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We analyze the error in trapped-ion, hyperfine qubit, quantum gates due to spontaneous scattering of photons
from the gate laser beams. We investigate single-qubit rotations that are based on stimulated Raman transitions
and two-qubit entangling phase gates that are based on spin-dependent optical dipole forces. This error is
compared between different ion species currently being investigated as possible quantum-information carriers.
For both gate types we show that with attainable laser powers the scattering error can be reduced to below
current estimates of the fault-tolerance error threshold.
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I. INTRODUCTION

Quantum bits, or qubits, that are encoded into internal
states of trapped ions are an interesting system for quantum-
information processing �QIP� studies �1,2�. Internal states of
trapped ions can be well isolated from the environment, and
very long coherence times are possible �2–5�. The internal
states of several ion qubits can be deterministically en-
tangled, and quantum gates can be carried out between two
ion qubits �6–12�.

Among different choices of internal states, qubits that are
encoded into pairs of ground-state hyperfine or Zeeman
states benefit from negligible spontaneous decay rates �2�.
The small energy separation between the two states of such
qubits �typically in the radio-frequency or microwave do-
main� allows for phase coherence between a local oscillator
and a qubit superposition state over relatively long times
�2,4,13,14�.

The quantum gates that are performed on hyperfine ion
qubits typically use laser beams. Since light couples only
very weakly to the electron spin, spin manipulations rely
instead on the spin-orbit coupling of levels that are typically
excited nonresonantly through allowed electric-dipole transi-
tions. Spin manipulations therefore require a finite amplitude
in the excited electronic state, and spontaneous scattering of
photons from the laser beams during the gate is inevitable.

Fault-tolerant quantum computation demands that the er-
ror in a single gate be below a certain threshold. Current
estimates of the fault-tolerance error threshold range between
10−2 and 10−4 �15–17�. These estimates rely on specific noise
models and error-correction protocols and should be consid-
ered as guidelines only. However, the general view is that for
fault tolerance to be practical, the error probability in quan-
tum gates should be at least as small as 10−4. It is, therefore,

worth exploring the limitations to the fidelity of quantum
gates performed on trapped ions with laser light using this
level of error as a guideline �18�.

In his 1975 paper �19�, Mollow showed that the effect of
a quantum coherent field on an atom is equivalent to that of
a classical field plus a quantum vacuum field. The error due
to the interaction with light can be categorized into two parts.
The first is the error due to noise in classical laser param-
eters, such as intensity or phase �2,20�. The second part
originates from the quantum nature of the electromagnetic
field and is due to vacuum fluctuations—i.e., the spontaneous
scattering of photons �21,22�.

Ion-qubit levels and transitions

Most ion species considered for QIP studies have a single
valence electron, with a 2S1/2 electronic ground state and
2P1/2 and 2P3/2 electronic excited states. Some of the ions
also have D levels with lower energy than those of the ex-
cited state P levels. Ions with a nonzero nuclear spin also
have hyperfine structure in all of these levels. A small mag-
netic field is typically applied to remove the degeneracy be-
tween different Zeeman levels. Here we consider qubits that
are encoded into a pair of hyperfine levels of the 2S1/2 mani-
fold. Figure 1 illustrates a typical energy level structure.

To allow for a straightforward comparison between differ-
ent ion species, we investigate qubits that are based on clock
transitions—i.e., a transition between the �F= I−1/2 ,mF
=0���↑ � and �F= I+1/2 ,mF=0���↓ � hyperfine levels in
the S1/2 manifold of ions with a half odd-integer nuclear spin
I, at a small magnetic field. For this transition, the total Ra-
man and Rayleigh photon scattering rates, as well as the Rabi
frequency, are independent of I, and the comparison between
different ion species depends only on other atomic constants.
Superpositions encoded into these states are also more resil-
ient against magnetic field noise �3,5,11�. Even though our
quantitative results apply only to this configuration, for other
choices of hyperfine or Zeeman qubit states �including those
with I=0� the results will not change significantly.

Gates are assumed to be driven by pairs of Raman beams
detuned by � from the transition between the S1/2 and the
P1/2 levels �see Fig. 1�. We further assume that the Raman
beams are linearly polarized and Raman transitions are
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driven by both �+ photon pairs and �− photon pairs. The two
beams in a Raman pair are designated as red Raman �r� and
blue Raman �b� by their respective frequencies. In the fol-
lowing we also assume that � is much larger than the hyper-
fine and Zeeman splitting between levels in the ground and
excited states.

The Rabi frequency between the two clock states is �23�

�R =
gbgr

3
�b−r− − b+r+�

�f

��� − �f�
, �1�

where gb/r=Eb/r��P3/2 ,F= I+3/2 ,mF=F�d̂ · �̂+�S1/2 ,F= I
+1/2 ,mF=F�� /2� ,Eb/r is the peak electric field of the b or r

beam at the position of the ion, respectively, and d̂ · �̂+ is the
right circular component of the electric-dipole operator. The
right and left circular polarization components of the b and r
beams are b+/− and r+/−, respectively. The P1/2 and P3/2 ex-
cited levels are separated by an angular frequency � f.

The total spontaneous photon scattering rate from these
beams is given by �23�

�total =
�

3
�gb

2�b−
2 + b+

2� + gr
2�r−

2 + r+
2��	 1

�2 +
2

�� − �f�2
 .

�2�

Here � is the natural linewidth of the P1/2 and P3/2 levels
�27�. We now assume linearly polarized Raman beams with
b−=b+=r−=−r+=1/�2 �23�. We further assume gb=gr�g.
The time for a 	 rotation is


	 =
	

2�R
. �3�

Combining Eqs. �1�–�3� the probability to scatter a photon
during 
	 is given by

Ptotal = �	�

�f

2�2 + �� − �f�2

���� − �f��
. �4�

The dashed line in Fig. 2 shows Ptotal vs �, where the laser
detuning is expressed in units of the excited-state fine-
structure splitting and the scattering probability is given in
units of � /� f. The total scattering probability has a global
minimum of

Pmin = 2�2	�/�f �5�

when the laser detuning is between the two fine-structure
manifolds ��= ��2−1�� f�. The asymptotic value of Ptotal for
large positive or negative detuning,

P� = 3	�/�f , �6�

is only slightly larger than the global minimum.
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FIG. 1. Relevant energy levels �not to scale� in an ion qubit,
with nuclear spin I. The P1/2 and P3/2 excited levels are separated
by an angular frequency �f. The S1/2 electronic ground state con-
sists of two hyperfine levels F= I−1/2 and F= I+1/2. The relative
energies of these two levels depends on the sign of the hyperfine
constant Ahf and can vary between ion species �in this figure, Ahf is
negative�. The qubit is encoded in the pair of mF=0 states of the
two F manifolds separated by an angular frequency �0. Coherent
manipulations of the qubit levels are performed with a pair of laser
beams that are detuned by � from the transition to the P1/2 level,
represented by the two straight arrows. The angular frequency dif-
ference between the two beams equals the angular frequency sepa-
ration between the qubit levels �b−�r=�0. Some ion species have
D levels with energies below the P manifold. Wavy arrows illus-
trate examples of Raman scattering events.

SE

FIG. 2. The solid line is the probability �PSE= PRaman� to scatter
a Raman photon �in units of � /� f� during a 	 rotation vs the laser
detuning in units of the excited-state fine-structure splitting. The
dashed line is the probability for any type of scattering event
�PSE= Ptotal� during the pulse vs detuning. The Raman scattering
probability decays quadratically with � for ����� f.
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Previous studies estimated decoherence by assuming that
any photon scattering will immediately decohere a hyperfine
superposition �23�. Under this assumption the lowest pos-
sible gate error equals Pmin and ions with a small � /� f ratio
benefit from a lower gate error minimum.

Two kinds of off-resonance photon scattering occur in the
presence of multiple ground states: inelastic Raman scatter-
ing which transfers population between ground states and
Rayleigh elastic scattering which does not change ground-
state populations. Since no energy or angular momentum is
exchanged between the photon and ion internal degrees of
freedom, no information about the qubit state is carried away
by a Rayleigh-scattered photon. Rayleigh scattering, there-
fore, does not necessarily lead to decoherence �23–25�. This
was experimentally shown in �25� where, when of equal rate
from both qubit levels, off-resonance Rayleigh scattering of
photons did not affect the coherence of a hyperfine superpo-
sition. Decoherence in the presence of light was shown to be
dominated by Raman scattering. The guideline used in �23�
is therefore overly pessimistic.

In this paper we reexamine the errors due to spontaneous
photon scattering on single-qubit gates �rotations of the
equivalent spin-1 /2 vector on the Bloch sphere� and two-
qubit �entanglement� gates, where the qubits are based on
ground-state hyperfine levels and manipulated with stimu-
lated Raman transitions. We compare between different ion
species and examine different Raman laser parameters. In
Sec. II we analyze the contribution to the gate error due to
spontaneous Raman scattering. Following a Raman scatter-
ing event the ion qubit is projected into one of its ground
states and spin coherence is lost. This error was also ad-
dressed in �26�. In Sec. III we examine the error due to
Rayleigh scattering. The Rayleigh scattering error results pri-
marily from the photon’s recoil momentum kick. We show
that both types of gate errors can be reduced to small values,
while keeping the gate speed constant, with the use of higher
laser intensity.

II. RAMAN SCATTERING ERROR

In a Raman photon scattering event energy and angular
momentum are exchanged between the scattered photon and
the ion’s internal degrees of freedom. The polarization and
frequency of the scattered photon �with respect to those of
the laser� become entangled with the ions’ internal state.
Therefore, after tracing out the photon degrees of freedom,
the ions’ spin coherence is lost. In other words, Raman scat-
tering serves as a measurement of the ion-qubit internal state.
Following a spontaneous Raman scattering event the ion qu-
bit is projected into one of the ground states in the S1/2 mani-
fold. For ions with low-lying D levels, Raman scattering
events can also transfer the ion from the qubit levels into one
of the D levels.

A. Single-qubit gate

For a single-qubit gate we choose to look at the fidelity of
a 	 rotation around the x axis of the Bloch sphere, repre-
sented by the Pauli operator �̂x. This gate is assumed to be

driven by a copropagating Raman beam pair, where the fre-
quency difference between the beams equals the frequency
separation between the two qubit states, �0. It is straightfor-
ward to generalize this case to other rotations.

As a measure of the error in the rotation, we use the
fidelity of the final state �characterized by density matrix

̂final� produced by the erroneous gate as defined by

F = ���
̂final��� , �7�

where ��� is the ideal final state. Given an initial state ��init�,
��� can be written as

��� = �̂x��init� . �8�

In the presence of off-resonance Raman scattering, the
density matrix that describes the state of the qubit after the
gate has the form


̂final = �1 − PRaman������� + 
̂�. �9�

The erroneous part of the density matrix, 
̂�=�iwi�i��i�, is
composed of projectors into different levels �i� of lower en-
ergy. Here PRaman=�iwi is the probability for a spontaneous
Raman scattering event to occur during the gate.

Note that some Raman scattering events keep the ion
within the qubit manifold. Using Eq. �7� the contribution of

̂� to the fidelity is positive and not strictly zero. For simplic-
ity, we neglect this contribution and put a lower bound on the
gate fidelity:

F � 1 − PRaman. �10�

In what follows we assume this expression to be an equality.
The error in the gate due to spontaneous Raman photon scat-
tering is hence given by the Raman scattering probability

� � 1 − F = PRaman. �11�

We first examine the error due to Raman scattering back
into the 2S1/2 manifold �S. The Raman scattering rate back
into the S1/2 manifold is calculated to be �25�

�Raman =
2�

9
�gb

2�b−
2 + b+

2� + gr
2�r−

2 + r+
2��	 �f

��� − �f�

2

.

�12�

For the same laser parameters as above, the probability to
scatter a Raman photon during the gate is

PRaman =
2	�

3

�f

���� − �f��
= �S. �13�

The solid line in Fig. 2 shows PRaman vs �. The Raman
scattering probability decays quadratically with � for ���
��f. Qualitatively, this is because Raman scattering in-
volves a rotation of the electron spin. Electron spin rotations
are achieved through spin-orbit coupling in the excited state.
This coupling has opposite-sign contributions from the two
fine-structure levels. Therefore as we detune far compared to
the fine-structure splitting, those two contributions nearly
cancel �24�.

Using Eq. �1� we can write
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PRaman =
2	���R�

g2 . �14�

The ratio � /g2 can be expressed in terms of atomic constants
and the peak electric field amplitude E at the position of the
ion �27�:

�

g2 =
4��3/2

3

3	�0c3E2 . �15�

Here �3/2 is the frequency of the transition between the S1/2
and P3/2 levels �D2 line�, �0 is the vacuum permittivity, and
c is the speed of light. Assuming Gaussian laser beams, at the
center of the beam,

E2 =
4P

	w0
2c�0

. �16�

Here P is the power in each of the Raman beams and w0 is
the beam waist at the position of the ion. The probability to
scatter a single Raman photon can be written as

PRaman =
2	��R���3/2

3 w0
2

3c2P
= �S. �17�

This result is essentially the same as Eq. �5� of �26�. We
can now rearrange this expression to put an upper bound on
the required power for a desired gate speed and error:

P =
2	

3�S
�2	w0

�3/2

2

��3/2��R� , �18�

where �3/2=c /�3/2.
Assume that the ratio of the beam waist to the transition

wavelength is constant for different ion species. In this case,
the power needed to obtain a given Rabi frequency and to
keep the error below a given value would scale linearly with
the optical transition frequency. A more realistic assumption
might be that the Raman beam waist is not diffraction limited
and is determined by other experimental considerations, such
as the interion distance in the trap or beam pointing fluctua-
tions. In this case, assuming that w0 is constant, the required

power would scale as the optical transition frequency cubed.
Either way, ion species with optical transitions of longer
wavelength are better suited in the sense that less power is
required for the same gate speed and error requirements. In
addition, high laser power is typically more readily available
at longer wavelengths. Finally, we note that the error is in-
dependent of the fine-structure splitting as long as we have
sufficient power to drive the transition. The transition wave-
lengths of different ions are listed in Table I.

Figure 3 shows the laser power needed per Raman beam
for a given error due to spontaneous Raman scattering into
the S1/2 manifold. Here we assume �R /2	=0.25 MHz �
	

=1 �s� and w0=20 �m. Different lines correspond to the
different ion species listed on the figure legend. Table II lists
the error in a single-ion-qubit gate due to Raman scattering

TABLE I. A list of atomic constants of several of the ions considered for quantum information processing.
Here I is the nuclear spin, � is the natural linewidth of the P1/2 level �28–35�, �0 is the frequency separation
between the two qubit states set by the hyperfine splitting of the S1/2 level �36–44�, �f is the fine-structure
splitting �45�, �1/2 and �3/2 are the wavelengths of the transitions between the S1/2 and P1/2 and P3/2 levels
�45�, respectively. The branching ratio of decay from the P levels to the D and S levels is f �46–52�.

Ion I � /2	 �MHz� �0 /2	 �GHz� �f /2	 �THz� �1/2 �nm� �3/2 �nm� f−1

9Be+ 3/2 19.6 1.25 0.198 313.1 313.0 N.A.
25Mg+ 5/2 41.3 1.79 2.75 280.3 279.6 N.A.
43Ca+ 7/2 22.5 3.23 6.68 396.8 393.4 17
67Zn+ 5/2 62.2 7.2 27.8 206.2 202.5 N.A.
87Sr+ 9 /2 21.5 5.00 24.0 421.6 407.8 14
111Cd+ 1/2 50.5 14.53 74.4 226.5 214.4 N.A.
137Ba+ 3/2 20.1 8.04 50.7 493.4 455.4 3
171Yb+ 1/2 19.7 12.64 99.8 369.4 328.9 290
199Hg+ 1/2 54.7 40.51 273.4 194.2 165.0 700

FIG. 3. Laser power in each of the Raman beams vs the error in
a single-ion gate �	 rotation� due to Raman scattering back into the
S1/2 manifold �obtained using Eq. �18��. Different lines correspond
to different ion species �see legend�. Here we assume Gaussian
beams with w0=20 �m and a Rabi frequency �R /2	=0.25 MHz
�
	=1 �s�.
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back into the S1/2 manifold for the same parameters as in Fig.
3 and assuming 10 mW in each of the Raman beams. The
power P0 needed in each of the gate beams for �S=10−4 is
also listed in the table. As can be seen, ions with shorter
transition wavelength require a larger detuning and accord-
ingly higher laser power to maintain a low gate error. For
most ions, a few milliwatts of laser power is enough to re-
duce the gate error to below 10−4.

Equation �13� can be solved to give the required detuning
values for a given �S. The number of such detuning values
comes from the number of crossings of a horizontal line, set
at the desired error level, with the solid curve in Fig. 2.
When �S is higher than the minimum PRaman inside the fine-
structure manifold—i.e., �S�8	� /3�f �see Fig. 2�—then
four different detuning values yield the same �S, two outside
and two inside the fine-structure manifold. When �S is lower
than this value, only two detuning values, both of which are
outside the fine-structure manifold, yield �S. Those detuning
values �0 that are below the S1/2→P1/2 transition ���0�
and correspond to �S=10−4 are listed in Table II for different
ions. For most ions �0 is in the few hundred gigahertz range
and its magnitude is much smaller than �f.

We now consider the error for various ions caused by
Raman scattering into low-lying D levels �D. As transitions
between levels in the S and D manifolds do not necessarily
involve electron spin rotations, the error suppression dis-
cussed preceding Eq. �13� will not occur. Instead, the Raman
scattering rate into the D levels will be given by the total
scattering rate times a fixed branching ratio f . When driven
resonantly the P1/2 and P3/2 levels decay to the D manifold
with different �but often similar� branching ratios. Here we
assume that for a detuning large compared to the fine-
structure splitting, the branching ratio is essentially indepen-
dent of the laser detuning and is given by the average of the
two resonant branching ratios �46,47�. Table I lists f , for
various ion species, obtained from �48–52�. The error due to
Raman scattering into D levels is given by

�D = fPtotal. �19�

Using Eq. �13� we can write the ratio of the errors due to
Raman scattering into the different manifolds:

�D

�S
=

3f

2
�2�2 + �� − �f�2

�f
2 
 . �20�

For �����f, the Raman scattering error is dominated by
scattering back into the S1/2 levels. For ions with 1/ f �1 the
two errors become comparable at a detuning ���2�f /3�f .
When the detuning becomes large compared to the fine-
structure splitting, scattering into low-lying D levels domi-
nates. For most ions considered here, ��0���f and �perhaps
with the exception of 137Ba+� �S is the more dominant source
of error. The ratios �D /�S when �S=10−4 �i.e., �=�0� are
given in Table II for different ions.

Due to the asymptotic value of the total scattering rate in
the �����f limit �Eq. �6��, �D has an asymptotic value which
gives a lower bound to the Raman scattering error:

�D� =
3	�f

�f
. �21�

Table II lists �D� for various ions. For all ion species consid-
ered this value is below the assumed estimates for the fault
tolerance threshold.

B. Two-qubit gate

A universal quantum gate set is complete with the addi-
tion of two-qubit entangling gates. During the last few years
there have been several proposals and realizations of two
ion-qubit gates �1,8–12,53–55�. Here we focus on gates that
use spin-dependent forces in order to imprint a geometric
phase on certain collective spin states �8,9,11,12,53–55�. We
examine only gates that are implemented with a continuous
nonresonant pulse rather than those using multiple short
pulses �56�. Again, to compare different ion species we ex-
amine ion qubits that are encoded into hyperfine clock states.
When the laser detuning is large compared to the hyperfine
splitting, the differential light force between clock levels is
negligible �4,57�. However, a phase gate can be applied be-
tween spin states in the rotated basis �superpositions of clock
states that lie on the equatorial plane of the Bloch sphere�

TABLE II. A list of errors in a single-qubit gate �	 rotation� due to spontaneous photon scattering. The
error due to Raman scattering back into the S1/2 manifold �S is calculated with the same parameters as Fig.
3: Gaussian beams with w0=20 �m, a single-ion Rabi frequency �R /2	=0.25 MHz �
	=1 �s�, and 10 mW
in each of the Raman beams. P0 is the power �in milliwatts� needed in each of the beams, and �0 /2	 is the
detuning �in gigahertz� for �S=10−4. The ratio between errors due to Raman scattering to the D and S
manifolds, �D /�S, is given when �S=10−4. The asymptotic value of �D in the �����f limit is �D�.

Ion 104�S P0 �mW� �0 /2	 �GHz� �D /�S 104�D�

9Be+ 0.34 3.4 −203 N.A. N.A.
25Mg+ 0.47 4.7 −691 N.A. N.A.
43Ca+ 0.17 1.7 −442 0.10 0.019
67Zn+ 1.23 12.3 −1247 N.A. N.A.
87Sr+ 0.15 1.5 −442 0.11 0.006
111Cd+ 1.05 10.5 −1043 N.A. N.A.
137Ba+ 0.11 1.1 −418 0.51 0.012
171Yb+ 0.2 2 −411 0.005 0.00006
199Hg+ 2.3 23 −1141 0.002 0.00003
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�53,54�. In this scheme the ions traverse a trajectory in phase
space that is conditioned on their mutual spin state �in the
rotated basis �11��. The phase the ions acquire is proportional
to the total area encircled in phase space. This geometric
phase gate was demonstrated in �8� and was realized on
clock states in �11�.

This form of phase gate is implemented with two different
Raman fields that are slightly off resonance with upper and
lower motional sidebands of the spin-flip transition. For sim-
plicity, we assume here that the gate is driven by two inde-
pendent pairs of Raman beams—i.e., a total of four beams.
Most experimental implementations of this phase gate thus
far have used a three-beam geometry �8,11�. It is straightfor-
ward to generalize the treatment below to the three-beam
case.

Typical conditions for the gate are such that the angular
frequency difference between the beams is ��0+�trap−�� in
one Raman pair and ��0−�trap+�� in the other. Here �trap is
the angular frequency of the normal mode that the gate ex-
cites and � is the Raman field detuning from that motional
sideband. Under these conditions the ions will traverse K full
circles in phase space for a gate duration of 
gate=2	K /�.
Typically ��� is chosen to be much smaller than �trap to avoid
coupling to the pure spin flip �“carrier”� transition or the
motional “spectator” mode and K is usually chosen to be 1 to
minimize the gate time.

Figure 4 depicts the assumed geometry of the laser beams.
The two beams comprising each Raman pair intersect at right
angles at the position of the ions, such that the difference in
their wave vectors is parallel to the trap axis. With this
choice, the Raman fields couple, to a very high degree, only
to the motion along the trap axis. The beam polarizations are
assumed to be linear, perpendicular to each other and to the
magnetic field axis. The beams’ relative frequencies can be
arranged such that the final state is insensitive to the optical
phase at the ions’ position �57�. Generalizing this treatment

to other Raman beam geometries is straightforward.
As in the single-qubit case, Raman scattering will project

one of the ion qubits into one of its states below the P mani-
fold. In the appropriate basis the ideal gate operation is rep-
resented by �9,11�

Û =�
1 0 0 0

0 ei� 0 0

0 0 ei� 0

0 0 0 1
� , �22�

where typically �=	 /2. The output state is ���= Û��init�.
The density matrix following the erroneous gate will be of
the form


̂final = �1 − 2PRaman gate������� + 
̂�, �23�

where PRaman gate is the probability that one of the ions scat-
tered a Raman photon during the gate �58,59�. For a gate
consisting of K circles, the Raman detuning � is chosen such
that the gate time is given by �53�


gate =
	

2��R��
�K = 
	

�K

�
. �24�

Here �=�kz0 is the Lamb-Dicke parameter, where �k
=�2kL is the wave vector difference between the two beams
that drive the gate �for the particular geometry of Fig. 4� and
kL is the laser beam wave vector magnitude. The root mean
square of the spatial spread of the ground-state wave func-
tion of one ion for the normal mode that the gate excites is

z0 = ��/4M�trap, �25�

where M is the mass of an individual ion. The single-ion
carrier Rabi frequency �R is given in Eq. �1�.

Using similar considerations to those used in the single-
ion gate and, as before, neglecting any �positive� contribu-
tion of 
̂� to the fidelity, we can set an upper bound for the
power needed for a certain error in the gate due to Raman
photon scattering into S1/2 levels:

P =
2	

3�S
�2	w0

�3/2

2

��3/2��R�
4�K

�
. �26�

This required gate power is 4�K /� times larger than that
needed for the same error in the single-ion-qubit 	 rotation
given in Eq. �18�. The factor of �K /� is due to the longer
two-ion-qubit gate duration compared to single-qubit rota-
tions, and the factor of 4 is due to the presence of two ions
and the pair of required Raman fields.

When comparing different ion species we can fix different
parameters, depending on experimental constraints or re-
quirements. For example, here we choose as fixed parameters
the beam waist w0 �for the reasons given above�, the gate
time 
gate �assuming a certain computation speed is desired�,
and the mode frequency �trap �which sets the time scale for
various gates�. With these choices, heavier ions pay the price
of smaller � and therefore higher-power requirements per
given gate time and error. A different approach would be to
choose � fixed, in which case heavier ions will need a lower

Trap axis

Laser beams

B

Laser beams

FIG. 4. Schematic of Raman laser beam geometry assumed for
the two-qubit phase gate. The gate is driven by two Raman fields,
each generated by a Raman beam pair. Each pair consists of two
perpendicular beams of different frequencies that intersect at the
position of the ions such that the difference in their wave vector lies
parallel to the trap axis. One beam of each pair is parallel to the
magnetic field which sets the quantization direction. The beams’
polarizations in each pair are assumed to be linear, perpendicular to
each other and to the magnetic field. Wavy arrows illustrate ex-
amples of photon scattering directions.
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�trap. For a fixed gate time a lower �trap leads to stronger,
off-resonant, coupling of the Raman fields to the carrier or
the other motional “spectator” mode and, therefore, to a
larger error due to this coupling �60,61�. The Lamb-Dicke
parameters for the different ions for �trap /2	=5 MHz are
listed in Table III.

With the choice where w0, 
gate, and �gate are fixed, we
can write

P =
8	2

3�S

K


gate
w0

2�3/2M�trap �27�

or, equivalently,

�S =
8	2

3P
K


gate

w0
2�3/2M�trap. �28�

Figure 5 shows the power needed versus error in a two-qubit
gate due to Raman scattering back into the S1/2 manifold for
w0=20 �m, 
gate=10 �s, �gate /2	=5 MHz, and K=1. Table
III lists �S for the various ion species and the same laser
parameters as Fig. 5, assuming a power of 10 mW is used in
each of the four Raman beams. Alternatively, the power P0
and the detuning �0 needed in each of the gate beams for
�S=10−4 are also listed in the table. Here, heavier ions need a
larger detuning and correspondingly higher laser power to
maintain a low gate error. For most ion species, hundreds of
milliwatts of laser power per beam and a detuning compa-
rable or even larger than �f are needed to reduce the gate
error to the 10−4 level.

As in the one-ion gate, Raman scattering into low-lying D
levels will add to the gate error. This error is given by

�D = 2fPtotal gate =
4�K

�
fPtotal. �29�

Here Ptotal gate is the probability that one of the ions scattered
a photon during the two-qubit gate and Ptotal is the one-qubit
gate scattering probability given in Eq. �4�. Since both the

Raman and total scattering probabilities increase by the same
factor as compared to the one-qubit gate, the ratio of the two
errors, �D /�S, will remain the same as given by Eq. �20�.
Table III lists �D /�S for the different ions when �S=10−4.
Notice that for �S=10−4 some ions require ��0���2�f /3�f .
For those ions �D is no longer negligible compared to �S.

Scattering into a low-lying D level will, again, set a lower
bound on the total error. Combining Eqs. �6� and �29� we
find this lower bound to be

�D� =
3	�f

�f

4�K

�
. �30�

Table III lists �D� for the different ion species.

TABLE III. A list of different errors in a two-qubit phase gate due to spontaneous photon scattering. The
error due to Raman scattering back into the S1/2 manifold, �S, is calculated assuming Gaussian beams with
w0=20 �m, a gate time 
gate=10 �s, �trap /2	=5 MHz, a single circle in phase space �K=1�, and 10 mW in
each of the four Raman beams. P0 is the power in milliwatts needed in each of the beams, and �0 /2	 is the
detuning in gigahertz for �S=10−4. The ratio between errors due to Raman scattering to the D and S mani-
folds, �D /�S, is given when �S=10−4. The asymptotic value of �D in the �����f limit is �D�. The Lamb-Dicke
parameter � for the above trap frequency is also listed for different ions.

Ion 104�S P0 �mW� �0 /2	 �THz� �D /�S 104�D� �

9Be+ 3.6 36 −1.20 N.A. N.A. 0.194
25Mg+ 11.1 111 −7.28 N.A. N.A. 0.130
43Ca+ 13.6 136 −10.42 1.01 1.06 0.071
67Zn+ 41.1 411 −24.96 N.A. N.A. 0.11
87Sr+ 26.5 265 −20.34 0.52 0.50 0.048
111Cd+ 64.3 643 −35.44 N.A. N.A. 0.081
137Ba+ 37.4 374 −30.67 1.65 1.46 0.034
171Yb+ 57.5 575 −32.89 0.01 0.007 0.038
199Hg+ 149.7 1497 −49.52 0.003 0.001 0.078

FIG. 5. Laser power in each of the Raman beams vs the error in
a two ion entangling gate due to Raman scattering back into the S1/2

manifold �obtained using Eq. �27��. Different lines correspond to
different ion species �see legend�. Here we assume Gaussian beams
with w0=20 �m, a gate time 
gate=10 �s, �trap /2	=5 MHz, and a
single circle in phase space �K=1�.
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III. RAYLEIGH SCATTERING ERROR

Since Rayleigh photon scattering is elastic, no energy or
angular momentum is transferred between the photons’ and
ions’ internal degrees of freedom. Therefore, these degrees of
freedom remain uncorrelated. Rayleigh scattering does not
necessarily lead to direct spin decoherence.

In situations where Rayleigh scattering rates from the
two-ion-qubit states are different, Rayleigh scattering of pho-
tons will eventually measure the qubit state and lead to de-
coherence. In fact, the most common ion-qubit detection
method relies on state-selective Rayleigh scattering of pho-
tons on a cycling transition. In most Raman gates, however,
the laser is detuned from resonance by much more than the
qubit levels’ energy separation, ���0, and the laser polar-
ization is typically linear to suppress differential Stark shifts.
Under these conditions Rayleigh scattering rates from the
two qubit levels are almost identical and the error due to the
rate difference is negligible. For the clock transition qubit
states considered here, Rayleigh scattering rates are almost
identical, regardless of the laser polarization �for more de-
tails on this error see Sec. III B�.

The main effect of Rayleigh scattering is the momentum
recoil it imparts to the ion qubit. For a single-qubit gate, the
Raman beams are usually arranged in a copropagating geom-
etry. In this configuration, since the Lamb-Dicke parameter is
very small �����0 /�3/2�kLz0�, the effect of ion motion is
negligible on the gate operation. Therefore, Rayleigh scatter-
ing has a negligible effect on single-qubit gates.

In the two-qubit phase gate, a mode of motion is excited
that is entangled with the two-ion collective spin state. In this
case, recoil from photon scattering perturbs the ion’s motion
through phase space and contributes to the gate error. The
ion-qubit trajectory is distorted in two ways. The larger dis-
tortion arises from the direct recoil momentum displacement.
A second, much smaller, distortion arises from the contribu-
tion of the recoil to the appearance of nonlinearities in the
gate operation due to deviations from the Lamb-Dicke re-
gime �see Sec. III B�.

In Sec. III A we calculate the error in a two-qubit gate due
to direct recoil phase-space displacement. In Sec. III B we
elaborate on the two other sources of error mentioned above:
namely, errors due to uneven Rayleigh scattering rates and
errors due to deviations from the Lamb-Dicke regime.

A. Rayleigh scattering recoil error

In elastic Rayleigh scattering, energy and momentum are
not exchanged between the ions’ and photons’ internal de-
grees of freedom. However, momentum and energy are ex-
changed between the photons’ and ions’ external degrees of
freedom. The scattered photon direction will be different
from that of the laser beam, causing the ion to recoil. This
recoil acts on the ion qubit as a phase-space momentum dis-
placement, distorting the ion’s trajectory through phase space
and causing an error in the entangling-gate phase. Note that
the momentum imparted to the ion �and therefore the devia-
tion from the desired gate phase� and the momentum that is
carried by the scattered photon �namely, its scattering direc-
tion� are correlated. From this point of view the gate infidel-

ity again arises due to the entanglement between the scat-
tered photons’ and ions’ �this time external� degrees of
freedom �for more details on this point of view see the Ap-
pendix�.

In the Lamb-Dicke regime �for a thermal state ��2n̄+1
�1, where n̄ is the average mode population�, the gate op-
eration can be approximated as a series of finite displace-
ments in phase space �9�:

Û = �
k=1

N

D̂���k� . �31�

Displacements through phase space, ��k, are conditioned
on the joint spin state of the two ions and depend on the gate
parameters. For certain gate parameters, the displacement is
zero for the two parallel spin states �↑↑� and �↓↓� and nonzero
with opposite sign for the �↑↓� and �↓↑� states, where ↑ and ↓
hereafter refer to the rotated basis rather than the clock lev-
els. Using the commutation relations between phase-space
displacements,

D̂���D̂��� = D̂�� + ��ei Im���*�, �32�

we can write the gate operation as a single displacement
times an overall phase �9�:

Û = D̂��
k=1

N

��k
exp	i Im��
j=2

N

�� j�
l=1

j−1

��l

 , �33�

where N is the total number of infinitesimal displacements.
When the net displacement is zero—i.e., �k=1

N ��k=0—the
two-ion motion returns to its initial state and spin and motion
are disentangled at the end of the gate. The gate operation on
the affected spin states can be written as

Û = Îei�. �34�

The phase acquired,

� = Im��
j=2

N

�� j�
l=1

j−1

��l
 , �35�

is the same for the �↑↓� and �↓↑� states and proportional to the
encircled phase-space area. Figure 6�a� shows an example
for the trajectory traversed in phase space during an ideal
gate in a reference frame rotating at the mode frequency
�trap.

In the presence of laser light there is a finite probability
PRayleigh gate that a Rayleigh photon will be scattered by one
of the ions during the gate �58�.

The probability for a Rayleigh scattering event to occur
during a single-qubit gate is given by the difference between
Eqs. �4� and �13�:

PRayleigh =
	�

�f

3�2 − 2��f + �f
2/3

���� − �f��
. �36�

Since in the limit of �����f all scattering events are Ray-
leigh scattering, PRayleigh and Ptotal have the same asymptotic
value P�.

Using Eq. �36� and the factor for the extra required power
in the two-qubit gate,
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PRayleigh gate =
4�K	�

��f
�3�2 − 2��f + �f

2/3

���� − �f��

 . �37�

The effect on the ion motion would be that of momentum
recoil:

Ûrecoil = eiq·r̂i. �38�

Here q=kL−kscat is the wave vector difference between the
scattered photon and the laser beam from which it was scat-
tered, and r̂i is the position operator of the ion that scattered
the photon �i=1,2�. We will neglect recoil into directions
other than along the trap axis. We can write the position
operator for for ion i along this axis as

ẑi = Zi + z0�â0 + â0
†� + z1�â1 + â1

†� , �39�

where Zi is the equilibrium position of the ion and z0/1, â0/1
† ,

and â0/1 are the root mean square of the ground-state spatial
spread and the creation and annihilation operators, respec-
tively, of the two motional modes 0 and 1. We assume that
the gate is performed by exciting mode 0. Recoil into mode
1 does not distort the gate dynamics directly. This part of the
photon recoil will add minutely to the gate error through its
contribution to the gate nonlinearity discussed in Sec. III B.
We neglect this contribution for the moment and write the
recoil operation as

Ûrecoil = eiqzz0�â0+â0
†� � e�â0−�‡â0

†
� D̂��� , �40�

where qz is the projection of q along the trap axis and �
= iqzz0.

The recoil action on the two-ion crystal is, therefore, a
momentum displacement � in phase space. The magnitude of
� depends on the wave-vector difference between the scat-
tered photon and the beam from which it was scattered and
the projection of this momentum difference along the trap
axis. Since the same recoil displacement is applied to all spin
states, motion will still be disentangled from spin at the end

of the gate. Errors are therefore due to the change in area
encircled in phase space. Figure 6�b� illustrates a gate trajec-
tory that is distorted due to photon recoil.

The erroneous gate can be again written as a sum of dis-
placements, those due to the gate drive and �, which occurs
at some random time during the gate. For a particular two-
ion spin state,

Û� = �
k=M+1

N

D̂���k�D̂����
l=1

M

D̂���l� . �41�

By use of the commutation relation �32�, the gate is written
as

Û� = D̂���ei��+���, �42�

where the phase error �� is determined to be

�� = Im	��
l=1

M

��l
* + �

k=M+1

N

��k�
*
 . �43�

Writing displacements as a function of the gate time

��k = ���tk� →
���t�

�t
dt , �44�

we can write the phase error as a function of the gate dis-
placement before and after the scattering time tscat:

�� = Im	��
0

tscat ��*�t�
�t

dt + �*�
tscat

tgate ���t�
�t

dt
 . �45�

Since ��tgate�=��0�=0, we get

�� = Im���*�tscat� − �*��tscat�� . �46�

Since the accumulated displacement at the moment the pho-
ton was scattered ��tscat� is of equal magnitude but opposite
sign for the �↑↓� and �↓↑� states, we get

��↑↓ = − ��↓↑ � �� . �47�

The erroneous gate can be therefore represented by the
operator

Û� =�
1 0 0 0

0 ei��+��� 0 0

0 0 ei��−��� 0

0 0 0 1
� . �48�

The final-state fidelity following the erroneous gate depends
on ��init�. For a general initial state,

��init� = ��↑↑� + ��↑↓� + ��↓↑� + ��↓↓� , �49�

and using Eq. �7�, we can write for the gate fidelity

F = ����2 + ei�����2 + e−i�����2 + ���2�2. �50�

The most relevant fidelity for fault tolerance considerations
is that averaged over all possible initial states. The fidelity
we calculate here is that due to the worst-case input state:
that is, the input state that minimizes Eq. �50�. The worst-
case fidelity is clearly smaller than the average fidelity and

����

����

(a) (b)

X’ X’

P’ P’

FIG. 6. Schematics of the trajectories traversed by the ions in
phase space during the gate. The acquired phase is proportional to
the encircled area. �a� Phase-space trajectory of an ideal gate. �b�
Phase-space trajectory of an erroneous gate where a photon was
scattered during the gate drive. The short straight arrows represent
the recoil displacement. The gray-shaded area is proportional to the
phase error. The area that is added to the �↑↓� trajectory is subtracted
from the �↓↑� trajectory.
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therefore gives a conservative estimate to the gate error �62�.
The worst-case fidelity for this kind of error was calculated
in �63�. For �� /��1 it is

F = cos2 �� . �51�

This minimal fidelity is the result of an input state with
��2�= ��2�=1/2.

Photon scattering occurs in only a small fraction
PRayleigh gate of the gates. Averaging over all gates performed,
we get

Fgate = 1 − PRayleigh gate�1 − �cos2 ���� � 1 − �R, �52�

where the angular brackets correspond to an average over all
possible ��’s—i.e., due to different values of � and different
scattering times.

To perform the above average we need to explicitly write
the different displacements. In the rotating frame the cumu-
lative gate displacement after a time t can be written as
�9,53�

��t� =
i

2�K
�e−i�t − 1�ei�L, �53�

where �L is the gate phase, determined by the optical phase
difference between the gate beams at the ion’s position. In
the rotating frame, the recoil displacement can be written as

� = ���ei�trapt. �54�

Substituting Eqs. �54� and �53� into Eq. �46�, we can write
the averaged term in the fidelity:

�cos2 ��� =
�

2	
�

���=0

���max �
t=0

2	/�

S�����cos2	 ���
�K

�cos���trap + ��t

− �L� − cos��trapt − �L��
dtd��� . �55�

Here we assume that the probability of scattering at different
time intervals during the gate is uniform. The probability
distribution for different recoil displacement magnitude ��� is
given by S�����, which is determined by the geometry of the
Raman beams with respect to the trap axis and the probabil-
ity distribution of photon scattering directions.

With the laser beam configuration assumed in Fig. 4, re-
coil due to photon absorption can be imparted only at 45° to
the trap axis, whereas recoil due to photon emission can be
imparted in any direction. The maximum allowed displace-
ment following an absorption-emission cycle is therefore

���max = kLz0�1 + �2�/�2 =
�

2
�1 + �2� . �56�

For proper gate operation we require ��1; thus we expand
Eq. �55� in powers of ���, including terms to order ���2. Fur-
ther, since typically � /�trap�1, we neglect terms propor-
tional to � /�trap. With these approximations the gate fidelity
is independent of �L and is given by

Fgate = 1 − PRayleigh gate
����2�
2K

. �57�

Here ����2� is the average of the recoil displacement magni-
tude squared:

����2� = �
0

���max

S��������2d��� . �58�

For the assumed laser beam configuration, the light field
polarization will oscillate rapidly during the gate between
left and right circular and linear at the ions’ position. There-
fore, the scattering probability will average to be isotropic.
For the beam configuration illustrated in Fig. 4, in spherical-
polar coordinates,

����2�
�2 =

1

8	
�

0

2	 �
0

	 � 1
�2

+ cos �
2

sin �d�d� . �59�

Here the ẑ ��=0� direction is chosen parallel to the trap axis.
We find

����2� =
5

12
�2. �60�

Combining Eqs. �52�, �57�, �60�, and �37�, the Rayleigh error
can be written as

�R =
5�	�

6�K�f
�3�2 − 2��f + �f

2/3

���� − �f��

 . �61�

The ratio of �R to �S is therefore

�R

�S
=

5�2

16K
�3�2 − 2��f + �f

2/3

�f
2 
 . �62�

Table IV lists �R /�S for different ion species for �trap /2	
=5 MHz and a single-circle �K=1� gate at a detuning where
�S=10−4. For most ions considered here, the gate error is still
dominated by Raman scattering at this level.

For laser beam detuning large compared to the excited
state fine-structure splitting ���� f� scattering is dominated
by Rayleigh events. In this limit, the probability that a Ray-

TABLE IV. The ratio �R /�S of errors due to Rayleigh scattering
recoil and Raman scattering to the S manifold is given when �S

=10−4. The asymptotic value of �R in the �����f limit is �R�. Both
are calculated assuming �trap /2	=5 MHz and K=1.

Ion �R /�S 104�R�

9Be+ 1.442 1.51
25Mg+ 0.142 0.154
43Ca+ 0.0168 0.0187
67Zn+ 0.0172 0.0193
87Sr+ 0.0030 0.0034
111Cd+ 0.0040 0.0044
137Ba+ 0.0010 0.0011
171Yb+ 0.0006 0.0006
199Hg+ 0.0015 0.0012
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leigh photon will be scattered during the gate is

PRayleigh gate� =
4�KP�

�
. �63�

The recoil error in a two-qubit gate is therefore asymptoti-
cally bound by

�R� =
5	�

2�K

�

�f
=

5	2�

�f�3/2
� �

2M�trapK
. �64�

Table IV lists �R� for different ion species for �trap /2	
=5 MHz and a single-circle �K=1� gate. With the exception
of 9Be+, the error due to photon recoil in a two-ion-qubit gate
is below 10−4. For this error heavier ions benefit due to their
smaller recoil.

It is possible to reduce �R by choosing a smaller � /�K �by
increasing the trap frequency and/or performing multiple-
circle gates�. Correspondingly more laser power, propor-
tional to K /�2, is then required in order not to increase the
Raman scattering error �S or reduce the gate speed.

B. Other Rayleigh scattering errors

In Sec. III A we calculated the error due to the recoil
imparted to the ion qubit during Rayleigh photon scattering.
As noted, Rayleigh scattering of photons adds two more con-
tributions to the gate error.

The first contribution �� is due to a difference in the Ray-
leigh scattering rates from the two ground-state levels. As-
sume that the Rayleigh scattering rate is �Rayleigh from one
qubit level and �Rayleigh+d� from the other. A measurement
of the qubit level will be conclusive once the difference in
the number of photons that are scattered is larger than the
standard deviation of the number of photons scattered from
each level. Since the number of photons that are scattered
follows a Poisson distribution, a measurement will occur af-
ter photons have been scattered for a time t such that

d�t � ��Rayleight . �65�

The error rate is, therefore, given by d�2 /�Rayleigh and the
error during a gate by

�� = �d�/�Rayleigh�2PRayleigh. �66�

For the above gate parameters, the difference in scattering
rates is due solely to the difference in detuning between the
two qubit levels. For ���0, which is typically required to
reduce other scattering errors to low levels, this error can be
approximated by �����0 /��2PRayleigh. The contribution of
�� to the total error at a realistic laser detuning is very small.
We performed an accurate calculation of the difference in the
scattering rates between the two clock levels and verified that
indeed, for all ion species and laser detunings discussed
above, �� is negligible.

A second source of Rayleigh scattering error is through
the contribution of the recoil momentum displacement to
nonlinearities in the gate evolution. The gate error due to
nonlinearities was calculated in �61� and in the present con-
text is proportional to PRayleigh gate�

4Var�n�, where Var�n� is

the variance of the motional-mode distribution due to recoil.
The recoil momentum displacement magnitude is of order �.
Therefore, starting from the ground state and following a
single scattering event, Var�n���. The gate error due to this
effect will be proportional to PRayleigh gate�

5��4, and signifi-
cantly smaller than other scattering errors discussed above.

IV. DISCUSSION

We have calculated the errors due to photon scattering in
single-pulse single-qubit gates and two-qubit phase gates
implemented with stimulated Raman transitions. These er-
rors present a fundamental limit to the gate fidelity in
trapped-ion QIP experiments that use these kinds of gates
and should be a significant factor when choosing a specific
ion as a quantum information carrier for fault-tolerant quan-
tum computing schemes.

Three main errors occur from spontaneously scattering
photons during a gate. Two errors are due to Raman scatter-
ing either back into the S1/2 manifold ��S� or to low-lying D
levels ��D�. The third error is due to the Rayleigh scattering
recoil during a two-qubit gate ��R�. For most ions currently
considered for QIP experiments, the dominant error for real-
istic laser parameters is �S. This error can be typically re-
duced to below current estimates for the fault tolerance
threshold with the use of relatively high �but probably attain-
able� laser power. This makes the availability of high-power
laser sources at the relevant wavelength important. This error
is also reduced for ions with a relatively large S→P transi-
tion wavelength.

Among those three errors, only �D cannot be reduced be-
low a certain value by the use of higher laser intensity.
Therefore, it may eventually be advantageous to choose ions
that do not have low-lying D levels. However, for most ions
considered here, �D is still small at realistic laser parameters
compared to the other Raman error �S.

The masses of the different ions play an interesting role in
the scattering error. Since it is harder to transfer momentum
to heavier ions, they suffer from a larger �S in two-qubit
gates �or alternatively from the need for more laser power for
a given gate speed and error level�. For the same reason,
lighter ions suffer from a larger Rayleigh recoil error �R.
Examining Eqs. �28� and �64�, the Raman error scales as
w0

2M�trap and the Rayleigh error scales as 1 /�f
�M�trap �ne-

glecting differences in wavelength and natural linewidths�.
Since both w0 and �f are generally larger for heavier ions,
the Raman error is larger and Rayleigh error is smaller for
heavier ions by more than is indicated by the kinetic argu-
ment above. Since for most ions �S is the dominant error,
lighter ions seem to currently have a lower overall error due
to photon scattering. Also, because both errors are a function
of M�trap, lighter ions will reach the same error level and
power requirements with a higher �trap when compared to
heavier ions. This allows for faster gate operation. For a
given trap geometry and applied potentials, the axial trap
frequency scales as 1 /�M and the radial trap frequencies
scale as 1/M. For the ion crystal to remain along the axial
trap direction the radial frequencies have to be larger than the
axial frequencies; therefore, the limiting frequency is the ra-
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dial frequency. In this case, M�trap is independent of the
ions’ mass. Heavier ions under these conditions will have a
lower �trap, leading to slower gate operation.

In conclusion, to minimize the effect of scattering on the
fidelity of trapped-ion-qubit gates, one needs to strike a bal-
ance between the desirable characteristics of long wave-
length, light mass, the availability of high-power laser
sources and, if possible, the lack of low-lying D levels when
choosing a specific ion as a quantum-information carrier.

Finally, we remind the reader that here we have focused
on hyperfine ion qubits and gates that rely on off-resonant
Raman transitions applied in a continuous pulse. Other kinds
of trapped-ion gates or qubits could have different limitations
on the gate fidelity due to spontaneous photon scattering.
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APPENDIX: DEPHASING vs ENTANGLEMENT WITH
DIFFERENT PHOTON MODES

In Sec. III we calculated the error due to Rayleigh photon
scattering without considering the scattered photon degrees
of freedom. Rather, we considered dephasing due to the ran-
dom phase that is generated by the scattered photon’s recoil.

As noted, we can also view the gate error caused by Ray-
leigh scattering of photons as arising from the entanglement
between the photon and the ion-qubit external degrees of
freedom. For example, a photon that is scattered during the
gate, while the two spin wave packets are displaced from
each other, can be collected by an ideal imaging system.
Since the two-ion collective spin is entangled with their po-
sition, the position at which the photon is detected at the
image plane can give “which-way” information, thereby
measuring the ions’ spin, collapsing the entanglement, and
causing an error in the gate. Experiments investigating
atomic decoherence due to this effect were performed in
neutral-atom interferometers �64,65�. This effect was also
calculated in �66� for a single ion in a superposition of two
different motional coherent states.

The general equivalence of these two points of view
�dephasing versus entangling with the environment� was ex-
plained in �67�. Here we show this equivalence for the
trapped ion case where the ion is undergoing an �ideally�
spin-dependent closed-loop displacement. For simplicity we
examine the case of a single ion; it is, however, straightfor-
ward to generalize the following proof to the case of two
ions.

We first calculate the final-state fidelity by examining en-
tanglement with the photon modes. As in the two-qubit gate,
a single ion is prepared in an equal superposition of spin
states and is cooled to the motional ground state:

��� = � 1
�2

�↑� +
1
�2

�↓�
 � �0�M �
k

�0�k. �A1�

Here kets with subscript M represent motional states and kets
with the subscript k the different photon modes, which are

initially empty �neglecting the laser mode�. The ion is sub-
sequently driven by an oscillating force which is detuned
from its motional resonance. The direction of force is oppo-
site for the two different spin states. Ideally the two spin
states would traverse opposite circular trajectories in phase
space �in a frame rotating at the motional mode frequency�.
At the end of the gate drive, both parts of the superposition
�ideally� return to the ground state of motion and acquire the
same geometric phase �gate which is proportional to the
phase-space area encircled. The state at the end of the ideal
gate drive is

��ideal� = ei�gate� 1
�2

�↑� +
1
�2

�↓�
 � �0�M �
k

�0�k. �A2�

Now assume the ion scattered a photon during the gate
drive. Immediately before the scattering event, the gate evo-
lution produces

��� = � 1
�2

ei��↑���� +
1
�2

ei��↓��− ��
�
k

�0�k, �A3�

where ±� are the conditional phase-space displacement for
the two spin states �we have dropped the subscript M� and �
is the geometric phase accumulated by the time of scattering.
Immediately after scattering, a single photon is created in
mode k� and the ion correspondingly recoils:

��� =
1

4	
� ��Ek��� 1

�2
ei�eiq�·r̂�↑���� +

1
�2

ei�eiq�·r̂�↓��− ��

� �1�k� �

k�k�
�0�kdk�. �A4�

Here q�=k�−kL is the wave vector difference between the
scattered photon and the laser beam. The delta function
��Ek�� enforces energy conservation. The electromagnetic
field is now represented by a superposition of states in which
a single photon was scattered into a certain mode while all
other modes are empty. Each part of this superposition is
correlated with the corresponding momentum recoil operator
acting on the trapped ion. Recoil into directions other than
the trap axis will give rise to motion which is common to
both parts of the superposition and can therefore be traced
over. We therefore neglect recoil into the dimensions other

than the trap axis direction and approximate eiq�·r̂�eiqz�ẑ,
where qz�=q� ·z. By use of Eq. �40� this momentum recoil

can be written as a phase-space displacement eiq�·ẑ= D̂����,
where ��= iqz�z0 and z0 is the root mean square of the
ground-state spatial spread. Using Eq. �32� we add the recoil
to the gate displacement and the state after scattering can be
written as

��� =
1

4	
� ��Ek��� 1

�2
ei�ei Im����*��↑��� + ���

+
1
�2

ei�e−i Im����*��↓��− � + ���
 � �k��dk�.

�A5�

where
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�k��= �1�k� �

k�k�

�0�k. Since the total gate displacement is equal

to zero, the remaining part of the gate displacement is  �
�depending on the spin state�. Using Eq. �32� again, we can
write the state of the system after the gate has completed:

��� =
1

4	
� ��Ek��� 1

�2
ei�gatee−i Im�����−������↑�����

+
1
�2

ei�gateei Im�����−������↓�����
 � �k��dk�.

�A6�

We can now define the gate phase error ���=Im�����

−����� and write the corresponding density operator


̂ =
1

2�4	�2 � � ��Ek����Ek���e
−i���ei����↑��↑ �

+ ei���e−i����↓��↓ � + e−i���e−i����↑��↓ � + ei���ei����↓�

!�↑ �� � �������� � �k���k��dk�dk�. �A7�

Since we have no information about the mode into which the
photon was scattered, we reduce the above density matrix
with a trace over the photon modes, using tr��k���k���
=4	��k�−k��,


̂ =
1

8	
� ��Ek���1

2
�↑��↑ � +

1

2
�↓��↓ � +

1

2
e−i2����↑��↓ �

+
1

2
ei2����↓��↑ �� � ��������dk�. �A8�

Note that the coherences of the density matrix in Eq. �A8�
are given by an average of ei2���. A large spread in ��� will
“wash out” coherence and leave an incoherent statistical
mixture. Tracing over the motional degrees of freedom we
are now ready to evaluate the fidelity with respect to the
ideal gate output state �Eq. �A2��,

F =
1

2
+

1

2
�cos�2����� = �cos2 ���� , �A9�

where averaging is performed with respect to all of the pho-
ton modes:

�cos2 ���� =
1

4	
� ��Ek��cos2 ���dk�. �A10�

We now turn to calculate the fidelity looking only at
dephasing as in Sec. III A—i.e., loss of fidelity due to the
photon scattering random phase. The gate output state is then

��ideal� = ei�gate� 1
�2

�↑� +
ei��

�2
�↓�
 , �A11�

where �� is the random scattering phase �Eq. �46��. The
fidelity of this state with respect to the ideal gate output state
is identical to that calculated considering entanglement with
the photon modes in Eq. �A9�.
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