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Dynamics of a Simple Maser Model

Jox H. SHIRLEY
National Bureau of Standards, Boulder, Colorado 80302

(Received 28 March 1968; revision received 10 June 196S)

A simple maser mode! consisting of a single-mode field coupled to & identical two-level atoms
is presented. The assumption of negligible statistical correlation between the atoms and the
field, permits the Heisenberg equations of motion to be replaced by a self-consisteni set of
ordinary nonlinear ditferential equations. Relaxation terms and an energy source are intro-
duced phenomenologically. The resulting equations exhibit a threshold, stable and unstable
steady states, relaxation oscillations and, sometimes, spiking. The dynamic equations for the
hydrogen maser and the rate equations of laser theory are derived as special cases. Also dis-
cussed are the maser amplifier, locking of a maser to an external signal, and the effects of
cavity thermal noise.

INTRODUCTION gen muaser and the rate equations of laser theory.
The behavior of a maser under the influence of an
external signal is discussed in Sec. IV, and a bit
of noise theory is given in Sce. V.

The purpose of this article is to present o theory
shich deseribes many of the physical phenomena
associated with masers or lasers, yet is simple
arought to be worked with by students. It can be I. EQUATIONS OF MOTION
wed az a foundation for building more complex
iheortes 1o describe actual devices. Alternatively,
it can be used to Introduce students o the be-  se=palwafet+ Z Lewri 2 blouraat)
pavior of a simple nonlinear svstem by working i s

L yith 2 physieally interesting example. (1

The work presented here is an outgrowth of a o
drnamical theory for the hydrogen maser. Al-
though developed move or less independently, the

! ileas and most of the results of this paper exist in
§

The Hamiltonian for our maser model is

The first term represents the Hamiltonian for the
radiation field, which we assume is confined to a
resonant cavity. We assume fursher tha only
one mode of the cavity is of concern to us. Hence,

the literuture somewhere. However, to obtain the

. RTERY: enresent the intio el ne a sinole
verage eiven here several papers must be  V© can represent the radiation feld as a single

=

Ne

-

N

. . . . . menhanieal harmon 04 o o
sudied, most of them encumbered with complica-  GHHEHIR mechanical harmonie oscitlator of

quency «, with creation and annihilation operators
a’ and @ obeying [a, a¥]=1. The second term
represents the Hamiltonian of JV identical atoms
indexed by 7. We assume that only two stationary
states of each atom are involved in mascr action.
Hence, we can represent an atom by Puull spin

tions. We mention some of this earlier work in

passing, but our development is entirely self-
contained,

The article divides roughly into two parts: the
derivation of the equations of motion, and the
solution of those equations. In Sce. I, we delineate

our model in terms of a fully quantum-mechanieal matrices:

Humilionian, We then develop our equations so L0 0 1 0 O\
5 to bring out the physical origin of the various i ot = ==

trms and the underlying assumptions. 0 —1 ’ 0 0 ’ 10 / ’

The remaining sections desceribe several casily

htained solutions which illustrate various fea- each atom having resonant frequency we.. The
fres of maser behavior, The emphasis is toward  remainder of the Hamiltonlan represents the
Smple cxamples of the mathematical techniques,  interaction between the atoms and the field. An
Mt generality. Seetion IT deseribes the character expression for the coupling constant b (assumed
o the solutions. Section 111 deseribes two limiting  real) is given in Eq. (A8) of the Appendix. We
tases and relates them respectively to the hydro-  have assumed the atoms are so confined that they
949
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all see the same amplitude of the field. Thus, no
spatial coordinates need be infroduced, Similar
Hamiltonians have been used by Haken,! Buley
and Cummings,? and Louisell,® among others.

Some comment is in order on the form of the
interaction term. The usual interaction between
an atom and the clectromagnetic field is p-A, or
an atomic moment times a field strength. Such an
Interaction for a two-level atom would reduce to
some constants times o¢® times the coordinate
operator for the field. Expressing the operators in
terms of ¢, o7, a, and a’, we have a constant
times

(67+6) (a4aTy = (gtatoa’)+ (o™aT+oa).

The term o™ represents the absorption of a pho-
ton together with the excitation of an atom, while
o-a’ represents the inverse process. Thus, the
first pair of terms represents an exchange of en-
ergy hetween an atom and the field. The term
o7 represents the emission of a photon together
with the excitation of an atom, both processes
requiring energy. Since b is usually many orders of
magnitude smaller than w,, the interaction term
can be of importance only if it nearly conserves
energy. This occurs for w,Aw, In the first pair of
terms, but not at all for the second pair. Hence,
we have dropped the seeond pair from our
Hamiitonian.

The use of only the first pair for the interaction
is often referred to as the rotating field approxima-
tion. In magnetic resonance, it corresponds to
kecping that component of an oscillating magnetic
field which rotates in the same sense as the
precessing spins, and discarding the “antirotating”
component. The validity of this approximation
has been extensively studied* and found to be
quite good for b*(a'a)Kw?2. The principal correc-
tion is the so-called Bloch-Siegert shift? in the
resonance frequency of the atom.

' H. Haken, Dynamical Processes in Solid State Optics,
R. Kubo and H. Kamimura, Eds. (W. A. Benjamin, Inc.,
New York, 1967), pp. 168194,

*LE. R. Buley and F. W. Cummings, Phys. Rev. 134,
Al1454 (1064).

*W. H. Louisell, Radiation aid Noise in Quantum
Electronics (MeGraw-Hill Book Co., New York, 1964).

#J. H. Shirley, Phys. Rev. 138, BO79 (1965).

ST Bloch and A. Siegeri, Phys. Rev. §7, 522 {1940).
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AMany workers have used the density-mapyy
formalism in maser theory.t* In principle, the
density matrix contains all the information about -
the system that can be learned within the limitg.
tions of quantum mechanics. Since no ope has
come up with an exact solution for the time de-
velopment of the density matrix with the Hamil-
tonian (1) (exeept when onlv one atom js in-
cluded®), we have decided to be less ambitious ang
find & minimum of information about the system,
say, only the cxpectation values of the maiy
observables. Expectation values are classiea}
variables and should obey classical-type equations,
Accordingly, we proceed to get rid of the quantum
mechanics of the problem as fast as possible.
From the Hamiltonian (1), we obtain the Heisen-
berg equations of motion:

1d=w,a-+b Z i,
i

/‘d']' =Wy — //o']:ﬂ,
and

wit=2h{o;/"fa—o;a";. 2

We then form the expectation value of cach of
these equations:

(didt) {a)=—iw,la)—b >

7

(o

(d/dt){o; )= —iwa{o; ) +ibio, 0.

and
(djdt) (o7 )= —2ib{{s; a)— (g;a’i). 3]
We now have a set of ordinary differential cqua-
tions whose solutions are sealar functions of {me.
If {sa) could be factored into (s {a- then
Ligs. (3) would be a complete systen: of coupled
equations. That the expectation value of a product
cannot be factored in general is a point drilled Nt
all students of quantum mechanies. N (*Vm'tholv:\f,
for the purpose of our theory we contend that tl]{s
factoring is approximately valid. Such an appro¥
mation has been used by many others und}"f
a variety of names (“neoclassical,”  seli-consi
tent-field approximation,® “dielectric approxims
¢ C. R. Willis, J. Math. Phys. 5, 1241 (1004}, o
7 W. Weidlich and F. Haake, Z. Physik 185, 30 SR
8.J. P. Gordon, Phys. Rev. 161, 367 (1967}.
*E. T. Jaynes and F. W, Cummings, Proc. ILEE 5L *
(1963).
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o) or no nane at all,t but is _equivalont t;0
paving semiclassical theory. For if the ﬁeld. 12
{reﬂtt‘d as a nonfluctuating classical quantlt‘y
ad only the atoms treated quantum mechani-
ally, the field coordinate @ hecomes just a number
and faetors out of the expectation value. Sponta-
peots emission 1s lost in this approximation, but
e stindated emission respousible for maser
setion 12 still there.

Intuitively, the semiclassical approximation can
pe justificd In two ways. First, the radiation-field
pode beeomes strongly excited (a large number of
photons present); hence, a classical description
4 the lield should be adequate. Second, an atom
wstatiztically correlated only with that part of the
feld it itzelf has generated. For a large number of
qioms present, most of the field has been generated
po the other atoms. We assume an atom is not
cb:’l‘tl:ﬁGd with others except through their mutual
peraction with the field. Then each atom is un-
wrrelated with most of the field, i.e., the expecta-
gon value of the produet factors. The validity of
e factorization has been investigated by Willis,®
Weidlich, and Haake.'' A more complete justifica-
o by the author will be published elsewhere.

We further simplify Igs. (3) by introducing
dimensionless maeroscopic variables:

A= (e,
M= Z (/0']'"/61.”!,
j
and
W= 2 (o). (4)

;

By defining the sum over all atoms as a single
variable, we eliminate the sums and any mention
of individual atoms from our equations. We also
factor out, the gross time dependence et Here «
i the frequency at which the maser actually
ocillates, which may be different from the
Esonant frequency of either the cavity or the
foms, Physically, A ean be interpreted as the
omplex amplitude of the field, so scaled that
{xl ix the mean photon number; 3/ is propor-
inal to the complex amplitude of the magnetiza-
o or eloetrie polarization acquired by the
he— .
: l\% I\':\."“}Jc.Cumber, Phys. Rev. 180, 675 (1963).

- Weidlich and F. Haake, Z. Physik 186, 203 (1965).
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atoms; and 1V is the population ditference be-
tween the two levels. When 777 iz positive, the
majority of the atoms are in the upper state
{inverted population). Note that {(a; and (¢7)
nonzero implies that the fleld and polarization
have a reasonably well defined phase. Our theory
assumes coherent oscillation.

The equations of motion for the macroscopic
variables (4) are obtained from Eqs. (3) with the
semiclassical approximation:

A=ile—w)A—blI, . (5a)

M =1{w—w.) M+ A, (3b)
and .

W= —20b (/%4 =11 4%, (5¢)

Since « will be close to «, and «., the basic rapid
oscillation of the maser has totally disappeared
from our equations. This is a consequence of the
rotating field approximation and the nature of the
nonlinearity. Without the rotating field approxi-
mation, Eqs. (5) would contain terms in g%
[ecompare (A7) in the Appendix’]. The maser then
generates harmonics, just like other self-oscilla-
tors (such as the Van der Pol®*) without a rotating
field.

One familinr solution of Eqgs. (3
by considering one atom and a field strong euough
that we ean neglect the effect of the atom upon it.
In Eqgs. (8b) and (5¢), we then treat 4 as a con-
stant, Khminating 17, we find

can he obtained

(d/di) 3TV 4 4p*(d,/di) TV = 0.

where p*=c+i(w—w,)? and ¢=b 4 . For the
atom initially in the upper state. we have the
solution W=1-2(c%/p?) sin’pf. The probability
that it will be in the lower state is ${1—1) =
(c*/p*) sin?pt. This is identical with the Rabi tran-
sition probability used in the theory of molecular
beam spectrometers.t®

Equations (3) have the following integrals of
the motion:

A*4A+3W=const=n-+1YV,

RV —E—i H?=const= ii\"ﬂr

12 A, Blagulere, Nonlineur System Anclysis [Academic
Press Inc., New York, 1966).

1B N. F. Ramsey, Molecular Beams (Oxford University
Press, London, England, 1956).
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and
MFAF A5 (wa—we) /2b
=const=N{w,—w,)/2b.

The constants have been evaluated by assuming
there iz a point in the motion for which A7=0.
The value of 177 there is called N and the value of
A*4 is called n. Using these integralg, we find that
T obevs the following differential equation:

{d/dt 2 =T 4h -+ 200N + (w, — )y T — 3621172
= {0ty — o ) 2N — 02N

Thiz can be solved in terms of Jacobian elliptie
funetions:
W =N~—xen®(gt, ).

Here, thie zevo of time is chosen when 17 is a
minimur, and the parameters are given by:

N=d—a,

Pt={d—a’ "2d,

A=tk dn N,
and

== Nl e 20 D

W T e

The other variables can be found from TV via the
integrals of the motion. A special case of this
solution was found by Jagnes and Cummings.®
The elliptie functions are periodic, so TV oscil-
lates. rom the energy integral 4*4 + 317 = const,
we sce that energy is periodically exchanged be-
tween the atoms and the field. This will not go on
forever in a physical system, since the atoms and
field will eventually interact with external in-
fluences not included in our Hamiltonian. Aore
specifically, the radiation-field energy is absorbed
by the cavity walls and coupled out of the cavity
for observation. The atoms collide with the walls
of their container, with each other, or with other
atoms present. Many efforts have been made
to develop models for such dissipating interac-
tions.® " 1478 W do not go into these models here,

®¥ R, K. Wangsness and I'. Bloch, Phys. Rev. 89, 728
(1953} :

15 . R. Senitzky, Phys. Rev, 119, 670 {1960); 131, 2827
(1963).

AL Lax, Phys. Rev. 145, 110 71966).

Equation (6a), deseribing the eveluron o
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but merely adopt their conclusions, which are
equivalent to the itroduetion of p}wnomenolOgi-
cal damping terms into our equations,

All three variables A, A7, and T are dampeq
in general at different rates. For the field 4 \\~é
introduce the damping constant 3=uw, 20, where
Q is the (loaded) quality factor of the cavity, Fop
the atoms we introduce the damping constants
vi and . for W and A, respectively. These
gammas correspond to the reciproeals of the T,
and 7, relaxation times In magnetic resonance
theory.” We make no assumption about the size
of the relaxation rates except that thev should
be small as compared to w.

Now .4 and 3/ relax to zero, but the population
difference 1V may relax to an unequal population
s, as in thermal equilibrium. We should melude
a constant term vi1Fe in the 117 equation to
account for this. Also, to get anything interesting
out of a maser, one must furnish a source of energy
(pumping) in the form of excited atnms which
an then radiate energy to make up for the Josses,
This source also appears in the [T equation.
For mathematical convenience, we lump this
term together with v77, and call the result 1.
In the absence of interaction (h=0), 11" will then
relax to [/v1. Maser models with more than twu
levels may have a different form of relaxation.

We should mention here that thecries of dissipa-
tion give not only a damping term. but also &
driving term of a stochastic nature. This term
provides a source for the noise which invariably
accompanies any dissipative process. Shce ilhe
mean of such a term is zero and we ave primarily
concerned with mean values, we omit these terms
from our equations. The effects of including on¢
are considered in See. V.

We now present the final equations for our
maser model with dissipation:
A=—pA+ile—w)A—ibll. (6a}
N = =yl i (o —a) M 0TTL, (60
and
17 = [y WV =2 (054 — 1A%, (6
he

7 ; o S S eligm
7 A Abragam, The Principles of Nuclea! Magn

(The Clarendon Press, Oxford, England, 1061
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feld driven by the atoms, i1s lincar. The other
o, deseribing the evolution of the atoms as
Jriven by the fleld, are nonlinear, but only
pecauise they involve the product of a field and
Jfonic variable. Considering 4 as an external
m[} we note that Eqgs. (6b) and (6¢) are equiva-
Jent to the Bloeh equations of magnetic-resonance
theory- T They can be developed from a classical
model of precessing spins. Equation (6a) can be
shiained from eclassical electromagnetic-field
deory when the rotating-field approximation is
made. 1n short, Egs. (6) are essentially classical.
The approximation (sa)=(e)(az) is all that is
pecessary to cenvert the quantum equations (2) to
cassical ones.

Earlier work® -2 Jeading to dynamic equations
i terms of macroscopic variables had the equa-~
dons fur A and 3/ second order. Although these
equations are wore accurate in that they do not
mvolve the rotating field approximation, this ap-
proximation has always been invoked in their
olition. In the Appendix we illustrate equiv-
dence by reducing the equation of Davis® to
Lgs. 6.

In Lgs. (65, A aud I are complex while 1 iz
real. There are five real variables in all. These
five can be made explieit by defining A4 =re# and
V=172, The equations of motion beconie:

= —gr+bu cose, (7Ta)
==y cose, (7L
Home [ 1 —Lbpr cos, (7c¢)
o=t —w,—b (u/r+Wriu sing, Td)

and
b=u—w,—bly v} sing. {7e)

Note that 8 appears only in the last equation. Only

the first four equations must be solved simul-

tameonsly, If the eavity ix on tune {w,=w,), then

gean be set equal to zero and only the first three

guations are required.

—

BL. W, Davis, Proc. IREE 51, 76 (1963).

’ A N. Oraevs ii, Radiotekhnika i Flektronika 4, 4, 718

1959) [English transl. Radio Eng. Electron. 4, 4, 22

1939,

MIA. 8. Grasyuk and A. N. Oraevskil, Quantum Klec-

ronges, . A, Miles, Ed. (Academic Press Inc., New York,
964, pyy. 192197

[Vl
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II. GENERAL BEHAVIOR OF SOLUTIONS

One solution of Egs. (6) is apparent. We can
let 4 and 3/ be zero. Then, W relaxes to the
value I/v;. All derivatives will be zero and the
system will remiain in this steady state indefinitely.

It is not enough, however, to just identify a
steady-state solution of a system of nonlinear-
differential equations. We must also consider the
possibility that the system is momentarily dis-
turbed. Will it return to the steady state? Suppose
in Eqs. (6) that 4 and 3/ ave small, but not zero.
Their product in Eq. (6¢) will be very small;
hence, we neglect it and assume 7 remains con-
stant at //v:. The remaining two equations are
linear in 4 and /. Eliminating 3/ and assuming
the system is tuned (w=w,=w,), we obtain

(d/dt)2A 4+ (B4) (d/dt) A4 (Bya—b1T7) 4 =0,

The solution of this equation has the form
¢ exp(Md) +es exp(Aat), where Ay and Ny are roots

of the characteristic equation
N (B 72) N Bva—02 1 =0.

When the veal parts of Ay and Ay are both negative,
A damps to zero, that is, the 4 =1/ =0 steady-
state solution is stable. This oceurs if, and only if,
all coefficients in the characteristic equation are
positive?:

WGy 0F o T<8yiye A

We, therefore, define a threshold value for our
source of excited atoms Ty =8viva/B2 Yor T< 1.,
the system decays to the steadv-state condition
of no field present. For 7> 7y, this steady state is
unstable; a small initial field value will inerease.
When the system is not tuned, the threshold is
larger. To minimize the threshold we want the
eavity tuned, a large interaction matrix element b,
and all three relaxation rates small.

A more interesting sclution is one with the
maser oscillating. For a steady state, we set the
derivatives to zero in ILgs’ (6) and solve Eq.
(6a) for A/:

M=(/b)[B—ilw—c. 14, ‘8]
2 G. Birkhoff and 8. Maclane, 4 Survey of Modern
Algebra (The Macmillan Co., New York, 19533}, p. 115.
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Substituting for M in (6b), we find
[va—ilw—w,) J[B—ilw—w) J4 =014,

If the maser is oscillating, A 80 we
divide it out and separate the real and imaginary
parts of the remainder:

is nonzero,

(9a)
(9h)

Sve—{w—wo) (@—a.) =411,
3eme) +ya(w—w) =0.

Equation {8b) determines the frequeney w at
which the maser oscillates in the steady state:

w= (3@"1+72wr\)/(8+7“) (10>
This frequeney iz an average of the ecavity and
atomic resonance frequencies weighted by the

relative strengths of the cavity and atomic relaxa-
tion raics. It is one of the earliest discoveries in
maser theory.™

ituting Fg. (8) for
the steady state:

Az (11)

Mo Eq. (6¢), we

Subsi
have in
=1

1

AMultiplving by 3w, we obtain a representation of

conservation:

($heTT) +28 (T d™4).

energy

ol =y {12)

The term on the left represents the power supplied
hy the souree On the right,
$hetT 18 the steady-state energy of the atoms in
the cavity, relative to a zero of energy at equal
populations of the states, and +; 1s the rate at
which ’it()nﬁC relaxations remove this energy.
Similarly, ficd* 4 is the field energy stored in the
cavity and 2B—w/Q 1s the rate at which the field
relaxations remove this energy. Thus, Eq. (12)
shows how the input power is divided between
the atomice and field loss mechanisms.

Inserting the value of w from Eq. (10), we solve
Fq. (9a) for I7:

W= (,j'\ll"/ bﬁ‘) [1+ (wc_wa)?‘/(ﬂ_}_')/ﬂ)?]'

The steady-state population inversion is inde-
pendent of the pumping 7. It is determined solely
by balancing the atomic and field losses against
the gain provided by the population inversion.
Thus, as 7 iz increased in Bq. (12), the additional

of exeited atoms,

(13)

2 J. P. Gordon, H. J. Zeiger, and C. H, Townes, Phys.
Rev. 99, 1264 (1935).
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power goes entirely into the field losses (ing] luding
output power) while the atomic relaxations ab\Orb
& constant amount. Substituting Eq. ( 13) iy
Fq. (11), we get an expression for the stoad_\'-gtate
photon number:

A*A=T/48~ (yrr/4D?)

X1+ (we—wd)?/ (B+v2)%]. (1)

The output power of a maser, which is propor.
tional to A*4, is thus an increasing linear functiog
af [ and a decreasing quadratic funetion of the
detuning (we—w,).

Equations (8), (10), (13), and {14) constitute
the complete steady-state solution for our oscil-
lating maser. Note that while Eq. S) gives the
relative phase hetween 4 and W, the absolute
phase is not defined in the :teady—state solution.
In terms of the real variables of gs. (7} and the
parameter z=//1y, the solution is

1= (yiye/40?) (2 —sec?g),
u=(B8/b)r sec,
W = (8y2/b%) sec’y,
tang = (wo—we) / (B+72), (15)

and 6 is arbitrary. This solution can exist only if
2>3sec?, the same threshold condition that makes
the nonoscillating solution unstable.

We now investigate the stability of the osci'l-
lating steady-state solution when the system 1
tuned. To do this, we linearize Eqs. (7) about
their steady state in Eqs. (15). We abbreviate the
steady-state value of # by r, and define

T =107,

u=(B/b)r+op,
and

V= (Bv2/0%) + 0TV

The amplitude deviations satisfv

3
57 = — Bor--bo, (16s:
. Al
b= —yadut (Byo/b) s+ bragV, (1007
and
(16¢)

STV = — v 8TV —48r18r — Abridu,

. . e haye heeft
where product terms in the deviations have
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peglecteds The characteristic equation for this

vetem 13
RERCRe 1y M By vy D) N
+8380%4*=0.

Al coefficients ave positive, hence the condition for
stability is that the product of the first and second
cefficients is greater than the third.2 We replace
Wit by viyefz—1) to reduce this condition to

(3F71+372)8> (B—ri—72) vz

Stealv-state maser oscillation is, therefore, always
dable unless® 3> (y1+72) and

> o= 331+ 37) /v (B—vi—72)

dmilar results are obtained for a detuned system,
put the characteristic equation is fourth order.
These conditions for instability are rarely met in
praetice.

For the phases we use Figs. 15 in Egs. (7d) and
7oy on tune and linearize to find:

o=—(d+v)9¢ (16d)

il

= —3¢. (16¢)

The relative phase ¢ duaups to zero, so is stable.
The maser frequency o —6 is therefore also stable,
hut the phase itself does not return to any fixed
value, but remams wherever 1t started, exeept
that 1t s<hifts if ¢ Is disturbed. This sort of
pewtral cquilibrium is assoeiated with a zerc root
of the characteristie equation for the pair (16d)
and {16e7, and results in a different type of low-
frequeney response to nolse sources, as discussed
i Nee. V.

So far we have found two steady-state solutions
for our maszer Egs. (6) and investigated their
stability. Since the equations, though nonlinear,
are velatively simple, we might guess that the
qualitative behavior contains no new features.
That is, when below threshold the system decays
to the nonoseillating steady state regardless of the
mitia] conditions. When above threshold, the
¥stem moves to the oscillating steady state.
This guess is supported by studying the signs of
the derivatives in Eqgs. (7). For any initial values
the system eventually, if not immediately, turns

toward the steady state. Numerical solutions

SIMPLE
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T
187 ,
| |
- .
X asi— 2
i a
A
¢ 5 10 15
t
(a)

Fic. 1. {(a) Buildup of maser oscillation intensity for
8=+, =v2=1,z=2.Initial value of the normalized intensity
z was 0.01. (b) Decay of maser oscillation intensity for
g=~,=~2=1, 2=0.5. Initial conditions corresponded to
steady state oscillation ut 2 =3.

(T'ig. 1; bear out this behavior. The normalized
intensily 2 is 4b%%/v1v.

III. PARTICULAR CASES

Although many restrictive asswmptions were
made in the formulation of this
relative magnitudes of the relaxation n
still arbitrary. In most physical systems, however,
relaxation rates differ by orders of magnitude.
In such cases, the dynamic behavior is largely
controlled by the slower relaxation rutes. The
faster relaxations damp their variablez so that
they adiabatically follow the slower wvariables.
Some of the variables can then be eliminated,
vielding simpler equations of motion. I'cllowing
Tang,? we discuss two cases.

theory, the

ATes are

3
3
i

A. Hydrogen Maser
For the hydrogen maser,* vy and v are typically
of the order of 3 sec™, while 3 is of the order 10°
sec. Therefore, 82>, v: and Eq. (6a) relaxes

% C. L. Tang, J. Appl. Phys. 34, 2935 (1963;.

% D. Kleppner, H. M. Goldenberg, and N. F. Ramsey,
Phys. Rev. 126, 603 (1962). The value 0.3 for v is a mis-
print.
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much faster than the other two, until 4 is small
compared to 84 and can be neglected. We then
have (on tune)

(17)
As J evolves at a characteristic rate s, L will
adiabatically follow it. The relation (17) is main-
tained since A will be only of order vo.4, small as
compared to g34.

Equation (17) cexpresses Anderson’s “reaction
field” principle® that the field is instantaneously
generated by the polarization present.

Using Eq. (17) to eliminate 17, we obtain the
dyvnami~ equations for the tuned hydrogen maser

OV /35 A

BA=—bM.

A=(—mpt

and

T =T = 43474, (18)

which essentially are in agreement with Anderson?

2 For those who prefer second-order
equations in one variable, we have {r='4 )

A
(F—ip

The term #2/r is Innocuous since 7 goes to zero
whenever r does. [t can be linearized by the change
of variables #=e¢» The #® ferm is the real non-
linearity.

The steadyv-state solutions of Eqs. (1S) are the
same as those of the preceding section. The fre-
quency from Eq. (10) can be approximated hy

&= wa+ ("1/2,'/,3) (wc_wn> .

Since vs/8 is very small, the cavity tuning has a
small effect on the maser frequency, a useful
feature for frequency standards applications.

A stability analysis of the oscillating steady
state for Eqs. (18) leads to the second-order
characteristic equation

NAyid+2vive (2 —1) =0,
with the solution
31371 (v1+ 872 —S8v.2) T2

For 2 <14v1/8v;: both roots are real and negative,
s0 the maser amplitude comes in.smoothly to its
steady state as in Fig. 2(a). For z>14+/Svys,

A= —

% P. W. Anderson, J. Appl. Phys. 28, 1049 (1857).
% C. Audoin, Compt. Rend. 263, 489 (1966).
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2 ‘ 3 8 i
T
{b)
Fra. 2. (a) Buildup of maser oscillation intensity for 3
i N z=1.2. Initial value of z was 0.01. {b)

arge, v;=v:=1,
Iilld 1 of maser oscillation intensity for § lurge, 7,

»=1, and two values of z, showing ihe increase in initial
obcﬂluhons with increased pumping. Initial value of z
was 0.01 in both cases.

the amplitude oscillates about its eo“ﬂibril.nn
value before settling down as in Fig. 2(b). These
two different behaviors were discovered by Gras-
vuk and Oraevskil.?” The initial overshoot {if any)
of the maser is a qualitative measure of how far
above threshold it is.

By defining a normalized intensity 2z =4b%2%/y172
population inversion v =621 /37., and time 7=,
we reduce Eqgs. (18) to the simpler form

dlf//(lT: (:”\ 9/"'1)'1/<1)—"1>

and

dv/dr=z—~v—2. (19)
These equations were integrated numerically 10
obtain Fig. 2.

For the hydrogen maser the thermal-equijibrium
populations at room temperature are almost equnl,
so thermal relaxation tends to drive 11" to zero
The source term I can then be directly inter; preted
as the number of atoms per second in the uppe!
state being supplied to the maser cavity by the
atomic beam and state selector. Also, the assump-

# A, 8. Grasyuk and A. N. Oraevskii, Radio En&
Electron. 9, 424 (1964).

im G
e
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fons of & single cavity mode and no spavial de-
ptlld‘ see are exceedingly good for the hydrogen
. However, its behavior is somewhat com-

maser :
owing to the presence of spin-exchange

lieat® (1
relaxation, which depends on the density of atoms
qeide the maser. With 1 interpreted as the in-
coming flux of atomg, v» and 4, become dependent
on 1.
dependence has been given by Kleppner et al.>

B. Solid-State Laser

In solid-state lasers, will usually have
>3, 1, L the polarization relaxes much faster
than the field or population difference. For this
ease, the 3 equation {on tune) will relax to an
adiabatic condition v.3/ =1V 4. We now use this
condition 1o remove 1/ from Eqs. (6a) and (6¢)
Jeaving

we

A= 34 (/v WA
and
§ Ry ey |

D/ WARA, (20)

as the d\nannc equauona for the laser. If we let
, w=20%/v., Eqs. (20) become the
so-ciied Tate equations long used for describing

Jaser dynamics™:

all™n

= —23n—+

== =200 e (21}

\

Mihwugh rate cquations are usually written down
directly from physieal arguments,
eniphas
alwaas implicic in their use. Rate equations con-
tain no information on the phase of the field, as
Eqs. (207 do, so they cannot be used to study some
phenonena. On the other hand they are valid for
incoherent as well as coherent radiation and ean
have a spontaneous emission source term explicitly
added.

we wish to
ize that the assumption of large ~» is

To muke a correspondence with another com-
mou form of the rate equations,® we write TV in

#D. Klepprer, H. C. Berg, S. B. Cramptog, N. F.
Ramzey, R. F. C. Vessot, H. E. Peters, and J. Vanier, Phys.
Rev. 138, A9T2 (1963).

% 1. 8tatz and G. deMars, Quanium Llectronics, C. H.
Townes, Ed. [Columbia University Press, New York,
1960}, p. 530

®For example, P.

Walsh and G. Kemeny,
Phys. 84, u36 71983;.

SIMPLLE

The steady-state solution including this

J. Appl
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terms of the population of the individual states:
W =N,—Ni, where No+N1=V=const. We also

(p—«)N and y1=p-« to obtain
= —(w/Q)n+a(Ns—N1in,

.‘\.vg = p.\yl - K:Vg —-—Q (Avg — ;\vl\} b,

write [ =

and

= —pi\’fl—i—m\"g+a(Ng—*\’1) n. (22)

These equations are mathematically equivalent to
Eqs. (21) since we have merely changed notation.
However, in the laser case the parameters p and «
may be more readily interpretable physically than
I and v;. When p is zero, N; decays to zero and
all the atoms are in the lower state, the usual
thermal distribution at optieal frequencies. The
parameter « is then the decay rate of the upper
state. Similarly, p is the pumping rate removing
atoms from the ground state and putting them in
the excited state.

We can still use the results of Sec. II for the
solution of Eqs. (22) by merely changing notation.

Tor example, the steady-state solutions on tune

corresponding to Eqs. (13) and (14) are
N =23/a
and
<.\' l) (\ l l‘\‘
= —_ = =kl .
PAT: 7 2a) TP\ T 20/
For fixed N, the power output U increases
linearly with the pumping p. However, the

threshold condition for ozcillation n>>{ now ap-
pears to have two parts, one for the number of
atoms present \’> 23/, and one for the pumping
rate p> w(aN+ /(a.\' 28). In the hydrogen
maser we had only a condition on the pumping 7,
since the number of active atoms N =1/~
considered an independent variable.

If we definex = 2an/v,, v =(a/28)11, 2
and 7=

1, Was not

= L!]/Q,’j"/h

+t [the same definitions used to produce

Lqs. (197 ], Fgs. (21) become
dx/dr={(28/v)x(t—1)
and

dv/dr=z—v—vz. (23)

These equations differ from Egs. (19) only in the
name of a constant (3 instead of ) and the term
vz instead of x in the second equation. They have

the same steady-state solutions z=0, v=z, or
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z=z—1, v=1, and the same qualitative behavior
as in Fig. 2. However, the characteristic equation
for stability of the oscillating steady state is

NtyiaN+28y1(z—1) =0.

The lascr amplitude approaches steady
without oscillating not only close to thresho
the maser does, but also for very large z.
In the ruby laser, we also have 82>v1. Equations
(23) then exhibit an interesting behavior called
spiking.®! Suppose, initially, va2z> 1 and 2 is small.
Then, da/dr i3 positive and z incre Sinece
3/vi 1z large, & increases very rapidly while »
changes very little. Fventually, x becomes large
enough (of the order 3,/v:, much larger than its
steady-state value) to make de/dr as large (nega-
tive) as dr/dr. Then v drops rapidly below unity.
This reverses the sign of drx/dr, so that now z
decavs iust as rapidly as it built up. When z
comes small, du/dr is positive, und the
pump z lowly builds » up again until it exceeds
unity and the process repeats. The time hetween
spikes 15 much greater than the dwmtion of an
individual spike. Succeeding spikes are not as
high; the whole 1)10(e§< eventually damps down
to the \aeadt state® (see Fig. 37. Sokolov aud
Zubarev® have (-zn'l'ied the numerical integration

state
ld as

ases,

again he

Fic. 3
damped spiking. Parameters for Eq. (23) are 8/y,=
and z=2. Initial conditions were £=0.07 and ¢ =1.

3. Buildup of laser oscillation intensity showing
256

3 D. A. Kleinman, Bell System Tech. J. 43, 1505 (1964).
82 That there are no undamped spiking solutions of the
simple rate equations has been proved by G. Makhov,
J. Appl. Phys. 33, 202 (1962), and D. M. Sinnett, bid.,
33, p. 1578 ) '
% A. K. Sokolov and T. N. Zubarev, Fiz. Tverd. Tela 6,
2590 (1964) [English transl. Soviet Phys.-—Solid State
8, 2065 (1965) 7.
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over more than 30 peaks and also report an ey.
perimental observation in qualitative agreement,

The so-called giant pulse of a Q-sw n(hm Lraby
laser can also be described by Eqs. (23, 1y, this
mode of operation, 3 is kept large cnouv 110 keep
the system below threshold until the bump
(pulsed) has built up a substantial inversioy
Then the value of 8 is suddenly reduced, The
system finds itsclf far above threshold and emit
one of the spikes just deseribed. The pumping i
usually not maintained long enough to
more than one spike.

To describe many laser phenomena, our equa-
tions must be generalized. The simplest and most
common generalization ig to three- or even four-
state atoms. In the case of a ruby laser, the pump
excites atoms from the ground state to a thid
state which then decays to the upper lasing state,
If this decay is 1‘;1})i d as compared to the dvnamies
of the laser action, a two-state deseription is stil
adequate, sinece no appreciable number af gtoms
accumulates in the third state. However, in some
lager systems, the lower lasing state is not the
ground state and both lasing states can decay to
the ground state (at different rates). In such
cazes, the atomic relaxation and threshold condi-
tions can be quite different from those presented
here.

Other laser phenomena, such as randon spiking
and mode locking, require the inclusion of several
modes of the optical cavity in the equations. The
spatial dependence of these modes and of the
population Inversion must often be considered,
too. Also, atoms in solids and plasmas usually do
not all have the same resonance frequency {in
homogeneous broadening). The latter iz especially
true of gas lasers where the Doppler linewidth
exceeds the relaxation linewidth ..

produce

IV. COHERENT INPUT

We now consider the behavior of a maser when
an external field source is introduced which
drivesthe cavity at frequency «;. Such a source cal
be simulated by adding a term 8ro exp[7 (e
to Eq. (6a). In the absence of atoms, this equation
then has the solution

—a)l]

i
I

A =proexpli(e—w)t]/[8+i(wc—w)].

i.e., there is a signal in the caviiy at frequency &
, g A q
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with ¢ amplitude g o tune. In the Hamiltonian ()
(e external source can be repr esented by adding
o ferims thBrofat exp( —iwit) —a exp (iwit) J.

1f the external signal is strong as compared to
e field generated by the atoms, we can ignore
jf in the 4 equation. Then A becomes a pre-
seribed signal in the 3/ and W equations. The
ltter are just the Bloch equations whose solutions
pave been adequately treated elsewhere.”

Consider now a very weak external signal with
the maser below threshold. Any oscillation present
will be due to the external signal, so we can take
g=e. s i See. 11, we make the small signal
inearizing approximation that 1= ys2/b* is con~
s[:mt. We then have

1= —-dﬂ—rl(cu—w ) l—lb‘[—f—dlo,

311(1

Vo= oM (e —w) M 413y /b) A, (24)

On tune these have the steady-state solution

M =i{gbz4,
and
d=r/(1—2},

P '

stable for z< 1. The maser acis as an amplifier of
the external signal with an amplitude gain

(1—z37% Tor a large gain, the pumping must be
held elese to threshold, The gain does not become
infinite ws £ approaches one, sinee the approxima-
ton of coustant W breaks down first.

By cunsidering the cavity on tune we=w,, but

the external signal not, we cun determine the
bandwicth of the maser amplifier from the steady-
state solution of Eqs. (24). For simplicity, we look
only at The two special cases of Sec. III. For
198, (w—w,), we have 4 =Gry with

G =3 1—+ (« —w )t

The amplifier has a simple Lorentzlan passband
with a width 23(1-—2) of the order of the cavity
bandwidil, but reduced for z close to one (high
@y, For 5., (@—w,) the gain is

Ipe s 5Tt

6 2= Dyt ) Tt (1) (o) 1
which can be rewritten as unit g‘;\in plus a Lo-
tentzian of width 2v.(1—2). In general, the maser-

tmplifier gain-bandwidth product is determined
b the smaller of the atomic and cavity Hnewidths

OF A SIMPLE MASLER
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and is independent of the gain in the linear region
(T unaffected). Expressions for the steady-state
maser gain and bandwidth were first found by
Basov and Prokhorov .

Finally, we consider a weak signal introduced
while a tuned miaser is oscillating. We use Eqgs.
(7) and assume that the driving term is small
enough to make little change in the steady-state
solutions (15). However, it may profoundly affect
the phase of the maser, which was previously
arbitrary. Using the steady-state values of r, g,
and W from Eq. (15) with ¢ small, Egs. {(7d) and
(7e) plus driving term become

b= — (B+v2) o+8(ro/r) sin(Awt—8)
and
f=—Bp+B(ro/r) sin{Awt—0),

where Aw=w—w;. For 8+ 2>Aw—§, the relative
phase relaxes to the adiabatic value

p=8(8+vs

The phase 6 then obeys

(ro/7) sin(Awt—0}.

;

§=8v:(8+v2) 7 (ro/r) sin{det—0). (25)

If 0 remains small, we ignore it in the argument of
the sine and integrate:

Gvs 1o COSAwl

0 =6,— X
Aw

8427

The external signa) simply adds (in quadrature,

to the muaser signal. The result is a pha% or fre-

quency modulation at the difference frequency.
Equation (25) has a nono:cﬂlatmg :oluuon

§= Awt—6,, where

Si]lgu = (8+73> (B"/g\J —1 ('I'/I'QT) Aw. (26'
The maser frequency is w—f=w—Aw=w, the

same as that of the external signal. In this condi-
tion, we say that the maser is phase locked to the
external signal. Since the sine funetion is bounded,
we see from Eq. (26) that this solution can exist
only if

[ Aw < Bya(B4v2) "o/ 7). (275

"This condition for phase locking was found for the
# N, G. Basov and A. M. Prokhorov, Zh. Eksp. Teor.

Fiz. 30, 360 (1956) [English transl. Soviet Phys.—JETP
3, 426 (1936) 1.
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maser case 32>y, in an early paper by Oraevskii.®
The corresponding result for the laser case v>>8
has been derived more recently.® Equation (25)
can be integrated in terms of elementary functions
and the full dynamics of the phase followed for
either the locked or unlocked condition. The
behavior is identical with that found hy Adler®
for an clectronie oscillator.”

V. STOCHASTIC INPUT

In Sec. T we mentioned that dissipative pro-
cesses are always accompanied by nolse sources.
We now illustrate the effect of such sources by

considering thermal noise assoclated with the
cavity insses. We use the so-called Langevin
methed®® in which a stochastie driving force is

added to the equation of motion along with the

damping term. Assuming the stochastic force Is
small, the equations are linearized and solved for
the S'U?-i?!‘;:’tb‘ﬁ(ﬁ part of the maser variables. We can

then enzemble average to find the mean fuctua-
tions, or their spectrum.

We <hould, perhaps, mention that the noise
theory presented here is a classical one. Senitzky,®
Lax,1%% and Haken* have used a quantum me-
chanical theory in which stochastic
driving force is an operator added to the operator
equation of motion. By including sneh noise opera-
tors for the atoms as well as the field, they are
then able to find the effects of spontaneous emis-
slon noise as well as cavity thermal noise. We have
chosen to consider only the thermal noise here
sinee it can be adequately treated by elassical
noise theory.

We add to Fq. (6a) the term 8/(¢
is a complex-valued stochastie function.

nonise the

), wheve f
For

# R. H. Pantell, Proc. IEEE 583, 474 (1965).

% R. Adler, Proc. IRE 34, 351 (1946).

% When phase locking was first observed with lasers
[H. L. Stover and W. H. Steier, Appl. Phys. Letters 8,
91 (1966) ], the authors knew of no theory for it, so they
borrowed Adler’s, guessing the corresponding parameters,
Qur theory fully verifies their guess,

#BN. Wax, Noise and Slochastic Processes (Dover
Publications, Inc., New York, 1954).

3 5L Lax, Rev. \Tod. Phys. 38, 541 (1966).

@M. de, Physics of Quéantum Electronics, P. L.

Kelley, B. Lax, aud P, E. Tannenwald, Eds.
Book Co., New York, 1966), pp. 735-747.
117, }lexen Z. Physik 190, 327 71966).

(MeGraw-Hill
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thermal noise, we expect f to have a white. loise
spectrum Sy(w) =27/3, or be uncorrelnted with
itself:

Here the denote

angle brackets
average (or time average for a stationary Process)
and 7= [exp (fiw/kT) —1 ] is the mean number of
photons in the cavity at thermal equilibrinmn.

an ensemble

If no atoms are present, we set @ =,
simply

and have

A=—3d+57

To obtain the spectral density for . the Fourier
transform  technique is convenient  Denoting
Fourier transforms by tildes, we find

'7@; = -3 1*3

or
A=[8/(8+iw) 7.

The coefficient of j is the transfer or svsrem fune
tion for the differential equauon The speetral
density of A is just the absolute zauare of the

svstom funetion times the speetral density of

2811/ (824w

the Loventzian expression v
pzlssband Remember that «, has heen factored
from A4, so the Fourier frequency o iz measured
relative to the cavity frequeney «. The total
number of photons present is the intecral of the
spectral density:

»S_.( ((U\} =

¢ the cavity

/ Sa{w)dw -
——— =11,

27

This integral verifies our choice of constants i the
spectral density of f.

Consider now atoms present, but t
below threshold (2<1). How do the atoms affec
the thermal nowse of the cavity?
signals small enough so that TF is canstant, M
have from Tgs. (6a) and (6b) on tune:

A= 34— +3f

L system

and
M=— "/QJ[—,L’[ {:/3’)’3, ])\) .
Tuir udua’iﬂ"
AeGraw-

2 W. B. Davenport, Jr. and W. L. Root, A«
to ithe Theory of Random Signals and Noise !
Book Co., New York, 1938), Sec. 9-3.

Assuming the

e it
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Jourier transform these equations and solve

wlf
)

We
fol‘ ;1 =i\

gle) =3 patie) /L8 i) (votie) —Bvs].

it 7

The spectral  density of 4 is then Silw)=
gle) =8, (wr. When e is small, g(e)~(1—z)™"
Frequencies very close to the atom frequency are
amplitied. Frequencies outside the passband of
fhe ciuviLy are attenuated. In fact, g(w) is the
qme fuietion as the ¢ used in See. IV to describe
;he pesponse to a coherent input signal, and the
special cases given there are applicable.

The integral of | g(«) |* can be carried out to
gve the total number of photons present:

n={{vat3—82)/(1—2) (B+~2) Ji.

7

For 403, the number of thermal photons is
auplified: n=7(1=z)~% Note that the energy
of 2 tuned coherent signal is amplified by (1—2)7%,
« having the thermal energy distributed through-
out the cavity linewidth reduces the over-all
aplification. For 83>v., we have

n=[ 14 (y/8)z/ (1—2) I

[ this case, owiy the thermal energy within the
atomic Hnewidth is amplified.

Finally, we consider the tuned maser to be
ascillating. We sepurate f=ji+7/2 into real and
maginary paats and use Eqs. (7). Linearizing

about the steady state (13), we obtain two sets of
gquations, oune for the amplitudes and one for the
phases, The amplitude equations are the same as
Fgs. (167 except the term 371 is added to the ér
wuation. The speetral density of the amplitude

Fi6. 4. Speciral densily of ampiitude fluctuations caused
b thermal noise in a hydrogen maser with 3=10% ~, =
71=3, and z =4. Unity on the vertical scale corresponds fo
the thermal value kT for the power spectral depsity.
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obtained from these equations is algebraically
complex. A\ representative case appropriate to the
hydrogen maser is plotted in Ilig. 4. At high fre-
quencies, we have just the cavity line shape. The
peak at w=7.4 corresponds to the frequency of the
relaxation oscillations undergone by the amplitude
while approaching the steady state. The position
of this peak and the noise level at low frequencies
depend on z.
Tor the phase variables (assumed small), we

have the equations

6= ”“6‘#’_1_18&"3//7')
and

¢ =~ (B+r2) o+Bf2/7. (28]
If we procecd as before, we would obtain for the
spectral density of the phase:

S(w) =8 (v e i/ (E+) +en,
where the spectral density for f: has been taken as
half of that for f. Now Eq. (29) diverges for small
@, g0 that

(29}

<02\_/Sa(w)du

27

does not exist. Small w corresponds to a large time
solution of Lig. (28). We can solve for # at large
times directly by assuming ¢ has relaxed to lis
steady state 8/ (8+n2)r. We substitute in the ¢
equation and integrate with =0 ar i=0:

4
0= ya(B4) 0 [ R0l
)

Then the ensenible average of 6 1s:

H t
=gty [ [ s,
[ G

or using the delta function correlation for fi

(82 = 3v:2(8+2) 2 (i n)t. (307
Hence, the phase fluctuations are not a gtationary
process. This particular type of behavior is well
known from the theory of Brownian motion®
as well as the theory of electronic oscillators, and
is often referred to as a random walk of phasc. We
can deduce from Eq. (30) the fluctuations in fre-
quency of a maser that would be inferred from
measurements of its phase over a time ¢ by using
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{(Aw)?)=(8%)/¢. For the maser case of large 8, we
obtain the relative frequency smbility

((Aw) )2/ w= ('yn/w) (7, nBt)!

NIQ) (LT P,
where Q;=w/2v. is the “Q" of the atoms and
P=23fiun is the total power output absorbed by
This agrees with Blaquiere!?
result for

the cavity losses.
and (within a factor 27) with Ramsey’s
the hydrogen maser. 24

Alternatively, if we assume that the stochastic
variable 8 has a Gaussian distribution, we have

(e =cxp[ L@ J=expl — Aut),

where Ar is the “optical” linewidth!? of the maser

oscillator that would be measured by an ideal
spectrum analyzer after an arbitrarily long time.
This hrewidth ig, from Ea. (307,

=[ 33y (8 v ] ),

which ugrees with the results of others™®# for the
thermal contribution. When 73>1, as it is for the
hydrogen maser, thig is the dominant eontribution
When <1, as it is for lasers,
the contribution from spontaneous emission noise

to the fnewidth.
iz more important,

VI. SUMMARY

In the preceding, we have presented an ele-
mentary derivation of the dynamical equations
for a simple maser model starting from a quantum-
mechanical Hamiltonian, We have indicated how

various types of solutions can be found and their

physical significance. Many other aspects, such
as spontaneous emission noise, the maser ampli-

tude near threshold when driven by an external
and off-tune behavior, can be worked out
using the techniques illustrated. Generalizations
to many levels, many modes, spatial dependence,
and 1nhomogeneoub broadening are straightfor-
ward, but more involved.

signal,

APPENDIX

We wisgh to relate the second-order semiclassical
equations of others with our first-order Eq. (6).

# The missing factor of 2« has been found by L. Cutler,
Ph.D. thesis, Stanford University, 1966.
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For definiteness, we start with the equariong of

Davis™:
Bt (/@) BtecE= =B, (a
P+(2/T) PteltP=—1T"E, (A2)
W' (W —W,)/T1=PE. (A3)
We have written & in Toq. (A1) where Duavis uses

the mode amplitude v, since we use only one mode
and assume that the spatial dependence hus been
factored out. We also added a prime to Davis’ 17
to distinguish it from ours. Equation {A1) comes
from Maxwell’s equations. Equations {A2) and
(A3) are derived from the Schrodinger equation
for a two-level atom. The relaxation terms are
introduced phenomenologically.

The electrie field is related to the ereation and
annihilation operators by

E= (Tie,/2eV ) 2 a4a”

Trom Davis’ definition, we ecan idewiic /2 and
1
P=(u/1) Y lof
J
and

W=t > e

;

where x is the dipole moment of the atom and 1713
the volume of the system. Recalling the definitions
{4) of our macroscopic variables and that ¢*=
o+, we can relate Davis’ variables to nurs:

= (Jiw, /261 ) V2 e A Fe") A4
P={(u/V)(Me it *¢it), %))

W= (heo/2V) 1V (A6)

Before substituting these relations back nto

Davis’ equations, we must compute some derivis
tives. FFor example, we find that

P_—_ (#/' [7) (—~wa[e”"wq“""wJ[*C“'
N AR

We originally defined 17 with the idea that it
would be a slowly varying function of time {3 com-
pared to e, that is, M<wl/. Accordingly
neglect the last two terms in the c\pm\\mn for

and substitute the first two, along with Fas C(Ad)

o we
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and (A6} Into (A3):

L e (11'“_}_.[)_1&1
FV )

B <Ef> (—iwM et iwde)

g \Y2
><<2J,) (Aemistf 4 #pit),

we define 7=21T1/fiw, Ty and »=Tv" on the
oft, wse e X, and expand the right side:

[y =T =20(p/h) (Frew,/2e17) 12
X MEL = A — M do2iwtf N [¥ A Heiaty,

(A7)

yow, the last two terms are rapidly oscillating as
compared to the others. If we imagine averaging
is equation over a few cycles of e*™% the last
wo terms drop out, while the others are hardly
fected. Equation (A7) then becomes identifiable
with Ly (Ge) if we take for the coupling con-
stant

b= — (u/R) (w2112 (AS)

Dropping the List two terms of L. (A7) I
auivalent to the rotating field approximation,
for if we had not made the rotating field approxi-
mation in the Hamiltonian (1), Eq. (6¢) would
have come out like Iq. (AT7).

3 Tofind Eq. {(6a) from Eq. (AL}, we must com-
3 pute second derivatives. On the right, we can use
4 Py —u?P, neglecting the derivatives of 1/, On
% the lft, the term «2F almost cancels the leading
rerm of the second derivative, so a better approxi-
mition must be used:

Ei‘:f/o:‘ chﬂ)l 2

X (ot Ao i — 2 A gt — 2o fomiot 4270 f "eiet)

Here, we have dropped only the terms in the
seeond Jerivative of A, We can use just the leading
term in the first derivative of £ since we assume @
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is large. This assumption is necessary to make the

phenomenological introduction of the relaxation

terms in the second-order equations equivalent

to their introduction in first order equations.
With these approximations and «./@ =23, Eq.

{A1) becomes

(/26T (—wrd et —o?d ¥e™i — Dl et

+2iwA*eiot) 428 ( —iwd e 4+l d *e ™)
_|_w02 (;’16‘“’—{—-:1 :keiwl> ] — ——e‘l(p I")
X (—w et — o2 M #git),

If A and 3/ are slowly varying, no term containing
¢®t can cancel against one containing e~ 50 we
equate the coefficients of these two types of terms
separately. For the e7® terms, we have

(Fiwe/ 261 )12 —w?d — 27w d —2i8wd +wid]

=i (/162 (A9)

Tor the e terms, we have the complex-conjugate
equation. Since w,Xw, we can ignore their distine-

13 3
o 2 a2

tion in the constants and also use w/—uw=
(wotw) (we—w)x2w(w,—w) on the right. Then

Fq. (A9) becomes
Qe (wy— ) A — 20w (A +84)

Dividing by —2ie and ingerting Eq. {A8), we
wind up with Eq. (6a),

d=—gd4ile—a A —ibl.

Equation (6b) follows from Eq. (A2} in a similar
fashion.

The reduction of the semiclassical Eqs. (Al)-
(A3) to Egs. (6) required the rotating-field
approximation, large s, closeness 1o resonance,
and some labor. The automatic appearance of
first-order equations with only the one constant b
appearing In the coupling is an advantage of the
derivation from the quantum-mechanical Hamil-
tonian.



