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Figure '1. A repeating sine function is the basis of an osci!.iating 
signal. 

sine wave repeats itself. A.cycle (272 radians of phase) if 
the oscillation is produced in one period T. 

It  is convenient for us to-express angles in radian h i t s  
rather than in units of degrees, and positive zero crossings 
of the voltage will occur every 2n radians. The frequeiq v 
is the number of cycles in one second (Hz), which is the 
reciprocal of period (seconds per cycle). The expres'sion 
describing the voltage V produced by a sine-wave signil 
generator is given by 

where Vo is the peak voltage amplitude, a(t) is amplitude 
noise, and O(t) is the total accumulated phase. Equivalent 
expressions are 

V(t)  = Vo[l + a(t)] sin 2n - ( 3  
and 

For the following discussion, we will assume the ampli- 
tude noise a(t) is zero. Consider Fig. 2. Let's assume that 
the maximum value of'V equals 1, hence Vo= 1. We say 
that the voltage V(t) is normdized to unity. 

If we are given the frequency of the sine wave, then no 
matter how big or small At may be, we can determine Av 
Let us look at  this from another point of view. Suppose 
that we can measure AVand At. Fkom this, there is a sine 
wave at  a unique minimum frequency corresponding to 
the given AV and At. For infinitesimally small At, this fre- 
quency is called the instantaneous frequency at this t .  The 
smaller the interval At, the better the approximation of 

FREQUENCY STABILITY 

DAVID 4 HOWE 
National Institute of Standards 
and Technology WST) 

Boulder. Colorado 

1. THE SINE WAVE A N D  STABILITY 

A sine-wave signal generator produces a voltage that 
changes in time in a sinusoidal manner as shown in 
Fig. 1. The signal is an oscillating signal because the 

Figure 2. For a given phase, AV us. At of the sine-wave signal 
corresponds to a unique minimum frequency called the instanta- 
neous frequency if A t  is diminishingly small. 
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instantaneous frequency a t  t. In practice, because of finite 
bandwidths, we cannot measure the instantaneous fre- 
quency. 

When we speak of oscillators and the signals they pro- 
duce, we recognize that an oscillator has some nominal 
frequency at which it  operates. The "frequency stability" 
of an oscillator is a term used to characterize how small 
the frequency fluctuations of the oscillator signal are. We 
usually refer to frequency stability when comparing one 
oscillator with another. As we shall see later, we can define 
particular aspects of an oscillator's output, then draw con- 
clusions about its relative frequency stability. People often 
speak of "frequency stability" when they actually mean 
"frequency instability." Frequency stability is the degree 
to which an oscillating signal produces the same value of 
frequency for any interval At throughout a specified period 
of time. An internationally recommended definition of 
"frequency instability" is: "The spontaneous and/or envi- 
ronmentally caused frequency change within a given time 
interval."' 

Let's examine the two waveforms shown in Fig. 3. Fre- 
quency stability depends on the amount of time involved 
in its measurement. Of the two oscillating signals, it is 
evident that "2" is more stable than "1" from time tl to t3 
assuming that the horizontal scales are linear in time. 
From time tl to time t2, there may be some question as to 
which of the two signals is more stable, but it's clear that 
from time tg to time tS, signal "1" is at a frequency different 
from that in interval tl to t2. 

If we want an  oscillator to produce a particular fre- 
quency vo, then we're correct in stating that if the oscilla- 
tor signal frequency deviates from vo over any interval, 
this is a result of something that is undesirable. In the 
design of an oscillator, it is important to consider the 
sources of mechanisms that degrade the oscillator's fre- 
quency stability. These undesirable mechanisms cause 
random (noise) or systematic processes to exist on top of 
the sine-wave signal of the oscillator. To account for the 
noise components at the output of a sine-wave signal gen- 
erator, we can express the output as 

where 

Vo =nominal peak voltage amplitude 
a(t) =deviation of amplitude from nominal (i.e., GVNo) 
vo = nominal fundamental frequency 
4(t) = deviation of phase from nominal 

Ideally a and 4 should equal zero for all time. However, in 
the real world there are no perfect oscillators. To deter- 
mine the extent of the noise components a and 4, we turn 
our attention to measurement techniques. 

'The present IEEE standard for the measure of frequency stabil- 
ity is the one-sided spectral density Sy(f)  in the frequency domain 
or the two-sample or Allan variance uY(7) in the time domain. 
These are explained later. 
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Figure 3. Top (1): Instantaneous frequency is inconsistent and 
less stable from tz to t3. Bottom (2): Instantaneous frequency is 
consistent and more stable throughout. 

The typical precision oscillator, of course, has a pre- 
sumably stable sinusoidal voltage output with a frequency 
v and a period of oscillation T (which is the reciprocal of 
the frequency: v = 1/T). One goal is to measure the fre- 
quency and/or the frequency stability of the sinusoid. In- 
stability is actually what is measured, but with little 
confusion it  is usually called "stability" in the literature. 
Naturally, fluctuations in frequency correspond to fluctu- 
ations in the period. Almost all frequency measurements, 
with very few exceptions, are measurements not of fre- 
quency but of the phase or of the period fluctuations in an 
oscillator, even though the frequencymay be the readout. 
As an example, most frequency counters sense the zero (or 
near-zero) crossing of the sinusoidal voltage, which is the 
point at which the voltage is the most sensitive to phase 
fluctuations. 

We must also realize that any frequency measurement 
involves two oscillators. In some instances, one oscillator 
is in the counter. I t  is impossible to purely measure only 
one oscillator. In some instances one oscillator may suffi- 
ciently outperform the other, and the fluctuations mea- 
sured may be considered essentially those of the latter. 
However, in general because frequency measurements are 
always dual, i t  is useful to define 

as the fractional frequency difference or offset of oscillator 
one v l  with respect to a reference oscillator vo divided by 
the nominal frequency vo. Conceptually, we can also think 
of Eq. (2) as the free-running frequency of an individual 
oscillator v l ,  differentiated with respect to its own nominal 
value vo. Now, y(t) is a dimensionless quantity and useful 
in describing oscillator and clock performance; that is, the 
time fluctuation or difference x(t) of an oscillator over a 
period of time t is given simply by 

We see that the time deviations and the phase deviations 
are related by a constant, l12nvo. Since it  is impossible to 
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measure instantaneous frequency, any frequency or frac- 
tional frequency measurement always involves some sam- 
ple time, At or 2-some time window through which the 
oscillators are observed; whether it's a picosecond, a sec- 
ond, or a day, there must always be some sample time. So, 
when determining a fractional frequency y(t), what is in 
fact happening is that the time difference is being mea- 
sured starting at, say, some time t and again a t  a later 
time, t + z. The difference between these two time differ- 
ences, divided by z, gives the average fractional frequency 
over that period 2 :  

Tau (2) may be called the sample time or averaging time; i t  
may be determined, for example, by the gate time of an  
electronic counter. 

What happens in many cases is that we sample a num- 
ber of cycles of an  oscillation during the preset gate time of 
a counter; after the gate time has elapsed, the counter 
latches the value of the accumulated count of cycles so 
that i t  can be read out, printed, or stored in some other 
way. Then there is a delay time for such processing of the 
data before the counter arms or initializes and resumes on 
the next cycle of the oscillation. During the delay time (or 
process time), information is lost. This is called "dead- 
time", and in some instances i t  becomes a problem. Un- 
fortunately for data processing in typical oscillators the 
effects of deadtime often hurt most when i t  is the hardest 
to avoid. In other words, for times that are short compared 
to a second, when it  is very difficult to avoid deadtime, this 
is usually where deadtime can make a s i N i c a n t  differ- 
ence in the data analysis. Typically, for many oscillators, if 
the sample time is long compared to a second, the dead- 
time makes little difference in the data analysis, unless i t  
is excessive [I]. New equipment or techniques are now 
available that contribute zero or negligible deadtime [2]. 

In reality, of course, the sinusoidal output of an oscil- 
lator is not pure; it contains noise (frequency) fluctuations 
as well. We will describe three different-methods of mea- 
suring the frequency fluctuations in precision oscillators 
other than measuring the frequency directly with a fre- 
quency counter, listed as a fourth method. The direct fre- 
quency counter technique is often very limiting because 
the number of resolvable digits on the counter are often 
inadequate for precision oscillators, and counter input 
noise masks oscillator noise for short sample times. In 
all the methods one also needs to properly match the im- 
pedances of different connected electronic instruments, 
use short connecting cable lengths, aria use high-quality, 
stable connectors. 

1 .l. Common Methods of Measuring Frequency Stability 

1.1 .l. Beat-Frequency Method. The first technique is 
called a heterodyne frequency-measuring method or 
beat-frequency method. The signals from two independent 
oscillators are fed into the two ports of a double balanced 
mixer, as illustrated in Fig. 4. The device labeled "Amp" is 
an amplifier. 

1 oscillator Mixer 
Under Test 

Heterodyne 
Frequency 

Measurement 
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1 
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Printer 

Figure 4. Measurement of the frequency difference ("beat note") 
betweenoscillators can increase measurement precision. State-of- 
the-art oscillators can readily be measured by this method. 

The difference frequency, or the beat frequency vb, is 
obtained as the output of a lowpass filter (to suppress car- 
rier frequency harmonics) that follows the mixer. This 
beat frequency is then amplified and fed to a frequency 
counter and printer or other recording device. The 
fractional frequency is obtained by dividing vb by the nom- 
inal carrier frequency vo. This system has excellent 
precision; one can measure essentially all state-of-the- 
art oscillators. 

1.1.2. Dual-Mixer Time-Difference (DMTD) System. This 
technique uses two heterodyne measurements operating 
simultaneously. The time difference of the zero crossings 
of each beat frequency is measured and yields an excellent 
precision, 10-l3 seconds. A block diagram is shown in 
Fig. 5. I t  should be mentioned that if time or time fluctu- 
ations can be measured directly, an advantage is obtained 
over just measuring frequency. The reason is that we can 
readily calculate the frequency from the time, only if there 
is no deadtime. In the past, frequency was not inferred 
from the time (for sample times of the order of several 

Dual Mixer Time Difference System 

osc 

+~4 ~ t ( i + 2 ) 4  k 
$ Time Difference: x(i) = 12 - t, = - TV - - 2m 

Av(i) At(i + 1) - At(i) Fractional Frequency: y(i) - - = Gv 

Figure 5. Measurement of the time difference between two beat 
notes from two oscillators with a common transfer oscillation can 
further increase measurement precision. Instability of transfer 
oscillator cancels to first order. 



FREQUENCY STABILITY 1709 

seconds and less) because the time difference between a 
pair of oscillators operating as clocks could not be 
measured with sufficient precision. However, now the 
precision of DMTD opens the door to measuring time 
fluctuations as well as frequency fluctuations for 
sample times as short as a few milliseconds, all without 
deadtime. 

In Fig. 5, oscillator 1 could 'be considered to be 
under test and oscillator 2 could be considered to be the 
reference oscillator. Their outputs go to the ports of a pair 
of double-balanced mixers. Another oscillator with sepa- 
rate symmetric buffered outputs is fed to the other 
two ports of the pair of double-balanced mixers. This com- 
mon oscillator's frequency is offset by a desired amount 
from those of the other two oscillators. Then two different 
beat frequencies are produced by the two mixers as shown. 
These two beat frequencies will be out of phase by 
an amount proportional to the time difference between 
oscillators 1 and 2-excluding the differential phase shift 
that may be inserted (component "4" is a phase shifter). 
Further, the beat frequencies differ in frequency by an 
amount equal to the frequency difference between oscilla- 
tors 1 and 2. 

This measurement technique is very useful where os- 
cillators 1 and 2 outputs are a t  very nearly the same fre- 
quency. This is typical for atomic standards (cesium, 
rubidium, and hydrogen frequency standards). 

Illustrated at  the bottom of Fig. 5 is what might 
represent the beat frequencies from the two mixers. 
A phase shifbr may be inserted as component "4" to ad- 
just the phase so that the two beat rates are nominally 
in phase; this adjustment sets up the nice condition that 
the noise of the common oscillator tends to cancel (for 
certain types of noise) when the time difference is deter- 
mined.' After these beat signals are amplified, the 
start port of a time interval counter is triggered with the 
positive zero crossing of the other beat. Taking the 
time difference between the zero crossings of these beat 
frequencies, we measure the time difference between 
zero crossings of oscillators 1 and 2, but with a precision 
that has been amplified by the ratio of the carrier fre- 
quency to the beat frequency (over that normally achiev- 
able with this same time interval counter). The time 
difference x(i) for the ith measurement between oscilla- 
tors 1 and 2 is given by 

where At(i) is the ith time difference as read on the count- 
er, ~b is the beat period, vo is the nominal carrier frequen- 
cy, 4 is the phase delay in radians added to the signal of 
oscillator 1, and k is an integer number of cycles of vo to be 
determined in order to remove the cycle ambiguity. It  is 
important to know k only if the absolute time difference is 
desired; for measurements of frequency and of time fluc- 
tuations, k may be assumed zero unless we go through a 
cycle during a data run. The fractional frequency y(i,z) 
between oscillators 1 and 2 can be derived in the normal 

way from the time fluctuations: 

In Eqs (5) and (6), it is assumed that the transfer (or com- 
mon) oscillator is set at a frequency lower than those of 
oscillators 1 and 2, and that the voltage zero crossing of 
the beat frequency v l  - v, starts-and that v2 - v, stops- 
the time interval counter. The fractional frequency differ- 
ence may be averaged over any integer multiple of ~b 

where m is any positive integer. If needed, zb can be made 
to be very small by having very high beat frequencies. The 
transfer (or common) oscillator may be replaced with a low 
phase noise frequency synthesizer, which derives its basic 
reference frequency from oscillator 2. In this setup the 
nominal beat frequencies are given simply by the amount 
by which the output frequency of the synthesizer is offset 
from vz. Sample times as short as a few milliseconds with 
subpicosecond (< 1 ps) resolution are obtained. Note that 
logging the data at  such a rate usually requires special 
equipment. The National Institute of Standards and Tech- 
nology (NIST) timescale measurement system is based on 
the DMTD. 

1.1.3. Loose Phase-Locked Loop Method. This type of 
method is illustrated in Fig. 6. The signal from an oscil- 
lator under test is fed into one port of a mixer. The signal 
from a reference oscillator is fed into the other port of this 
mixer. The signals are in quadrature; that is, they are 90" 
out of phase, so that the average voltage out of the new 
mixer is nominally zero, and the instantaneous voltage 
fluctuations correspond to phase fluctuations rather than 
to amplitude fluctuations between the two signals. The 
mixer is a key element in the system. The advent of the 
Schottky barrier diode was a significant breakthrough in 

Oscillator -67rI-l 
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ef 
PLL Filter 

Voltage Control 
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Figure 6. Direct measurement of the phase difference between 
two oscillators yields excellent precision. The technique requires 
electronic frequency control of a clean reference oscillator to 
maintain a loose phase lock, hence a zero beat. 



1710 FREQUENCY STABILITY 

making low-noise precision stability measurements. The 
output of this mixer is fed through a lowpass filter and 
then amplified in a feedback loop, causing the voltage- 
controlled oscillator (reference) to be phase-locked to the 
test oscillator. The response time of the loop is adjusted 
such that a very loose phase-lock (long-time-constant) con- 
dition exists. 

The response (or attack) time is the time it takes the 
servo system to make 70% of its ultimate correction after 
being slightly disturbed. The response time is equal to 
llnwh, where wh is the servo bandwidth. If the response 
time of the loop is about a second, then the voltage fluc- 
tuations will be proportional t o  the phase fluctuations for 
sample times shorter than one second. Depending on the 
coefficient of the tuning capacitor and the quality of the 
oscillators involved, the amplification used may vary sig- 
nificantly, but may typically range from 40 to 80 dB via a 
good low-noise amplifier. In turn this signal can be fed to a 
spectrum analyzer to measure the Fourier components of 
the phase fluctuations. It is of particular use for sample 
times shorter than one second (for Fourier frequencies 
greater than 1Hz) in analyzing the characteristics of an 
oscillator. It is particularly useful if one has discrete side- 
bands such as 60Hz, or detailed structure in the spec- 
trum. 

One may also take the output voltage from the above- 
mentioned amplifier and feed it to an analog-to-digital 
(A/D) converter. This digital output becomes an extremely 
sensitive measure of the short-term time or phase fluctu- 
ations between the two oscillators. Resolutions of the 
order of a picosecond (ps) are easily achievable. 

1.1.4. Time-Difference Method Using a Counter. The last 
measurement method we will illustrate is very commonly 
used, but typically does not have the measurement preci- 
sion that is more readily available in the first three meth- 
ods illustrated above. This method, called the tine- 
difference method, is shown in Fig. 7. Because of the 
wide bandwidth needed to measure fast-risetime pulses, 
this method is limited in signal-to-noise ratio. However, 
some commercially available counters allow us to do sig- 

Time Interval Counter 

Figure 7. Measurement of the time difference between two os- 
cillators, usually after division by N to obtain 1 pulse-per-second, 
yields only moderate measurement performance compared to  pre- 
vious methods. The technique is dependent on several properties 
of the counter and its trigger circuits. 

nal averaging or precision risetime comparisons (precision 
of time-difference measurements in the range of 10ns- 
lops are now available). Such a method yields a direct 
measurement of x(t) without any translation, conversion, 
or multiplication factors. However, even if adequate mea- 
surement resolution is available, caution should be exer- 
cised in using this technique because it is not uncommon 
to have significant instabilities in the frequency dividers 
shown in Fig. 7-of the order of 100ps. The technique is 
therefore suitable for long, not short, averaging times. 

A trick to bypass divider problems is to feed the oscil- 
lator signals directly into the time interval counter and 
observe the zero-voltage crossing. The divided signal can 
be used to resolve cycle ambiguity of the carrier; otherwise 
the carrier phase at zero volts may be used as the time 
reference. The slope of the signal at  zero volts is 2xVdzl, 
where zl= l/vl (period of oscillation). For Vo= 1 V  and a 
5-MHz signal, this slope is 3mV/ns, which is a good sen- 
sitivity. (Caution: A correct impedance match of less than 
1.5 VSWR is critical for this setup to be stable.) 

2. CHARACTERIZATION 

Given a set of data for the fractional frequency or time 
fluctuations between a pair of oscillators, it is useful to 
characterize these fluctuations with reasonable and tract- 
able models of performance. In so doing for many kinds of 
oscillators, it is useful to consider the fluctuations as ran- 
dom (may be predicted only statistically) or nonrandom 
(i.e., systematic-environmentally induced or that have a 
causal effect that can be determined and in many cases be 
predicted). 

2.1. Nonrandom Fluctuations 

Nonrandom fluctuations are usually the main cause of de- 
parture from "true" time or "true" frequency in the long 
term. 

If, for example, we have values of the frequency over a 
period of time, and a frequency offset from nominal is ob- 
served, one may calculate directly that the phase error 
will accumulate as a ramp. If, on the other hand, the fre- 
quency values drift linearly, then the time fluctuations 
will behave quadratically. In almost all oscillators, these 
"systematics," as they are sometimes called, are the pri- 
mary cause of time andlor frequency departure. A useful 
approach for determining the value of the frequency offset 
is to calculate the simple mean of the set, or for determin- 
ing the value of the frequency drift by calculating a linear 
least-squares fit to the frequency. A least-squares qua- 
dratic fit to the phase or to the time deviations is rarely as 
efficient an estimator of the frequency drift for most oscil- 
lators. Precision frequency standards are affected by their 
environment. These environmental perturbations often 
cause long-term departures of frequency and time, which 
in a data run can look like drift, but are not. 

2.2. Random Fluctuations 

After the systematic or nonrandom effects of a dataset 
have been calculated or estimated, they may be subtracted 
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from the data, leaving the residual random fluctuations. 
They can usually be best characterized s tat is t ical ly~ing 
ay(z), the Allan deviation, for short z (values) and "Theol" 
for long r, the agreed-on standards (IEEE) in the time do- 
main, to be explained in the next section. It is often the 
case for precision oscillators that these random fluctua- 
tions may be effectively modeled with power-law spectral 
densities. This topic and measurements of spectrum are 
discussed later. We have 

where Sy(f) is the one-sided spectral density of the frac- 
tional frequency fluctuations, f is the Fourier frequency at 
which the density is taken, h, is the coefficient indicating 
the level of that type of noise, and a is a number modeling 
the most appropriate type of power law for the data. If we 
observe from a loga;(r)/logr diagram a particular slope 
(call i t  p)  over certain regions of sample time, r, this slope 
has a correspondence to a power-law spectral density or a 
set of the same with some amplitude coefficient h,. In par- 
ticular, ,u= - (u+ l )  for - 3 < u < l  and p r  -2  for a l l .  
Further, a correspondence exists between h, and the 
coefficient for u,(z) [I]. The transformations for some of 
the more common power-law spectral densities have 
been tabulated, making it quite easy to transform the fre- 
quency stability modeled in the time domain over to the 
frequency domain and vice versa. Examples of some 
power-law spectra and other types of noise that have 
been simulated by computer are shown in Fig. 8. The 
root AlLan variance (an RMS or deviation called "Adev") 
and Theol-deviation are constructed to extract frequency 
instability and not measurement system noise. Synchro- 
nization and measurement system noise is phase or time 
instability characterized by other statistics such as time 
deviation (TDEV) and maximum time interval error 
(MTIE) [3]. 

Once the noise characteristics have been determined, 
one is often able to deduce whether the oscillators are 
performing properly, and whether they are meeting either 
the design specifications or the manufacturer's specifica- 
tions. For example, a cesium beam frequency standard or 
a rubidium gas cell frequency standard, when working 
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properly, should exhibit white frequency noise (slope of -8) 
for values of r of the order of a few seconds to several 
thousand seconds. 

3. ANALYSIS OF TIME DOMAIN DATA 

Suppose now that we are given the time or frequency fluc- 
tuations between a pair of precision oscillators measured, 
for example, by one of the techniques outlined in Section 1, 
and a stability analysis is desired. Let this comparison be 
depicted by Fig. 9. The minimum sample time is deter- 
mined by the measurement system. If the time difference 
or time fluctuations are available, then the frequency or 
the fractional frequency fluctuations may be calculated 
from one period of sampling to the next. Suppose further 
there are M values of the fractional frequency yi. Now 
there are many ways to analyze these data. Historically, 
people have typically used the standard deviation equa- 
tion shown in Fig. 9, as~.dev,(r), where yi is the average 
fractional frequency over the dataset, and is subtracted 
from each value of yi before squaring, summing, and di- 
viding by the number of values minus one (M - 1), and 
taking the square root to get the standard deviation. We 
have studied what happens to the standard deviation 
when the dataset may be characterized by power-law spec- 
tra that are more dispersive than classical white-noise 
frequency fluctuations. In other words, if the fluctuations 
are characterized by flicker noise or any other non-white- 
noise frequency deviations, what happens to the standard 
deviation for that dataset? We can show that the standard 
deviation is a function of the number of data points in the 
set (discussed next), and it is also a function of the dead- 
time and of the measurement system bandwidth. For ex- 
ample, using flicker-noise frequency modulation as a 
model, as the number of data points increases, the stan- 
dard deviation increases monotonically without limit. 
Some statistical measures have been developed that do 
not depend on the datalength and that are readily usable 
for characterizing the random fluctuations in precision 
oscillators. The IEEE has adopted a standard measure 

10-131 I I I I I I 
10 102 103 101 105 106 Figure 9. A simulated plot of the time fluctuationsx(t) between a 

pair of oscillators and of the corresponding fractional frequencies 
Sample Time, z ( s ) calculated from the time fluctuations each averaged over a sample 

Figure 8. "Adev" (root Allan variance estimate) showing power- time z. At the bottom are the equations for the standard deviation 
law noise as straight lines in addition to other errors. Our goal is (left) and for the time-domain measure of frequency stability as 
to properly interpret this kind of plot of frequency stability. 

.' 
recommended by the IEEE (right). 
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known as the "Allan variance" taken from the set of useful 
variances developed, and an experimental estimation of 
the square root of the Allan variance is shown as the bot- 
tom right equation in Fig. 9 [2,4]. This equation is 
very easy to implement experimentally, as we need to 
simply add up the squares of the differences between ad- 
jacent values of yi, divide by the number of them and by 2, 
and take the square root. We then have the quantity that 
the IEEE subcommittee has recommended for specifica- 
tion of stability in the time domain, denoted by oy(z) 

where the brackets "( )" denote infinite time average. In 
practice this is easily estimated from a finite dataset as 
follows: 

where the yi are the discrete frequency averages as illus- 
trated in Fig. 9. 

We would like to know how ~ ~ ( 7 )  varies with the 
sample time z. A simple and very useful trick that 
we can use if there is no deadtime is to average the val- 
ues for yl and y2 and call that a new y1 averaged over 27; 
similarly average the values for ys and y4 and call that a 
new ys averaged over 2z, and so on, and finally apply the 
same equation as before to get aY(2z). One can repeat this 
process for other desired integer multiples m of 7, and 
from the same dataset generate values for oy(mt) as a 
function of mz, from which one may be able to infer a 
model for the process that is characteristic of this pair of 
oscillators. If we have deadtime in the measurements, ad- 
jacent pairs cannot be averaged in an unambiguous way to 
simply increase the sample time. We have to retake the 
data for each new sample time-often a very time-con- 
suming task. This is another instance where deadtime can 
be a problem. 

The classical variance (standard deviation squared) is 
the wrong statistic for measurements of frequency stabil- 
ity, because in most cases it depends on the number of data 
samples. Fig. 10 plots the ratio of the stmdard deviation 
squared for N samples to the standard deviation squared 
for two samples, (a2 (2,z)), which is the same as the Allan 
variance, o;(7). We can see the dependence of this stan- 
dard deviation on the number of samples for various kinds 
of power-law spectral densities commonly encountered as 
reasonable models for many important precision oscilla- 
tors. Note that o32) has the same value as the classical 
variance for the classical noise case (white-noise FM). 
Figure 10 shows that with the increasing length of data 
the standard deviation of the common classical variance is 
not well behaved. 

We may combine Eqs. (4) and (9) to obtain an equation 
for aJ7) in terms of the time-difference or time-deviation 
measurements: 

Number of Samples, N 

Figure 10. The ratio of the time average of the standard devia- 
tion squared for N samples over the time average of a two-sample 
standard deviation squared as  a function of the number of sam- 
ples N. The ratio is plotted for various power-law spectral densi- 
ties that commonly occur in precision oscillators. This figure 
illustrates one reason why the standard deviation is not a suit- 
able measure of frequency stability [41. 

which for N discrete time readings, also called N,, may be 
estimated as 

where the i integer denotes the number of the reading in 
the set of N and the nominal spacing between readings is 
z. If there is no deadtime in the data and the original data 
were taken with a sample time zo, a set of xi values can be 
obtained by integrating the yi values: " 

Once we have the xi values, we can pick 7 in Eq (13) to be 
any integer multiple m of 70, specifically 7 = mzo: 

Equation (14), called the "max-overlap estimator," is re- 
garded as the best estimator of ay(mzo). 

Example 1. Find the two-sample (Allan) variance, o,2(2), of 
the following sequence of fractional frequency fluctuation 
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values yk, each value averaged over one second: 

(assume no deadtime in measurement of averages). 
Since each average' of the fractional frequency fluctua- 

tion values is for one second, then the first variance cal- 
culation will be at  z =  l s .  We are given M = 8  (eight 
values); therefore, the number of pairs in sequence is 
M - l = 7 .  We have 

First Differences First Difference Squared 
Data Values yk (yk+ 1 - yk) (yk+ I - yklZ 

( x ( x lo-5] ( X  10-lo) 

Therefore the Allan variance is 

and the Allan deviation is 

Using the same data, we can calculate the Allan vari- 
ance for T = 2 s by averaging pairs of adjacent values and 
using these new averages as data values for the same pro- 
cedure as above. For three second averages (r = 3 s), take 
adjacent threesomes and find their averages and proceed 
in a similar manner. More data must be acquired for use of 
longer averaging times. 

The confidence of the estimate on oy(z) improves 
nominally as the square root of the number of data 
values used. In this example M =8, and the confidence 
can be expressed as being no better than 1/J8 x 100% = 
35%. This is a one-sigma ( la)  uncertainty (68% confidence 
interval) in the estimate for the 7 = 1 s average. We can 
dramatically improve confidence using a combination of 
signal processing, as discussed next. 

For the particularly difficult measurement problem 
of d'etermining the frequency stability of frequency 

standards and oscillators for long averaging times, 
we can use the special-purp~e statistic, the estimator 
of a theoretical variance 1 ("Theol"), given in native form 
by [51 

Theol(m, zo, N,) = 
1 

0.75(Nx - m ) ( m ~ ~ ) ~  

for m even, 1 0 ~ m ~ N x  - 1, and 7 = 0.75 mzo. It has statis- 
tical properties like those of the Allan variance, with the 
significant enhancement that i t  can evaluate frequency 
stability at longer averaging times than by using the Allan 
definition. We can remove bias relative to "Avar" by a 
composite statistic given by 

TheoH(m, zo, N,) 

I k 
Avar(m, zo,Nx) for l 5 m  <-- 

70 
- - 

I k 
TheoBR(m, 70, N,) for - <m5Nx - 1, m even 

0 . 7 5 ~ ~ -  

(16) 

where k is the largest zlT/10 where Avar(m, 70, Nx) has 
sufficient confidence. In this equation TheoBR is defined 

TheoBR(m, 70, N,) 

Avar(m = 9 + 3i, 70, Nx) I ~ G o l ( m ,  70, N,), 

where 

(where 1.1 means the integer part). Equation ( l . c o m -  
putes a function that is Avar in short term and Theol in 
long term. 

4. SPECTRUM ANALYSIS 

Another method of characterizing the noise in a signal 
source is by means of spectrum analysis [6-81. To under- 
stand this approach, let's examine the waveform shown in 
Fig. 11. 

Here we have a sine wave that for short instances is 
perturbed by noise. Some workers loosely refer to these 
types of noises as  "glitches." The waveform has a nominal 
frequency over one cycle that we'll call vo (vo = 1ITo). At 
times, noise causes the instantaneous frequency to differ 
markedly from the nominal frequency. If a pure sine-wave 
signal of frequency vo is subtracted from this waveform, 
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Figure 11. Sine wave that is perturbed by periodic glitches. 

the remainder is the sum of the noise components. 
These components are of various frequencies and the 
sum of their amplitudes is nearly zero except for the in- 
tervals during each glitch, when their amplitudes momen- 
tarily reinforce each other. This is shown graphically in 
Fig. 12. 

We can construct a graph plotting RMS power against 
frequency for a given signal into a given load. This kind of 
plot is called the power spectrum. For the waveform of 
Fig. 11, the power spectrum will have a high value at  vo 
and lower values for the signals produced by the glitches. 
Closer analysis reveals that there is a recognizable, some- 
what constant, repetition rate associated with the glitches. 

In fact, we can deduce that there is a significant 
amount of power in another signal whose period is the 
period of the glitches as shown in Fig. 12. Let's call the 
frequency of the glitches v,. Since this is the case, we will 
observe a noticeable amount of power in the spectrum at  v, 
with an amplitude that is related to the characteristics of 
the glitches. The power spectrum shown in Fig. 13 has this 
feature. A predominant v, component has been depicted, 
but other harmonics also elrist. 

Some noise will cause the instantaneous frequency to 
"jitter" around vo, with a distribution that is higher and 
lower than vo. We thus usually find a "pedestal" associated 
with vo as shown in Fig. 14. 

The process of breaking a signal down into all of its 
various components of frequency is called Fourier expan- 
sion. In other words, the aadition of all the frequency 
components, called Fourier frequency components, produc- 
es the original signal. The value of a Fourier frequency is 
the difference between the frequency component and the 
fundamental frequency. The power spectrum can be nor- 
malized to unity such that the total area under the curve 
equals one. The power spectrum normalized in this way is 
the power spectral density. 

The power spectrum of V(t), often called the R F  spec- 
trum, is very useful in many applications. Unfortunately, 
if we are given the RF spectrum, it is impossible to deter- 
mine whether the power a t  different Fourier frequencies is 
a result of amplitude fluctuations "a(t)" or phase fluctua- 

Sine Wave and ~ o i s e  

+I-- -+--.,, Noise Component 

Figure 12. Periodic glitches are undesirable and can be separat- 
ed from the desired sine wave and characterized in the frequency 
domain. 

-I-- 

"0 "3 
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'" ' , 

v 

Figure 13. A plot of power (into a load) us. frequency is a power 
spectrum. 

tions "$(t)." The RF spectrum can be separated into two 
independent spectra, one of which is the spectral density of 
$(t). 

For the purpose here, the phase fluctuation components 
are the ones of interest. The spectral density of phase 
fluctuations is denoted by S4(f), where f is Fourier fre- 
quency. For the frequently encountered case where the 
AM power spectral density is negligibly small and the to- 
tal modulation of the phase fluctuations is small (mean- 
square value is much less than 1 rad2), the RF spectrum 
has approximately the same shape as the phase spectral 
density. 

However, a main difference in the representation is 
that the RF spectrum includes the fundamental signal 
(carrier), and the phase spectral density does not. Another 
major difference is that the RF spectrum is a power spec- 
tral density and is measured in units of wattshertz. The 
phase spectral density involves no "power" measurement 
of the electrical signal. The units are radians2/hertz. It  is 
tempting to think of S@(f) as a "power" spectral density 
because in practice it is measured by passing V(t) through 
a phase detector and measuring the detector's output 
power spectrum. The measurement technique makes use 
of the relation that for small deviations (64 5 1 radian) 

where VRMS(f) is the root-mean-square noise voltage in a 
1Hz bandwidth (i.e., per JHz) at  a Fourier frequency f ,  
and V,(f) is the sensitivity (volts per radian) a t  the phase 
quadrature output of a phase detector that is comparing 
the two oscillators. In the next section, we will look at  a 
scheme for directly measuring Sg(f) by determining V,(f). 

SPECTRAL DENSITY 

Figure 14. The power spectrum of an oscillator includes its 
"noise pedestal." 
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One question we might ask is "How do frequency 
changes relate to phase fluctuations?" ARer all, it's the 
frequency stability of an oscillator that is a major consid- 
eration in many applications. The frequency is equal to a 
rate of change in the phase of a sine wave. This tells us 
that fluctuations in an oscillator's output frequency are 
related to phase fluctuations since we must change the 
rate of &t) to accomplish a shift in v(t), the frequency at 
time t. A rate of change of total &(t) is denoted by $T(t). 
We then have 

The dot denotes the mathematical operation of differenti- 
ation on the function 4T with respect to its independent 
variable t.' From Eqs. (19) and (1) we get 

Rearranging,' we have 

The quantity v(t) - vo can be more conveniently denoted as 
6v(t), a change in frequency a t  time t. Equation (20) tells 
us that if we differentiate the phase fluctuations $(t) and 
divide by 2n, we will have calculated the frequency fluc- 
tuation 6v(t). Rather than specifying a frequency fl-uctua- 
tion in terms of shift in frequency, i t  is useful to denote 
6v(t) with respect to the nominal frequency vo. The quan- 
tity 6v(t)lvo is called the fractional frequency fluctuation3 
at  time t and is signified by the variable y(t). We then have 

The fractional frequency fluctuation y(t) is a dimension- 
less quantity. m e n  talking about frequency stability, its 
appropriateness becomes clearer if we consider the follow- 
ing example. Suppose that in two oscillators 6v(t) is con- 
sistently equal to + 1 Hz and we have sampled this value 
for many times t. Are the two oscillators equal in their 
ability to produce their desired output frequencies? Not if 
one oscillator is operating a t  lOHz and the other at 
10 MHz. In one case, the average value of the fractional 
frequency fluctuation is 1 in 10, and in the second is 1 in 
10,000,000 or 1 x 10K7. The lOMHz oscillator is then 
more accurate. If frequencies are multiplied or divided 
using ideal electronics, the fractional stability is not 
changed. 

In the frequency domain, we can measure the spectrum 
of frequency fluctuations y(t). The spectral density of fie- 

'AS a n  analogy, the same operation relates the velocity of an ob- 
ject to its acceleration. 
3 ~ o m e  international recommendations replace "fractional" by 
"normalized." 

quency fluctuations is denoted by SyCf) and is obtained 
by passing the signal from an oscillator through an ideal 
FM detector and performing spectral analysis on the re- 
sultant output voltage. S (f) has dimensions of (fractional 
frequency)2/Hz or Hz-! Differentiation of )(t) corre- 
sponds to multiplication by flvo in terms of spectral den- 
sities. With further calculation, one can deduce that 

We will address primarily Sd(f), that is, the spectral den- 
sity of phase fluctuations. For the purpose of noise mea- 
surements, S$(f)  can be measured with a straightforward, 
easily duplicated equipment setup. Whether one measures 
phase or frequency spectral densities is of minor impor- 
tance since they bear a direct relationship. It  is important, 
however, to make the distinction and to use Eq. (22) when 
necessary. 

4.1. The Loose Phase-Locked Loop 

In Section 1.1.3 we described a method of measuring 
phase fluctuations between two phase-locked oscillators. 
Now we will review a common procedure for measuring 
s,(f). 

Suppose that we have a noisy oscillator. We wish to 
measure the oscillator's ~ h a s e  fluctuations relative to 
nominal phase. One can do this by phase-locking another 
oscillator (called the reference oscillator) to the test oscil- 
lator, and mixing the two oscillator signals 90" out of 
phase (phase quadrature). This is shown schematically in 
Fig. 15. The two oscillators are a t  the same frequency in 
the long term, as guaranteed by the phase-locked loop 
(PLL). A lowpass filter (to filter the RF sum component) is 
used after the mixer since thidifference (baseband) signal 
is the one of interest. By holding the two signals a t  a rel- 
ative phase difference of 90°, short-term phase fluctua- 
tions between the test and reference oscillators will 
appear as  voltage fluctuations from the mixer. 

With a PLL, if we can make the servo time constant 
very long, then the PLL bandwidth as a filter will be small. 
This may be done by lowering the gain A, of the loop 
amplifier. We want to translate the phase modulation 

OSCILLATOR % r l l  
OUTPUT OF 
PLL FILTER 

Figure 15. The phase noise of a test oscillator is usually mesured 
by a loose phase-locked loop. The test and reference oscillators 
will naturally lock so that their signals have a phase difference of 
90 deg. and the PLL output voltage fluctuations correspond to 
phase fluctuations between the oscillators. 
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spectrum to baseband spectrum so that it is easily mea- 
sured on a low-frequency spectrum analyzer. With a PLL 
filter, we must keep in mind that the reference oscillator 
should be as good as or better than the test oscillator. This 
is because the output of the PLL represents the noise from 
both oscillators, and if not properly chosen, the reference 
can have noise masking the noise from the test oscillator. 
Often. the reference and test oscillators are of the same 
type and have, therefore, approximately the same noise 
levels. We can acquire a meaningful measurement by 
noting that the noise we measure is from two oscillators. 
Many times a good approximation is to assume that 
the measured noise power is twice that associated with 
either single oscillator. S6(f) is general notation depicting 
spectral density on a reciprocal hertz (Hz-') basis. The 
output from PLL filter necessarily yields noise from two 
oscillators. 

The output of the PLL filter at  Fourier frequencies 
above the loop bandwidth is a voltage representing phase 
fluctuations between reference and test oscillator. It is 
necessary to make the time constant of the loop long com- 
pared to the inverse of the lowest Fourier frequency that 
we wish to measure, that is, z,>[ll2~fllowest)]. This 
means that if we want to measure S,@ down to lHz,  
the loop time constant must be greater than 112x seconds. 
We can measure the time constant by perturbing the 
loop (momentarily disconnecting the battery is conve- 
nient) and noting the time it takes for the control voltage 
to reach 70% of its final value. The signal from the mixer - 
can then be inserted into a spectrum analyzer. A pream- 
plifier may be necessary in the signal path into the spec- 
trum analyzer. 

The analyzer determines the mean-square voltage that 
passes through the analyzer's bandwidth centered around 
a prechosen Fourier frequency f. It  is desirable to normal- 
ize results to a 1Hz bandwidth. Assuming white phase 
noise (white PM), this can be done by dividing the mean- 
square voltage by the analyzer bandwidth in hertz. We 
may have to approximate for other noise processes. [The 
phase noise sideband levels will usudly be indicated in 
RMS volts per root hertz (V/ JHz) on most analyzers.] 

4.2. Equipment for Frequency-Domain 
Stability Measurements 

4.2.1. Low-Noise Mixer. This should be a high quality, 
double-balanced type as shown in Fig. 16 but single-ended 
types may be used. The oscillators should have well-buf- 
fered outputs to be able to isolate the coupling between the 
two input RF ports of the mixer. Results that are too good 

Figure 16. A low noise mixer is a key component for precise 
phase-noise measurements. 

may be obtained if the two oscillators couple tightly via 
signal injection through the input ports. We want the PLL 
to control locking. One should read the specifications in 
order to prevent exceeding the maximum allowable input 
power to the mixer. However, it is best to operate near the 
maximum for best signal-to-noise ratio out of the IF  port of 
the mixer, and, in some cases, it is possible to drive the 
mixer into saturation without burning out the device. 

4.2.2. Low-Noise DC Amplifier. The amount of gain A, 
needed in the loop amplifier will depend on the amplitude 
of the mixer output and the degree of varactor control in 
the reference oscillator. We may need only a small amount 
of gain to acquire lock. On the other hand, it may be nec- 
essary to add as much as 80 dB of gain. Good low-noise DC 
amplifiers are available from a number of sources, and 
with cascading stages of amplification, each contributing 
noise, it will be the noise of the first stage that will add 
most significantly to the noise being measured. Amplifiers 
with very low equivalent input noise performance 
are available from many manufacturers. The response 
of the amplifier should be flat from DC to the highest Fou- 
rier frequency one wishes to measure. The loop time 
constant is inversely related to the gain A, and A, is 
best determined experimentally by sweeping the system 
with known modulation applied at the output of one os- 
cillator [9]. 

4.2.3. Voltage-Controlled Reference Quartz Oscillator. 
This oscillator should be a good one with specifications 
available on its frequency-domain stability. The reference 
must be no worse than the test oscillator in the frequency 
domain. The varactor control should be suificient to main- 
tain phase lock of the reference. In general, test oscillators 
of moderate quality may have varactor control of as much 
as 1 x fractional frequency change per volt. Some 
provision should be available on the reference oscillator 
for tuning the mean frequency over a frequency range that 
will enable phase lock. Many factors enter into the choice 
of the reference oscillator, and often it is convenient 
to simply use two test oscillators phase-locked together. 
In this way, we can assume that the noise out of the 
PLL filter is no worse than 3 dB greater than the noise 
from each oscillator. If it is uncertain whether both oscil- 
lators contribute approximately equal noise, then we 
should perform measurements on three oscillators, taking 
two a t  a time. The noisier-than-average oscillator will re- 
veal itself. 

4.2.4. Spectrum Analyzer. The signal analyzer should 
typically be capable of measuring the noise in RMS volts 
in a narrow bandwidth from near 1 Hz to the highest Fou- 
rier frequency of interest. This may be 50 k H z  for carrier 
frequencies of 10 MHz or lower and several megahertz for 
microwave carrier frequencies. For voltage measuring an- 
alyzers, it is typical to use units of "volts per ,/Hzv. The 
spectrum analyzer and any associated input amplifier will 
exhibit high-frequency rolloff. The Fourier frequency a t  
which the voltage has dropped by 3 dB is the measurement 
system bandwidth fh, or o h  = 2xfh. This can be measured 
directly with a variable signal generator. 
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A frequency-domain measurement setup is shown sche- 
matically in Fig. 17. The component values for the lowpass 
filter out of the mixer are suitable for oscillators operating 
a t  around 5 MHz. 

The active gain element (A,) of the loop is a DC ampli- 
fier, hopefully with flat frequency response, or, if not, a 
known frequency response. One may replace this element 
by an integrator to achieve high gain near DC and hence, ~aractor - - - 
maintain better lock of the reference oscillator in long - 

T 
term. Otherwise long-term drift between the reference 
and test oscillators might require manual re-adjustment 
of the frequency of either oscillator [1,6]. 

Rather than measure the spectral density of phase 
fluctuations between two oscillators, it is possible to mea- 
sure the phase fluctuations introduced by a device such as 
an active filter or amplifier. Only a slight modification of 
the existing PLL filter equipment setup is needed. The 
required scheme is shown in Fig. 18. 

Figure 18 is a differential phase noise measurement 
setup. The output of the reference oscillator is split so that 
part of the signal passes through the device under test. We 
want the two signals going to the mixer to be 90" out of 
phase; thus, phase fluctuations between the two input 
ports cause voltage fluctuations at the output. The voltage 
fluctuations then can be measured at various Fourier fre- 
quencies on a spectrum analyzer. 

To estimate the noise inherent in the test setup, one 
can in principle bypass the device under test and compen- 
sate for any change in amplitude and phase at the mixer. 
In order to measure inherent test equipment noise, the 
PLL filter technique must be converted to a differential 
phase noise technique. It is good practice to measure the 
system noise before proceeding to measurement of device 

Figure 17. Typical hookup for a phase-noise measurement using 
a loose PLL. 

where V, is the phase sensitivity of the mixer in volts per 
radian at  offset frequency f. Using the setup described 
previously, V, can be measured by disconnecting the 
feedback loop to the varactor of the reference oscillator. 
The peak voltage swing is equal to V, in units of 
Vlrad (volts per radian) if the resultant beat note is a 
sine wave at  frequency f. This may not be the case for 
state-of-the-art Sb(f) measurements, where one must 
drive the mixer very hard to achieve low mixer noise lev- 
els. Hence the output will not be a sine wave, and the 
Vlrad sensitivity must be estimated by the slew rate 
(through zero volts) of the resultant square wave from 
the mixerlamplifier. 

The value for the measured Sdw in decibels is given by 

s4m = 20 log VRMS 0 
V, full-scale 4 - detector voltage at  f 

noise. 
Example 2. Given a PLL with two oscillators such that at 
the mixer output: V,= 1VIrad with a beat frequency 

4.3: Procedure and Example f = 45 Hz, VRMs(45 Hz) = 100 nV per root hertz. Solve 
for S4(45 Hz): 

For all of these setups, at the input to the spectrum ana- 
lyzer, the voltage varies as the phase fluctuations in short 100 ~ v / H z - ~ / ~  

2 

term. The conversion to spectral density is S,,+(45 Hz) = ( ) = (F) r a d 2 / ~ z  
1 V/rad 

1 
and 90=ZS4Cf) 

REF 
Oscillator 

Jumper to measure intrinsic noise of set-up 

I I 
I 

Figure 18. Adifferential mesurement and mea- 
surement of the noise floor (by replacing the de- 
vice under test with a through-cable) requires a 
90 deg. phase shift a t  one of the mixer inputs. 
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In decibels Spectral Density of Phase 

100 nV 
S4,(45 HZ) = 20 log - = 20 log - 

1 v  100 

= 20(-7) = - 140 dB a t  45 Hz, 

2 ( 4 5  Hz) = - 143 dB a t  45 Hz 

In the example, note that the mean frequency of the os- 
cillators in the PLL was not essential to computing S+(f). 
However, in the application of S+w,  the mean frequency vo 
is necessary information. Along with S+(f), one should al- 
ways refer to vo. In the example above, where vo = 5 MHz, 
we have 

rad2 
S+(45 HZ) = 10-l4 - , vo = 5 MHz 

Hz 

From Eq. (221, Sy(f) can be computed as  

vo = 5 MHz 

,-Random Walk FM 

5. POWER-LAW NOISE PROCESSES 

Power-law noise processes are models of precision oscilla- 
tor noise that produce a particular slope on a spectral 
density plot. We often classify these noise processes into 
one of five categories. For plots of S+(f), they are 

1. Random-walk FM (random walk of frequency), S+ 
plot goes down as l / f4 .  + 

2. Flicker FM (flicker of frequency), S+ plot goes down 
as  l l f  3. 

3. White FM (white offrequency), S+ plot goes down as 
l l f  2. 

4. Flicker PM (flicker of phase), S+ plot goes down 
as  llf. 

5. White PM (white of phase), S+ plot is flat. 

1 oO 10' 1 02 l o3  IO~HZ 

Fourier Frequency (f) 

Figure 19. Power-law noise is indicated by a particular slope in 
the phase-noise measurement. 

spectral density of phase fluctuations for a typical 5-MHz 
quartz oscillator. 

6. CAUSES OF NOISE TYPES I N  A SIGNAL SOURCE 

6.1. Power-Law Noise Processes 

Power-law noise processes are characterized by their func- 
tional dependence on Fourier frequency. Equation (22) re- 
lates SJf) to Sy(f), the spectral density of frequency 
fluctuations. 

The spectral density plot of a typicaI oscillator's output 
is usually a combination of different power-law noise pro- 
cesses. It  is very useful ahd meaningful to categorize the 
noise processes. The first job in evaluating a spectral den- 
sity plot is to determine which type of noise exists for a 
particular range of Fourier frequencies. It is possible to 
have all five noise processes generated from a single os- 
cillator, but in general only two or three noise processes 
are dominant. Figure 19 is a graph of S+m showing the 
five noise processes on a log-log scale. Figure 20 shows the 

Section 5 pointed out the five commonly used power-law 
models of noise. With respect to S&), one can estimate a 
straight-line slope (on a log-log scale) that  corresponds to 
a particular noise type. This is shown in Fig. 19. 

We can make the following general remarks about 
power-law noise processes: 

1. Random-walk FM ( l l f  4, noise is difficult to measure 
since i t  is usually very close to the carrier. "Random- 
walk FM" usually relates to the oscillator's physical 
environment. If random walk FM is a predominant 
feature of the spectral density plot, then mechanical 
shock, vibration, temperature, or other environmen- 
tal effects may be causing "random" shifts in the 
carrier frequency. 

2. Flicker FM ( l l f  3, is a noise whose physical cause is 
seldom fully understood but may typically be related 

Spectral Density of Phase 
-110r i 

Flicker FM 

/- Flicker PM 

-1 60 

1 o0 10' 1 o2 1 o3 1 O ~ H ~  

Fourier Frequency (f) 

Figure 20. Different power-law noises have different causes in 
an oscillator's output signal. 
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Figure 21. 60Hz and harmonics are easily distin- 
Fourier Frequency, (f) guished in a phase-noise measurement. 

to the physical resonance mechanism of an active 
oscillator, or the design or choice of parts used for 
the electronics, or environmental properties. Flicker 
FM is common in high-quality oscillators, but may 
be masked by white FM (llf 2, or flicker PM (llf) in 
lower-quality oscillators. 

3. White FM (llf2) noise is a common type found in 
passive-resonator frequency standards. These con- 
tain a slave oscillator, often quartz crystal, which is 
locked to a resonance feature of another device that 
behaves much like a high-Q filter. Cesium and ru- 
bidium standards have white FM noise characteris- 
tics. 

4. Flicker PM (llf) noise may relate to a physical res- 
onance mechanism in an oscillator, but it usually is 
added by noisy electronics. This type of noise is com- 
mon even in oscillators of the highest quality be- 
cause in order to bring the signal amplitude up to a 
usable level, amplifiers are used after the signal 
source. Flicker PM noise mav be introduced in these 
stages. I t  may also be introduced in a frequency 
multiplier. Flicker PM can be reduced with good low- 
noise amplifier design (i.e., using RF negative feed- 
back) and hand-selecting transistors and other elec- 
tronic components. 

5. White PM (fO) noise is broadband phase noise and 
has little to do with the resonance mechanism. It  is 
'probably produced by phenomena similar to that of 
flicker PM (UjC) noise. Stages of amplification are 
usually responsible for white PM noise. This noise 
can be kept at  a very low value with good amplifier 
design, hand-selected components, the addition of 
narrowband filtering a t  the output, or, if feasible, 
increasing the power of the primary frequency 
source. 

60-Hz AC line noise. Shown in Fig. 21 is a constant white 
PM noise source with 60-, 120- and 180-Hz components 
added. This kind of noise is usually caused by AC power 
getting into the measurement system or the source under 
test. In the plot of Sd( f), we observe discrete line spectra. 
Although S+(f) is a' measure of spectral density, we can 
interpret the line spectra with no loss of generality, al- 
though one seldom refers to spectral densities when char- 
acterizing discrete lines. Figure 22 is the time-domain 
representation of the same white phase modulation level 
with 60-Hz noise. Note that the amplitude of o,(z) varies up 
and down depending on sampling time. This is because in 
the time domain the sensitivity to a periodic wave varies 
directly as the sampling interval. This effect (which is an 
aliasing effect) can be used as a tool for filtering out a pe- 
riodic wave imposed on a signal source. By sampling in the 
time domain a t  integer periods, we can be virtually insen- 
sitive to the periodic (discrete line) term, which is a useful 
strategy for removing the effect of the periodic wave. 

6.2. Other Types of Noise 

A commonly encountered type of noise from a signal 
source -or measurement apparatus is the presence of 

1/10 1 10 100 1000 10000 
sec sec sec sec sec sec 

Sample time, z(s) 

Figure 22. I t  is not easy to interpret an Allan deviation plot 
when 60 Hz noise is present on an oscillating signal. 
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Figure 23. An oscillator under vibration causes side- 
band noise modulation that is apparent in a phase- 
noise measurement. 
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Figure 24. The Allan deviation of an osciliator under vibration 
causes a general increase in the level of frequency instability, 

- - 
Frequency Domain 
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For example, diurnal variations in data due to day-to- 
day temperature, pressure, and other environmental ef- 
fects can be eliminated by sampling the data once per day. 
This approach is useful for data with only one periodic 
term. 

Figure 23 shows the kind of plot one might see of S6V) 
with vibration and acoustic sensitivity in the signal source 
with the device under vibration. Figure 24 shows the 
translation of this effect to the time domain. 'Also noted 
in Fig. 23 is a (typical) flicker FM behavior in the low-fre- 
quency region. In the translation to time domain (Fig. 24), 
the flicker FM behavior masks the white PM (with the 
superimposed vibration characteristic) for long averaging 
times. 
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