads, in particular, to the quadratic Zeeman
frequency shift of the transition Jg=0→Je=0, which can be
written as

�Z
�a� = a�Beff

�a� · Beff
�a�� . �11�

In accordance with Eq. �10� this shift can be presented in the
form

�Z
�a� = a�B · B� + a�Blat

�a� · Blat
�a�� + 2a�B · Blat

�a�� . �12�

Here the first term corresponds to the standard quadratic Zee-
man shift in the external magnetic field B. The second term,
proportional to 	E	4, is one of the contributions into the fre-
quency shift due to the atomic hyperpolarizability �10�. The
last term in Eq. �12� is proportional to B	E	2:

2a�B · Blat
�a�� = 2a�a�i�E* � E� · B�

= 2a�a�i�e* � e� · b�B	E	2, �13�

and, consequently, we identify it as the first contributor in
Eq. �7�, A1. Physically, this shift results from the interaction
of the small fraction �about 10−6 for the Yb experiments in
�5�� of 3P1 mixed into 3P0 with higher lying states. Summing
over all the possible levels Ja=1, we can write a general
expression for A1:

A1 = �1�i�E* � E� · B� = �1�i�e* � e� · b�B	E	2,

�1 = �
a

2a�a, �14�

where the real parameter �1 is characteristic of the chosen
element.

Let us consider now the term A2 in Eq. �7�. This contri-
bution is determined by the linear Zeeman splitting of vari-
ous degenerate levels with the angular momentum J=1,
which participate in the quadratic Stark shift of the levels
Jg,e=0. This leads to the dependence of Stark shift on the
magnitude and direction of the magnetic field B. Indeed,
consider the shift of the nondegenerate level with J=0
through the interaction with the level Jb=1 �see in Fig. 1�b��.
The frequency of the transition J=0→Jb=1 is �b. Directing
the quantization axis z along the magnetic field, we have the
following decomposition for the polarization vector �3�:

FIG. 1. �a� The general level structure for alkaline earthlike
atoms, where the levels 3P1 and 3P0 are mixed by the magnetic field
B. �b� The scheme of the transition J=0→Jb=1 in the magnetic
field for calculation of the light shift �16�.
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E = �
q=0,±1

E�q�eq, �15�

where E�q� are contravariant components of the vector E in
the spherical basis. In these conditions the quadratic Stark
shift of the level with J=0 has the form

� =
	db	2

4�2 �
q=0,±1

� 	E�q�	2

� − �b − q�
−

	E�−q�	2

� + �b + q�
 . �16�

Here db is the reduced matrix element of the dipole moment
for the transition J=0→Jb=1; �=�bB is the linear Zeeman
splitting of the level Jb=1 �see in Fig. 1�b��. The first and
second terms on the right-hand side of Eq. �16� describe the
resonant and off-resonant contributions, respectively.

Let us expand the expression �16� with respect to the
small parameter �=�bB, to the zeroth and first orders:

� = �0 + �1 + ¯ ,

�0 =
	db	2�b

2�2��2 − �b
2�

	E	2, �17�

�1 =
	db	2�b�b�

�2��2 − �b
2�2 �	E�+1�	2 − 	E�−1�	2�B . �18�

The term �0 contributes into the usual shift 	̃�0����	E	2 of the
transition frequency Jg=0→Je=0 �6�. Here we are interested
in the second term �1, which is proportional to B	E	2. The
multiplier �	E�+1�	2− 	E�−1�	2�B in Eq. �18� can be expressed in
the invariant vector form:

�	E�+1�	2 − 	E�−1�	2�B = − �i�E* � E� · B� . �19�

Thus the contribution �1
�b� due to the nonresonant excitation

of the dipole transition Jg,e=0→Jb=1 can be written as

�1
�b� = �b�i�E* � E� · B� . �20�

Summing over all the possible levels Jb=1, we can write the
expression for the term A2 in Eq. �7�,

A2 = �2�i�E* � E� · B� = �2�i�e* � e� · b�B	E	2,

�2 = �
b

�b, �21�

i.e., the terms A2 and A1 �14� have the same vector depen-
dences. Thus the total shift �7� has the following universal
form:

A1 + A2 = �̃�i�E* � E� · B� = �̃�i�e* � e� · b�B	E	2,

�̃ = �1 + �2, �22�

and, consequently,

	̃�1���,e,b� = �̃����i�e* � e� · b� , �23�

where �̃��� is characteristic of the chosen element. The shift
is maximal when the light field polarization e is circular
��= ±� /4� and the magnetic field is orthogonal to the polar-
ization ellipse:

max		̃�1���,e,b�	 = 	�̃���	 . �24�

Since the magic frequency �m for all alkaline-earth–like
atoms is sufficiently far from any dipole transition J=0→J
=1, the term A1 in Eq. �7� dominates. The main contribution
is due to the mixing of the levels 3P1 and 3P0 �see in Fig.
1�a��. Using the results of the paper �16� for various atoms,
we estimate the maximal value of the frequency shift of for-
bidden transition 1S0→ 3P0 to be on the level of 0.1–10 Hz
for a magnetic field of order of 0.1–1 mT �1–10 G� and
typical lattice field intensities �1,2,5,9�. Since lattice-based
clocks are striving for millihertz-level frequency uncertainty,
these frequency shifts could be of considerable concern for
optical frequency standards based on the method of
magnetic-field-induced spectroscopy �6�. In the next section
we consider how to minimize these shifts.

III. MINIMIZATION OF THE FREQUENCY SHIFT

Starting from the expansion �4�, the vector product in Eq.
�23� can be written as

i�e* � e� = sin�2��ne, �25�

where ne is the unit vector orthogonal to the polarization
ellipse e. Then the expression �23� can rewritten as

	̃�1���,e,b� = �̃���sin�2���ne · b� . �26�

As is seen, to nullify this coefficient it is sufficient that the
magnetic field vector b lies in the plane of polarization el-
lipse e, i.e., b�ne. In the case of linear polarization ��=0�
the coefficient �26� equals zero for arbitrary direction of the
magnetic field, because sin�2��=0.

Thus, for a lattice consisting of a 1D standing wave in the
presence of a magnetic field, the problem of the induced
frequency shift is, in principle, readily solved. All that is
required is to direct the magnetic field orthogonal to the lat-
tice field wave vector k �in such a case the vectors e and b
are coplanar�, as is done in existing experiments. In this case
the magic wavelength is independent of polarization. �For
the example of Yb, this orthogonality would need to be set
with an uncertainty of less than 50 mrad for circularly polar-
ized lattice beams to reach a fractional clock uncertainty of
10−17.� What is exciting about this result is that it opens the
door for the use of the method of magnetic-field-induced
spectroscopy �6� in combination with a standing wave lattice
whose polarization is set to the optimal ellipticity �opt �10�,
the value at which �2�� ,e� is minimized �or even vanishes
for the magic ellipticity �m�. This is particularly important
for the case of 174Yb, currently under investigation, since the
�2I2 term in Eq. �1� could have a value as large as a few
hertz �at typical lattice intensity� due a near coincidence be-
tween the magic wavelength and a J=0→J�=0 two-photon
transition �5�. The actual value remains to be measured.

However in the general case of 2D and 3D lattices with
spatially inhomogeneous polarization e�r�, the coefficient
�26� will differ from zero if the vector ne �25� is spatially
nonuniform. This circumstance limits �from the metrology
viewpoint� the choice of field configurations for the forma-
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tion of 2D and 3D lattice potential in the method of
magnetic-field-induced spectroscopy of forbidden optical
transitions Jg=0→Je=0. These configurations should be
chosen now in such a way that the vector ne is spatially
uniform, i.e., the local polarization vector e�r� should lie in
the same plane independently of the position r. The magnetic
field vector B should also be in the same plane. Alternatively,
the configuration should be chosen in such a way that at least
in all the potential minima �rmin� the corresponding local
polarizations e�rmin� belong to the same common plane. In
this case the coefficient �26� is small due to the strong local-
ization in the lower vibrational levels of the lattice potential
for atoms confined to the Lamb-Dicke regime. Alternatively
one can work with a lattice for which the polarization vector
e is linear everywhere. In this case the orientation of the
magnetic field is consistent with the rest of the paper.

Thus far we have considered the effect of the magnetic
field on only the first-order term in Eq. �2�. In fact, the B
field can have a small effect on �2 as well:

�2��,e,B� = �2
�0���,e� + �2

�1���,e,b�B + ¯ , �27�

where �2
�0��� ,e�
�2�� ,e� �see Eq. �1��. The B-dependent

term in Eq. �27� could, in principle, change the polarization e
required to minimize �2 according to the prescription in �10�.
The magnetic field B affects �2

�1��� ,e ,b�B through shifting
�by the Zeeman effect� of the intermediate and final levels of
two-photon Raman and ladder transitions induced by the lat-
tice laser. We estimate the importance of �2

�1��� ,e ,b� by con-
sidering the ratio �2

�1��� ,e ,b�B /�2
�0��� ,e�:

�2
�1���,e,b�B
�2

�0���,e�
� max� �

�1ph
,

�

�2ph
,

�

�fs
� , �28�

where ���B	B	 is the characteristic value of the Zeeman
splitting for levels with J=1,2; �1ph is the characteristic
value for the one-photon detuning for transitions J=0→J
=1; �2ph is the characteristic value for the two-photon detun-
ing for transitions J=0→J=2; and �fs is the fine structure
splitting between 3P1 and 3P0. Since the Zeeman shifts
��10 MHz� are scaled against the relevant one- and
two-photon detunings and fine-structure splittings
��1 to 100 THz�, the contribution of �2

�1��� ,e ,b�B is negli-
gible for most atoms, including the important lattice candi-
dates Sr and Yb �7,9,17�. For example, we estimate that for
Yb,

�2
�1���,e,b�B
�2

�0���,e�
� 10−5. �29�

Even for the worse case the �2
�1� term would modify the shift

by less than 100 �Hz, or below 10−18 fractionally for typical
intensities in a lattice-based optical clock. Moreover, it can
be shown that when the vector B lies in the plane of the
polarization ellipse e �the usual operating case�, we actually
have �2

�1��� ,e ,b�=0. Therefore, practically speaking, the
value for the magic ellipticity �m �10� is basically unchanged
by the presence of the magnetic field.

IV. MODIFICATION OF THE INDUCED RABI
FREQUENCY

Apart from the frequency shift �2�, the combination of
elliptically polarized lattice field and magnetic bias field
leads to another consequence. The expression for the Rabi
frequency of the probe field on the clock transition Jg=0
→Je=0 now takes the following general form:

�R = ��B · Ep� + ��i�E* � E� · Ep� , �30�

where Ep is the polarization vector of the probe field Ep�t�
=Re�Epe−i��pt−kpr��, and the probe field frequency �p is
scanned around the frequency of the forbidden transition Jg
=0→Je=0. The difference from the expression for �R in the
paper �6� consists in the appearance of an additional term
���� in Eq. �30�. Note that this term is essential for the
spectroscopic method proposed in �16�.

For a 1D standing wave with arbitrary elliptical polariza-
tion, the last term in Eq. �30� vanishes when the wave vector
kp of the probe field is parallel to the lattice field wave vector
k. In this case i�E*�E��k �kp, and because of this
�i�E*�E� ·Ep�=0, since �Ep ·kp�=0 due to the transverse na-
ture of electromagnetic waves. However, in the general case
of 2D and 3D lattices with spatially inhomogeneous polar-
ization e�r� the term �� in Eq. �30� should be taken into
account in the analysis of various polarization configurations
of the lattice field.

V. CONCLUSIONS

In the present paper, we have investigated the frequency
shift of the forbidden optical transition J=0→J�=0 caused
by the simultaneous action of an elliptically polarized lattice
field with magic frequency �m and a static magnetic field.
The analytical vector dependence for this shift and has a
simple universal form �Eq. �22��. Estimates show that under
certain conditions this shift could have non-negligible conse-
quences for lattice-based optical atomic standards. However,
we have identified experimental geometries for which the
undesired shift can be significantly suppressed or even com-
pletely cancelled. The basic requirement is that the magnetic
field needs to lie in the plane of the polarization ellipse of the
lattice field. In the case of 1D standing wave this condition is
automatically fulfilled when the magnetic field is directed
orthogonally to the lattice field wave vector, the usual experi-
mental case. For a linearly polarized lattice field, the fre-
quency shift under investigation vanishes for an arbitrary
direction of the magnetic field. As applied to the cases of 2D
and 3D lattice fields, we have indicated the limitations on the
choice of possible polarization configurations.

The obtained results open, in particular, the possibility of
using the method of magnetic-field-induced spectroscopy �6�
of the strictly forbidden transition 1S0→ 3P0 in even isotopes
of alkaline earth-like atoms confined to an optical lattice that
is formed by an elliptically polarized standing wave with the
optimal ellipticity �opt �10�. For this ellipticity the second-
order light shift is minimal �or even cancelled�. Such a com-
bination of methods could enable significant improvement of
the metrology characteristics of lattice-based frequency
standards.
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