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We present theoretical and experimental studies of the center-of-masssc.m.d stability of ions in a Penning
trap with a quadrupole rotating electric field. The rotation frequency of an ion cloud in a Penning trap
determines the cloud density and shape, and it can be precisely controlled by a rotating electric field. The
quadrupole rotating-field scheme can control pure single-species plasmas in contrast to the dipole field, which
is effective only for plasmas composed of two or more species of ions. However, the quadrupole field can
modify the trap stability because of the spatial dependence of the electric field. In this study, we theoretically
and experimentally determine the c.m. stability condition for ions in a Penning trap with a rotating quadrupole
field. The experimental results agree well with the theoretical prediction. In the limit of zero magnetic field we
obtain a type of rf trap which uses a rotating quadrupole field and in which the c.m. motion is analytically
solvable.
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I. INTRODUCTION

Plasmas consisting of particles with a single sign of
chargesnon-neutral plasmasd, such as electrons, atomic ions,
or positrons stored in a Penning trap or a rf trapf1–9g are
interesting subjects of study in atomic physics and plasma
physics—in particular, strongly coupled plasma physicsf10g.
Laser-cooled atomic-ion plasmas not only provide a particu-
larly good example of a strongly coupled plasma, but are
used in high-precision spectroscopyf11g and quantum-
information processingf12g studies as well. In this article we
study the stability of the center-of-masssc.m.d motion in a
Penning trap. Some of the results derived here for the Pen-
ning trap can also be applied to the rf trap by setting the
magnetic fieldsi.e., the ion cyclotron frequencyd to zero.

In a Penning trap, a static electric field generated by at
least three trap electrodes and a static, uniform magnetic field
B pointing in thez direction confine the charged particles
f13g. We consider the case where the trap electrodes are large
compared to the size of the trapped ion cloud. In this case,
image charges on the trap electrodes can be neglected and
the trap potential can be approximated by a static, quadru-
pole potential. In this limit the c.m. motion of the plasma
separates from the internal degrees of freedom of the plasma.
In general, the c.m. motion is a superposition of an axial
oscillationsaxial frequencyvz/2pd, a circular cyclotron mo-
tion smodified cyclotron frequencyVm/2pd, and a circular
magnetron motionsmagnetron frequencyvm/2pd. These fre-
quencies are given byf13g

vz = bÎeVt

m
, s1d

Vm =
1

2
sV + ÎV2 − 2vz

2d, s2d

vm =
1

2
sV − ÎV2 − 2vz

2d. s3d

Here,e andm are the charge and mass, respectively, of the
trapped particles,Vt the dc voltage applied between the ring
and the end-cap electrodes,b a geometric factor with dimen-
sions ofslengthd−1 determined by the electrode configuration,
andV=eB/m the cyclotron frequency.

Due to theE3B fields, a plasma in a Penning trap un-
dergoes a rotation about thez axis of the trap. This rotation is
uniform sdoes not depend on the radial position of an iond in
thermal equilibrium. The rotation frequencyvr determines
the plasma shape and densityf10g and for stable confinement
must satisfyvm,vr ,Vm. The plasma rotationvr can be
precisely controlled by the rotating-field technique or, as it is
sometimes called, the rotating-wall techniquef14g. In this
technique, an additional electric field that rotates about thez
axis with angular frequencyvw is applied. The rotating elec-
tric field applies a force that tends to make the plasma rota-
tion synchronize with the field rotationsvr =vwd. For syn-
chronization,vr should be close tovw, otherwise the plasma
slips relative to the rotating electric field and the rotating
electric field provides very little control. The spatial depen-
dence of the rotating field in a plane perpendicular to the
magnetic field is typically constantsdipole fieldd or linear
squadrupole fieldd, as shown in Fig. 1. The dipole rotating
field can control the plasma rotation only if the c.m. is sepa-
rated from the center of charge and is effective only for
plasmas composed of two or more species of ionsf14g. The
quadrupole rotating fieldsQRFd, on the other hand, can con-
trol pure single-species plasmas by distorting the plasma
shape. However, the QRF can modify the resonant frequen-
cies sVm andvmd and even the trap stability, because an ac
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electric field with a spatial gradient can parametrically excite
a c.m. motion of the plasmaf8,15g.

Dubin and O’Neil considered the confinement of a plasma
in a Penning trap with a QRF in Ref.f10g. They derived
criteria for when the effective potential of a Penning trap
with a QRF is a quadratic potential wellsas opposed to a
saddle potentiald. The effective potential of a Penning trap is
the apparent potential in a frame rotating with the QRF. Du-
bin and O’Neil f10g showed that an effective quadratic well
potential leads to a confined thermally equilibrated plasma
state. They did not consider what happens when the effective
trap potential switches from a well to a saddle. The conse-
quences of this switch for the plasma dynamics and confine-
ment are not immediately apparent. In zero magnetic field,
for example, a rotating saddle potential does give rise to
stable confinementf16g.

In this manuscript we solve the dynamical equations for
the c.m. motion of a single-species plasma in a Penning trap
with a QRF. We then determine the condition for when this
motion is stable. ForV2.2vz

2 srequired for stable trapping
in a Penning trap without a QRFd, this stability condition is
the same condition given by Eq.s3.73d of Ref. f10g for when
the effective trap potential switches from a well to a saddle.
We also experimentally measure the c.m. stability condition
for a weak QRF in the limitV@vw.vm and observe good
agreement with the theoretical analysis.

II. INSTABILITY DUE TO THE QUADRUPOLE
ROTATING FIELD

The electric potential provided by a rotating field ofkth
order can be expressed as

eFk =
1

2
mvz

2dkr
kcosfksu + vwtdg, s4d

wherer and u are cylindrical coordinates anddk is the am-
plitude of the rotating field normalized by the trap potential.
The orderk determines the spatial dependence of the rotating
field and is equal to the number of cycles ofFk in 2p rads of
the azimuthal direction. The dipole field corresponds tok
=1 and the QRF tok=2. Hereafter, we discuss the case of
k=2 only, andd2=d is defined as a dimensionless quantity
d; fwVw/Vt. Here, fw is a dimensionless geometric factor
determined by the electrode configuration, andVw is the volt-
age applied to the electrodes that generate the rotating field.

The c.m. motion of a single-species ion plasma in a Pen-
ning trap with a quadratic trap potential and a QRF separates
from the internal degrees of freedom of the plasma. The
equations of motion for the c.m. are

d2x

dt2
= V

dy

dt
+

vz
2

2
x − vz

2dsx cos 2vwt − y sin 2vwtd, s5d

d2y

dt2
= − V

dx

dt
+

vz
2

2
y + vz

2dsx sin 2vwt + y cos 2vwtd, s6d

d2z

dt2
= − vz

2z. s7d

The z-direction stability is always satisfied regardless of the
QRF, and therefore we consider only the radial stabilitysx
andyd.

We introduce coordinatesj andz defined by

x = j cosvwt + z sinvwt,

y = z cosvwt − j sinvwt. s8d

j andz are coordinates in a frame rotating with the QRF. In
terms ofj andz we can rewrite Eqs.s5d and s6d as

d2j

dt2
− sV − 2vwd

dz

dt
+ HvwsV − vwd − S1

2
− dDvz

2Jj = 0

s9d

and

d2z

dt2
+ sV − 2vwd

dj

dt
+ HvwsV − vwd − S1

2
+ dDvz

2Jz = 0.

s10d

Note that the coefficients of the derivatives in Eqs.s9d and
s10d are constants. The transformation of Eq.s8d has re-
moved the explicit time dependence of Eqs.s5d and s6d on
coss2vwtd and sins2vwtd. Equationss9d ands10d can be com-
bined into a fourth-order differential equation

d4j

dt4
+ b

d2j

dt2
+ cj = 0, s11d

where

FIG. 1. Dipole sleftd and quadrupolesrightd rotating-electric-
field schemes for controlling the plasma rotation frequency. ac volt-
agesVwsinfkvwt−fg with different phasesf are applied to a set of
azimuthally segmented electrodes. The work discussed in this ar-
ticle used six azimuthally segmented electrodes, and the figure
shows the phasef for each electrode in this case. For a pure single-
species plasma, the dipole fieldsk=1d does not couple with the
plasma rotation, but does drive a circular c.m. motion of the plasma.
The quadrupole fieldsk=2d, on the other hand, distorts the plasma
shape and can couple with the plasma rotation.
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b = sV − 2vwd2 + 2vwsV − vwd − vz
2, s12d

c = HvwsV − vwd −
vz

2

2
J2

− vz
4d2. s13d

The solution of Eq.s11d for real-valuedj can be written

j = o
j=1

2

sCje
il j t + Dje

−il j td, s14d

where theCj’s and Dj’s are complex constants determined
from initial conditions, and thel j’s are given by

l1 =
1

2
ÎV2 − 2vz

2 + sV − 2vwd2 + 2Î4vz
4d2 + sV − 2vwd2sV2 − 2vz

2d,

l2 = −
1

2
ÎV2 − 2vz

2 + sV − 2vwd2 − 2Î4vz
4d2 + sV − 2vwd2sV2 − 2vz

2d. s15d

We verify that we can chooseCj’s andDj’s to makej in
Eq. s14d real. There are three cases to consider. The first is if
l j is real sinsides of the inner and outer square roots are
positived; then Cj =Dj

* makesj real. The second is ifl j is
imaginary sinsides of the inner and outer square roots are
positive and negative, respectivelyd; then Cj and Dj should
be real. The third case is ifl j is complexsinside of the inner
square root is negatived. In this casel1=−l2

* sor l1=l2
* de-

pending on how the principal value of the square root of
complex numbers is chosend, and C1=C2

* and D1=D2
* sor

C1=D2
* andD1=C2

*d makej real.
If we assume thel j’s are real, then Eq.s14d can be written

in terms of two characteristic frequenciessl1 and l2d and
two corresponding amplitudessA1 and A2d and phasessf1
andf2d as

j = A1 cossl1t + f1d + A2 cossl2t + f2d. s16d

From Eqs.s9d ands10d we observe thatz is not independent
of j. By substituting Eq.s16d for j in Eqs.s9d and s10d, we
obtain the following solution forz:

z = o
j=1

2
− l j

2 + vwsV − vwd − s 1
2 − ddvz

2

l jsV − 2vwd
Ajsinsl jt + f jd.

s17d

The amplitudessA1 andA2d and phasessf1 andf2d are de-
termined from the initial conditionssj ,z ,dj /dt, anddz /dt at
t=0d.

The c.m. orbit diverges exponentially when eitherl j in
Eq. s15d has an imaginary part. Therefore, only if

V2 − 2vz
2 + sV − 2vwd2 ± 2Î4vz

4d2 + sV − 2vwd2sV2 − 2vz
2d

. 0 s18d

is satisfied will the c.m. motion be stable. ForV2.2vz
2

srequired for stable trapping in a Penning trap without a
QRFd Eq. s18d is always satisfied when we take the plus sign.
With the minus sign we obtain the stability condition for the
c.m. of

uV2 − 2vz
2 − sV − 2vwd2u . 4vz

2udu. s19d

As discussed in the Introduction, the condition of Eq.s19d is
identical to that of Eq.s3.73d in Ref. f10g for when the ef-
fective trap potential changes from a quadratic well to a
saddle potential.

As a special case, suppose a weak QRF is appliedsd
→0d. We expect thatVm andvm can be derived froml1 and
l2. For smalld and assumingvw.vm we obtain

l1 = − vw + Vm +
vz

4

2sV − 2vwdsV − 2vmdsVm − vwd
d2

+ Osd4d

l2 = − vw + vm +
vz

4

2sV − 2vwdsV − 2vmdsvw − vmd
d2

+ Osd4d. s20d

We see thatl1 and l2 approach, respectively, the modified
cyclotron frequency and magnetron frequency in a frame ro-
tating withvw. Note that for this case where the rotating-wall
frequencyvw is in the same direction and greater than the
magnetron frequencysvw.vmd, the magnetron frequency
increases in proportion tod2. We note that this shift is oppo-
site to what happens in the combined Penning-rf trap, where
the addition of an oscillatingsbut not rotatingd quadrupole
field to a Penning trap decreases the magnetron frequency
f17g. Finally, for our experimental work where the ordering
V@vw.vm is valid, Eq.s20d can be approximated by

l1 = − vw + Vm +
vz

4

2V3d2,

l2 = − vw + vm +
vz

4

2V2svw − vmd
d2. s21d
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From Eq.s19d, the critical rotation frequencysvcrd of the
QRF, which separates c.m. stability from instability, con-
verges tovm whend→0. For V@vw.vm, the critical fre-
quencyvcr obtained from Eq.s19d is given by

vcr =
vz

2

2V
+

vz
2

V
fw

Vw

Vt
. s22d

Therefore the critical rotation frequency depends linearly on
Vw. Becausevz

2 is proportional toVt, dependence on the trap
voltageVt occurs only in the first term of Eq.s22d. Further,
Eq. s22d is independent of massm snote vz

2~m−1 and V
~m−1d. This means that the critical frequency is not modified
even in the case of plasmas composed of several species of
ions.

III. EXPERIMENTS

We used the NIST Penning trap, discussed previouslyf14g
to demonstrate the stability limits of a QRF. A sketch of the
trap is shown in Fig. 2. The trap is housed in a vacuum
chamber with a background pressure of 10−9 Pa. The 4.465 T
magnetic field of the trap gives a9Be+ cyclotron frequency
V /2p of 7.608 MHz, and the axial frequency is described by
Eq. s1d, where bÎe/m is 2p325.3 kHz/V1/2 for 9Be.
Trapped Be+ ions are laser cooled by a 313 nm laser beam
made by the second-harmonic generation of a 626 nm dye
laser. The fluorescence of the trapped ions is detected by an
imaging photomultiplier tube. The temperature of the laser-
cooled ions is typically less than 10 mK, and the ion plasma
forms a crystal. The plasma was not required to be a crystal
for this study of the c.m. stability, but the high rate of laser
scattering we obtained at low ion temperatures improved the
signal-to-noise ratio.

The QRF is provided by sine waves applied with proper
phases to the six azimuthal sectors located outside the ring
electrode. The ring electrode is split into two sections along
the z direction so that the QRF penetrates into the trap. The
gap between the ring electrodes is also used for introducing a
cooling laser beam directed perpendicular to the magnetic
field and for the observation of the ion fluorescence. The
geometric factorfw was calculated to be 0.043 by solving

Laplace’s equation with the boundary conditions of the trap
electrodes, and experimentally determined to be
0.045±0.007 by measuring the elliptical distortion of the
plasma shape when the plasma was rotating synchronously
with the QRFf14,18g.

The critical QRF frequencyvcr was measured by observ-
ing the fluorescence asvw was swept from higher to lower
values. We expect that the ion plasma is lost and that the
fluorescence becomes zero whenvw coincides withvcr. Fig-
ure 3 shows examples of this observation. This measurement
was carried out withVt=48.5 V andVw=100 V. One data
set in Fig. 3supper curved was taken with the plasma rotating
faster than the QRFsnamely, the ion plasma was slipping
relative to the QRFd, and the other data setslower curved was
taken with the plasma rotating synchronously with the QRF.
No difference was found in the critical frequency between
the two data sets, that is, the rotation frequency of the ion
plasma did not affect the c.m. stability, as expected theoreti-
cally. In both cases, the stability condition of the c.m. is so
stringent that no ions survive forvw,vcr. The fluorescence
of the lower curve becomes weak when the QRF frequency
approaches the critical frequency. This is because the plasma
density and rotation frequency decrease withvw for this
case. The fluorescence of the upper curve, in contrast, re-
mains constant until the QRF frequency reaches the critical
frequency. This is because the plasma rotation and the den-
sity are independent of the QRF frequency when the ion
plasma is slipping relative to the QRF. The critical rotation
frequency is more precisely determined from the upper
curve, and therefore we used the scheme in which the plasma
is slipping for further measurements.

In Fig. 4, the critical frequency is plotted as a function of
Vw with two values ofVt s48.5 and 28.5 Vd. The critical
frequency depends linearly onVw, as predicted by Eq.s22d.
Also, the two plots have the same slope with different
vcr/2p-axis intercepts. Thevcr/2p-axis intercept of each
data set is the magnetron frequencyvm/2p. By comparing
the slope of Fig. 4 and Eq.s22d, fw was determined to be
0.0480±0.0005, which agrees well with the measured and

FIG. 2. Penning trap apparatus. Six azimuthally segmented elec-
trodes outside the ring electrodes are used to provide the rotating
electric field as shown in Fig. 1. FIG. 3. Fluorescence intensity of9Be+ ions as a function of the

QRF frequency. Upper curve: the plasma was rotating faster than
the QRF. Lower curve: the plasma was rotating synchronously with
the QRF. In both cases, the QRF frequency was swept from higher
to lower values.
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calculated values offw discussed earlier in this section.
These results confirm the theoretical analysis in Sec. II.

IV. CONCLUSION AND DISCUSSION

We have shown theoretically and experimentally that the
QRF modifies the stability of ions in Penning traps. From
both the analysis of the c.m. equations of motion and mea-
surements we find that for a given QRF amplitude, the c.m.
stability depends not on the plasma rotation frequency but
only on the frequency of the QRF. For a QRF frequencyvw
less thanvcr given by Eq.s22d, the ions are expelled from
the trap. We obtained good agreement between theory and
experiment. From this comparison we obtained a value for
the geometric factorfw that was more precise than that ob-
tained by measuring the distortion of the plasma shape due to
the QRF. The stability limit studied here implies that the
QRF amplitude must be reduced for experimental work on
oblate plasmas whose rotation frequency is only a little
above the magnetron frequency.

The stability conditionfEq. s19dg we derived for V2

.2vz
2 is identical to the condition derived in Ref.f10g for

when the effective trap potential changes from a quadratic
well to a saddle potential. This result can be physically un-
derstood in the limit of large magnetic field and low rotation
frequencies of the QRF. In this limit the effective magnetic
field in a frame rotating with the QRF is large, and therefore
the plasma c.m. motion in this rotating frame and in a direc-
tion perpendicular to the magnetic field is dominated byE
3B drift f19g. When the effective potential in the rotating
frame switches from a quadratic well to a quadratic saddle,
the equipotential contours in a plane transverse to the mag-
netic field switch from closed ellipses to open hyperbolas.
With E3B drift the plasma c.m. drifts along an equipoten-
tial surface. Therefore when this surface is an open hyper-
bola the plasma rapidly drifts out of the confinement region.

Finally we consider the special limiting case of zero mag-
netic fieldsB→0 and thereforeV→0d. In this case, the sta-
bility condition for the c.m. motion becomes

1 ,
Î2vw

vz
, d ,

1

2
+

vw
2

vz
2 . s23d

The first inequality is due to the requirement that Eq.s18d is
satisfied only if the sum of the terms to the left of the ± sign
in Eq. s18d are positive. The next inequality in Eq.s23d is
from the requirement of a positive argument of the square
root in Eq. s18d. Finally, the last inequality is from the re-
quirement of Eq.s19d. This ion-trapping scheme is recog-
nized as a different type of radio-frequencysrfd trap. The
characteristic frequencies of this rotating rf trap in a frame
rotating with the QRF are given by

vrrf =Îvw
2 −

vz
2

2
± vz

Îd2vz
2 − 2vw

2 . s24d

One advantage of the rotating rf trap is the simpler c.m.
motion in this trap compared to the normal rf trap. The radial
c.m. motion in a normal linear rf trap, which is described by
a Mathieu equation, has an infinite number of Fourier com-
ponentssnVrf ±vsecular, whereVrf is the applied rf frequency,
vsecular is the secular frequency, andn is any integerd f13g,
whereas the radial c.m. motion in the rotating rf trap consists
of four Fourier componentsf−vw±vrrf in the laboratory
frame wherevrrf takes on two values from Eq.s24dg. This
could mean, for example, that the optical spectral lines of
energetic ions in the rotating rf trap are simpler than those in
the normal rf trap because of fewer motional sidebands. As
far as we know, the rotating rf trap is the only type of rf trap
which is not expressed by a Mathieu-type solution.

The rotating rf trap is the electrical analog of the friction-
less rotating-saddle trap, which was modeled and discussed
in detail in Ref.f16g. The rotating-saddle trap consists of a
ball confined in two dimensions by a rotating saddle-shaped
surface and, of course, by gravity and the opposing vertical
force of the surface in the third. This trap has been used to
illustrate the principal of rf trapping for years. Referencef16g
shows that for zero friction the motion of the ball perpen-
dicular to the rotation axis is analytically solvable and con-
sists of four Fourier components, in agreement with our con-
clusions above.
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FIG. 4. Dependence of the critical frequency onVw for two
values ofVt. Circles and crosses are experimental results with fitted
lines. Thevcr/2p-axis intercept of each data set corresponds to the
magnetron frequencyvm/2p.
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