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Abstract - Knowledge of the magnetic field is required to 
determine the quadratic Zeeman bias of a cesium frequency 
standard.  The small magnetic fields (C-field) used in PARCS 
(PARCS is the primary atomic reference clock in space 
project), may have sufficient inhomogeneity that it is not 
practical to measure the field by observing Ramsey fringes on 
a field-sensitive hyperfine line at low launch velocities.  An 
alternative method is to observe low-frequency (Majorana) 
transitions among the Zeeman sublevels.  However, this 
method does not average the C-field in the same way as 
Ramsey excitation.  We have computed the error incurred in 
using this method for some simple models of inhomogeneity.  
We have then estimated the field homogeneity requirements 
needed for this method to produce adequate results.  
Experiments with the NIST cesium fountain are in qualitative 
agreement. 
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INTRODUCTION 
 
 In a cesium frequency standard the magnetic field is 
normally measured by observing a field-dependent hyperfine 
line near the clock transition.  But the narrow velocity 
distribution used in PARCS [1] gives a lineshape with many 
Ramsey fringes making it difficult to pick out the central one.  
Also, the magnetic fields used in PARCS may be so small 
(10nT) that the relative field inhomogeneity may be large 
enough to wash out the Ramsey fringes or move them off the 
Rabi pedestal.  These considerations have led us to consider 
alternative methods for measuring the magnetic field. 
 
 We propose here a method using low-frequency 
Majorana transitions (∆F = 0, ∆m = ±1) among the Zeeman 
sublevels of the selected hyperfine level. These can be 
observed by PARCS using the normal state-selection 
technique to put atoms into the F = 3, m = 0 state. No 
excitation is done in the first Ramsey cavity. The Majorana  
transitions are driven with a low-frequency transverse 
magnetic field covering the drift region. Any remaining F = 3, 

m = 0 atoms are removed to the F = 4, m = 0 state by 
microwave excitation in the second Ramsey cavity. Both F = 
3 and F = 4 atoms are then detected in the normal manner.  
The detected F = 3 atoms are those which have made a 
transition to a nonzero m value.  Because the excitation time 
can be as long as the drift time for Ramsey excitation, the 
resulting resonance can be almost as narrow as the Ramsey 
fringes. 
 
 However, this method does not average magnetic 
field inhomogeneity in the same way as microwave Ramsey 
excitation does.  Hence its use will give a different value for 
the magnetic field bias.  In the following we examine how the 
field is averaged during Majorana excitation.  We compare the 
resulting bias with the inhomogeneity bias associated with 
Ramsey excitation.  We then invert the problem to specify the 
field homogeneity required to keep these biases below a given 
relative uncertainty on the clock transition.  Finally, we give 
the results of some experiments with the cesium fountain 
NIST-F1. 
 

THEORY - - A Little Bit 
 
 We shall adopt the theoretical methods used by 
Shirley et al. [2].  We describe an inhomogeneous magnetic 
field by 
 
 )],(1[)( 0 tfBtB ε−=    (1) 
 
where B0 is a fixed nominal field value chosen for 
convenience, ε is a measure of the relative amplitude of 
inhomogeneity, and f(t) contains all the variation of the field.  
For definiteness we specify |f(t)| ≤ 1.  In the absence of 
inhomogeneity let νZ, proportional to B0, be the separation of 
the ∆m = 0 lines in the hyperfine spectrum, δνQZ = 8νZ

2/νhfs be 
the quadratic Zeeman bias of the clock transition, and νhfs be 
the unperturbed clock transition frequency defining the 
second.  A Ramsey measurement of a field-sensitive line 
yields νZ[1-ε〈f〉] where 
  



 

Fig 1.  Weighting function for inhomogeneity averaging. 
 

∫=
T

dttf
T

f
0

)(1   (2) 

is the time average of f(t) across the drift region. 

 A measurement of the Majorana transition across the 
same region yields the resonance frequency νM[1-εfM] where 
νM is the resonance frequency associated with B0 and fM is a 
weighted time average dependent on the amplitude and 
detuning of the excitation.  The ratio of νM to νZ is                
(gJ-9gI)/2(gJ-gI) or 0.5008 for the F = 3 state of cesium.  Here 
gJ and gI are the electron and nuclear g-factors.  The 
difference from 0.5000 can be significant in using the 
Majorana measurement to predict the quadratic Zeeman bias.  

 For constant excitation amplitude fM can be written as 
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Here pm is half the generalized Rabi frequency pm
2 = 

b2+ωm
2/4, b is half the Rabi frequency (proportional to the 

amplitude of the excitation field), and ωm is the frequency 
detuning at which the line center is measured.  We have 
assumed that the center frequency of the resonance is found 
by slow square-wave frequency modulation of amplitude ωm 
(see Fig. 2).  Equation (3) was derived by inserting (1) into the 
time-dependent Schrödinger equation to create a time-
dependent detuning and then solving to first order in ε [3].  
The weighting function in the integrand is a truncated cosine 
symmetric about T/2.  It is shown in Fig. 1 for pmT = 1.96, a  
value corresponding  to a modulation frequency equal to the 

half width, and the lowest b value giving a maximum 
transition probability on resonance.  Its effect is to de-
emphasize the inhomogeneity near the beginning and end of 
the excitation.  The denominator normalizes the integral and is 
related to the slope of the lineshape. 

 Our first result from (3) is that any inhomogeneity 
anti-symmetric about T/2 does not contribute to fM.  In the 
following table we list some sample symmetric inhomogeneity 
functions f(t), their mean 〈f〉, mean square 〈f2〉, and their 
excitation mean fM. 

Table I.  Inhomogeneity Functions and their Means 

  Name f(t)     〈f〉     〈f2〉  fM 

Quadratic   (1-2t/T)2      1/3     1/5            (2Sina+D)/3D – 2/a2 

Cosine      Cos(2πt/T)     0       1/2       − −a a a D2 2 2sin / ( )π  

End steps:  

1,   0 ≤ ≤t τ        r        r         [sina-sin(a-ar)-arcosa]/D                        

0,  τ τ≤ ≤ −t T  
       1,   T t T− ≤ ≤τ  

In the above table a = pmT, r =  2τ/T,  and D a a a= −sin cos .   
For the lowest optimum excitation and modulation at the half 
height of the resonance we have bT = 0.342, ωmT = 3.86, and 
pmT = 1.96.  For this value of a the values of fM for the 
quadratic and cosine functions are 0.182 and -0.353 
respectively.  For the end step function we find -0.508 r2 for 
small r.  These values are not greatly different from those at 
small a. 

INHOMOGENEITY REQUIREMENTS 

 Since fM  differs from both the mean and root-mean-
square values of f , its use in evaluating the quadratic Zeeman 
effect will lead to an incorrect result.  Below we compare this 
error with a familiar inhomogeneity bias.  We then estimate 
how small the inhomogeneity should be to keep either bias 
below a specified level in the accuracy budget of a standard. 

 The quadratic Zeeman effect of the clock transition 
as seen by the atoms is given by [2, Eq. 99] 

 ]21[)( 22 ffatom QZQZ εεδνδν +−= . 

If we measure the field by observing a field-dependent 
hyperfine transition and calculate the quadratic Zeeman effect, 
we obtain [2, Eq.98] 

 δν δν ε εQZ QZcalc f f( ) [ ]= − +1 2 2 2
. 
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The difference between these expressions is the mean-square 
vs square-of-the-mean bias 

 

 δν ε δνQZ QZsquare f f( ) [ ]= −2 2 2 . 

For this bias to be less than some specified relative uncertainty 
δy for the clock transition we must have 
δν δ νQZ hfssquare y( ) ≤ .  This requirement can be re-

expressed as a requirement on the degree of inhomogeneity: 

 ][8/)/( 22 ffyZhfs −≤ δννε . (4) 

Similarly, if we measure the field by low-frequency Majorana 
transitions, we compute the quadratic Zeeman bias as 

 
 δν δν ε εQZ QZ M MMaj f f( ) [ ]= − +1 2 2 2 , 

yielding a bias that for small ε is dominated by the terms 
linear in ε.  The corresponding inhomogeneity requirement is 

 ε ν ν δ≤ −( / ) /hfs Z My f f2 16 . (5) 

Except for a factor of order unity this requirement is just the 
square of the preceding one.  Both involve the quantity 
( / )ν ν δhfs Z y .   

  

Table II.  Homogeneity Requirements for Three Standards 

Clock Type   Uncertainty C-field   Ramsey      Majorana   
Name           Goal δy  and νZ    Method       Method 

Thermal Beam 10-15  5.6 µT     ε < 0.007     ε < 10-5     
NIST-7    40 kHz 

Cesium Fountain  10-16 0.085 µT   ε < 0.13     ε < 0.004    
NIST-F1  600 Hz 

Space Clock   10-17  0.01 µT     ε < 0.4       ε < 0.07   
PARCS     70 Hz 

 

In table II (above) we present numerical evaluations 
of (4) and (5) for three primary standards of different types, 
their associated operating fields, and relative uncertainty goals 
for inhomogeneity bias.  Neither NIST-7 nor NIST-F1 meet 

the homogeneity requirement for using the Majorana method.  
But PARCS can meet it.  Note that the Ramsey method 
condition for PARCS assumes that Ramsey fringes can be 
observed on the field sensitive line, which will not be the case 
for large inhomogeneity.  For example, a linear field gradient 
along the longitudinal axis of several per cent will offset the 
Rabi pedestal so far that fringes cannot be seen. 

 

Figure 2 – Lineshape of the Majorana resonance in NIST-F1 

EXPERIMENTS 

 The cesium fountain primary frequency standard 
NIST-F1 [4] was used for preliminary experiments since it has 
a somewhat suitable configuration and detailed magnetic field 
measurements had already been made.  Figure 3 shows the 
magnetic field in NIST-F1 as a function of distance above the 
cavity center.  The measurements were made by 0.1 s pulses 
of low frequency excitation timed to coincide with the atomic 
cloud being at apogee.  The short pulses ensure that the field 
is averaged over only about 1 cm height.  In normal operation 
the atoms traverse the field from left to right, slowing as they 
approach apogee.  They then reverse traversing the field from 
right to left.  Hence they always see a symmetric 
inhomogeneity. 

 The Majorana measurements were made by using the 
state-selection cavity to prepare atoms in the F = 3, m = 0 
state.  The Ramsey cavity was not excited.  Instead, coils on 
the sides of the drift tube provided a transverse low-frequency 
field covering most of the region above the Ramsey cavity.  
This field was left on continuously. The atoms thus 
experienced the field throughout their flight time.  
Unfortunately, the cutoff waveguide tube at the exit of the 
Ramsey cavity is thick enough to partially shield the low-
frequency field.  Hence the exact region being averaged 
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during the low-frequency excitation is somewhat ambiguous.  
Figure 2 shows a sample lineshape for a Majorana transition. 

 The measurements were made at four different toss 
heights.  For each toss height Table III gives the difference 
between the field measured by Majorana excitation and that 
computed by numerically averaging the field as the atoms see 
it down to the end of the cutoff tube (11 cm).  It also gives the 
bias computed from (3) by modeling the inhomogeneity in 
Fig. 3 by a combination of functions in Table I.  The 
agreement is qualitatively correct.  The disagreement at the 
lowest toss height may indicate that the stronger excitation 
field required  

Figure 3 – C-Field inhomogeneity in NIST-F1 as a function of 
height above the center of the Ramsey cavity. 

for the shorter excitation time penetrates deeper into the cutoff 
tube. 

Table III. Measured and Predicted Inhomogeneity Biases 

Toss height (cm)       11.4        24.4        38.2        66.4 

Measured Bias (nT)   -0.46      -0.17      -0.12       +0.05 

Predicted Bias (nT)    -0.32      -0.18      -0.11       +0.08 

These biases are to be compared with a total field of about 89 
nT.  The uncertainty in both the measured and predicted 
biases is about 0.03 nT. 

 

SUMMARY 
 
 We have shown how an inhomogeneous field is 
averaged during excitation.  We have compared the resulting 
bias with other inhomogeneity biases.  We then specified the 
field homogeneity required to keep these biases below a given 

relative uncertainty on the clock transition.  Experiments with 
the cesium fountain NIST-F1 were in qualitative agreement. 
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