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I. INTRODUCTION 
H E  behavior of stable signal sources such as 
crystal oscillators, frequency multipler chains and 
masers can be usefully described in terms of their 

power spectra. 
The problem of precise frequency measurement can 

be understood only by a fairly detailed knowledge of 
the frequency source and the effect of the measuring 
system. I t  is usually sufficient for this “detailed knowl- 
edge” to be given in terms of the power spectrum. 

In  general there are two methods of precise frequency 
measurement: 1) determining the total elapsed phase in 
an interval of time with an apparatus like a synchro- 
nous clock or a frequency counter, and 2) direct fre- 
quency measurement by a resonance method usually 
involving a molecular or atomic transition. 
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Fig. 1-Ammonia maser-spectrum analyzer system. 
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I t  can be shown that, in general, 4 frequency counter 
will, on the average, nieasure the frequency of the center 
of gravity of a power spectrum resulting from frequency 
modulation of the signal. An atomic or molecular 
resonance, however, will not, in  general, measure the 
center of gravity of the power spectrum. Thus for a 
meaningful comparison between an atomic resonance 
and the output of a frequency multiplier chain, it is 
essential to know the spectral distribution of the signal 
from the chain and the spectral distribution of the 
atomic resonance (including atomic transitions nearby 
the particular transition of interest). 

In practice, of course, one attempts to obtain a 
monochromatic source of radiation for the nieasure- 
mmts. The results of power spectral analysis with the 
a: ,mania maser spectrum anayzer’ are very helpful 
in  this regard. Redesign and modifications can be made 
until the observed power spectrum has the proper 
character and purity. The spectrum analyzer system 
as used at the National Bureau of Standards is shown 
in Fig. 1. 

I t  is the purpose of this report to discuss certain 
methods of obtaining the power spectrum and sample 
results of such experiments. The mean instantaneous 
frequency and the variance of the instantaneous fre- 
quency are related to the power spectrum. These rela- 
tions are particularly useful in the description of the 
short-time frequency stability of signal generators par- 

* Received by the PGI, July 9,  1960. Presented at the 1960 
Conference on Standards and Electronic Measurements as paper 2-5. 

t National Bureau of Standards, Boulder, Colo. 
J. A. Barnes and L. E. Heim, “A High Resolution Ammonia 

Maser Spectrum Analyser,” to be published. 

ticularly in  view of the simplicity with which the power 
spectra can be obtained. 

11. THE POWER SPECTRLJM~ 

Suppose that the output voltage of a signal generator 
is some function of the time, V(t ) .  We can write 

1 “  
V ( t )  = - a(w)e iYfdw,  (1) 

2,s_. 

S-: 

provided that a ( w )  vanishes a t  plus and minus infinity. 
From the Fourier integral theorem 

a(o) = V(t )e-&W. (2) 

In  (2)  it is supposed that V( t )  = O  outside soiiie finite 
time interval 

T T 
t = - -  to t = -  

2 2 

for the purpose of avoiding convergence difficulties. 
Then 

TI2  

a(w) = J” T , 2  v ( t )  e - i w ‘ d t .  (3) 

Physically a(w)dw may be considered the amplitude of 
the frequency component of V(t )  lying in the range w 
to w + b .  

* W. R. Bennett, “Methods of solving noise problems,” PROC. 
IRE, vol. 44, pp. 609-638; May, 1956. 
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The total energy dissipated in a u n i t  resistor in the 
time interval 

is given by 
T / ?  

J - T I 2  

(4) 

The average power dissipated in this time interval T is 
given by 

where 

PT(w) is the average power dissipated per unit fre- 
quency interval a t  the angular frequency w and for the 
particular time interval T. The power spectrum or the 
power spectral density is sometimes defined as 

I l 2  P(w) = L i m p  
T-m 2uT (7)  

This is a proper definition provided that the limit exists. 
These convergence difficulties can often be avoided by 
taking the ensemble average. Thus for a11 ensemble of 
time functions I',(t), each member of the ensemble 
having a time duration T ,  there corresponds an en- 
semble [PT(w) ],. The power spectral density can then 
be defined as 

\\.here the brackets denote the ensemble average. 

I I I .  SOME METHODS OF POWER SPECTRAL ANALYSIS 

The concern of this report is the experimental de- 
termination of the power spectral density of rather nar- 
row banded signal generators. Various methods are 
possible. The technique that we have found most con- 
venient is described in some detail by Barnes and Heim.' 

A heterodyne method is used to sweep the power 

spectrum over a fixed narrow-band filter. I n  most cases 
the bandwidth of the filter, Au, is much narrower than 
the total width of the power spectrum. The square root 
of the power spectrum is plotted directly on an x-y 
plotter i n  a time short compared to systematic varia- 
tions but long enough to be consistent with the ana- 
lyzer's bandwidth. 

The power i n  the frequency bandwidth of the filter- 

(2) to (.+$) 
-at frequency w is given approximately by 

W + ( 3 W / 2 )  

P T ( W ,  Aw) J P T ( W ) ~ W  (9) 
o-(dw/2) 

where T is the observation time. If T is made indef- 
initely long, PT(w,Au) will tend toward a limit 

P(o, Aw) = Lim P T ( w ,  Aw). (10) 
T- m 

The limit of the ratio P(w,Aw)/Aw a t  Aw+O provides a 
definition of the true power spectral density; ; . e . ,  

or 

P T ( ~ ,  Aw) 
P(w) = Lim . 

Ao-0  A&' 
T- m 

This defines the power spectrum in terms niore directly 
related to the experiment than does (8).3 

The averaging time interval or record length T used 
in  the experiment is not infinitely long, but it is suf -  
ficiently long such that any increase in T does not 
change the character of the plotted spectrum per- 
ceptibly ( L e . ,  the reciprocal of the record length, l /T,  is 
much less than the bandwidth of the filter). The record 
length i n  this type of experiment is the time taken to 
sweep over a frequency interval equal to the width of 
the filter bandpass. 

I n  the practical situation, the signal analyzed will  
have been modified by the transniission characteristics 
of the detector, filter, amplifier aiid smoothing circuits. 
The effects due to the instrumentation must be taken 
into account and some modification must be made on 
the previous discussion. 

Let us  assume that the filter is tuned to some fre- 
quency wa and that the transfer function ef the filter 
is given by G(wo,w). Also, i f  the input voltage to the 
filter, V ( t ) ,  has its Fourier transform, a(w),  given by 

a(w)  = V(t)e-awfdt ,  (13) S-: 
3 Of course, many traces of the spectrum may be taken for the 

purpose of obtaining an ensemble average, and this would perhaps 
provide a more direct relation t o  the preferred definition based on the 
ensemble average, (8). 
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then the output voltage of the filter is given by written approximately as 

T h e  average power delivered to a load by the filter in  view of the low resolution relative to the width of a 
single peak. In  ( 1 7 ) ,  p i  is a weighting factor for a par- is then proportional to 

Comparison of (14) and (15) with ( l ) ,  (2 ) ,  and (7 )  gives 

where P(w) is the actual power spectrum of V(t) .  
Po(wo) is our estimate of the power density a t  the 

angular frequency 00. I t  is an estimate of the local power 
density, P(w) ,  only to the degree to which I G(w0,w) I 
approximates a Dirac delta function. 

Sample spectra are displayed i n  Figs. 2,  3, and 4. 
The discrete line spectrum of Fig. 4 results from the 
introduction of frequency modulation by two (or more) 
signals, 60 cps and 120 cps (the oscillator used 60-cps 
ac filaments). I n  this particular spectrum the band- 
width of the filter is larger than the total width of any 
one of the lines of the s p e c t r ~ i n . ~  The spectrum was 
produced by a crystal oscillator in which the crystal 
was emersed in liquid helium driving a frequency multi- 
plier chain. The power spectrum of Fig. 4 may be 

I- 

Fig. 3-Trace 1 is a high resolution spectrum of the central peak of a 
10-Mc quartz crystal oscillator whose crystal was thermostated in 
a liquid helium cryostat.6 The oscillator was equipped with dc 
filaments but still exhibited 60-cps sidebands about 30 db  below 
the central peak (not shown in this figure). This oscillator operates 
a t  about 13.4 cps above 10 Mc and apparently some pickup of 
the standard is responsible for the sidebands shown in this trace. 
Trace 2 is the response curve of the spectrum analyzer. 

Fig. 2-(a) shows the square root of the power spectrum for a 3.3 
hlc signal; (b) and (c) show the Same signal after being multiplied 
in frequency by factors of 3 and 9, respectively. 

Fig. 4-This spectrum was obtained from the Same oscillator as 
Fig. 3. At the time this trace was made, however, the oscillator 
was equipped with 60-cps, ac filaments. (Note the different fre- 
quency scale.) 

' In fact the width of these sharp peaks is less than 1 cps. I t  is not 
yet certain whether this crystal oscillator is the more stable or the 
maser is the more stable generator. At the present time it is fashion- 
able to consider the maser the more stable. 

5 This oscillator was designed and constructed by A. H. Morgan 
and his group at the Natl. Bur. Standards. The quartz crystal was 
made a t  the Bell Telephone Labs. 
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ticular peak a t  angular frequency w;. b(w-oi )  is the 
Dirac delta function. I n  order to see the structure of 
the individual peaks additional frequency multiplica- 
tion would be required or a substantial decrease i n  the 
filter bandwidth. 

The power spectrum can also be estimated by a 
numerical analysis from a recorded plot of V(t) .  An 
example of such a plot is shown in Fig. 5. The various 
methods of analysis of such recordings are to be found 
i n  the literature.6 

Fig. 5-Recording of direct beat note between free running oscillator 
and maser. A numerical analysis of these recordings could also be 
run to determine the power spectrum. 

Iv. INSTANTANEOUS FREQUENCY AND ITS RELATION TO 
THE FOURIER FREQUENCY COMPONENTS 

In  general, there are two methods of precise frequency 
measurement: 1) determining the total elapsed phase in 
an interval of time with an apparatus like a synchro- 
nous clock or a frequency counter, and 2)  direct fre- 
quency measurement by a resonance method usually 
involving a niolecular or atomic transition. 

The elapsed phase method of frequency measurement 
has two modifications: 1) a frequency counter which 
counts the number of cycles in a unit of time, and 2) 
period measurement which measures the time interval 
between two positive going crossovers of the signal. 
Either system gives the “average” frequency in a time 
interval 6T such that 

where 64 is the elapsed phase i n  the time interval 6T. 
I n  the case of the period measuring scheme, 64 = 2a and 
the 6T corresponding to this phase change is what is 
measured. 

I t  is important to realize a t  this point that  these 
measurements are not simply related to the Fourier 
components of the signal being measured, a t  least a 
priori. This is evident since, given a pure sine wave 
which lasts from T to T+bT, the Fourier components 
are spread over a frequency range 6w= 1/6T, and thus a 
resonance method of frequency measurement would 
have an uncertainty i n  the measured frequency of the 
order of 6w. For a period measuring scheme, however, 
the average instantaneous frequency of the sine wave 

6 R. B. Blackman and J.  \T. Tukey, “The Measurement of Power 
Spectra,” Dover Publications, Inc., New York, N. Y . ;  1958. 

is possibly measured to an accuracy far exceeding 
6w= 1/6T. 

A simple example should serve to illustrate this point: 
Consider a very stable oscillator which generates a 
signal of approximately 100 cps. If this signal is used to 
gate a counter which is arranged to count a very stable 
and accurate 1-Mc signal, the counter will count for 
about 1/100 second and the counter will display the 
period accurate to about 5 1 psec; that is, to an accuracy 
of about cps! Thus with this scheme we have 
measured the average instantaneous frequency (not a 
Fourier frequency component) in  a period of sec- 
onds with a possible error of 510-2 cps instead of the 
-t 50-cps error of measuring the Fourier components. 
(Similar examples can be worked out for a frequency 
multiplier-frequency-counter system instead of the 
period measuring system.) 

Returning to (18), let us suppose that the time of 
measurement, 6T, is made small enough that 4(t) makes 
no appreciable change i n  this interval of time. With 
these conditions satisfied, we see that the measurement 
gives the instantaneous frequency, 

64 
6T 

Q ( t )  = t j ( t )  = - . 

It  is possible to obtain some relations between the 
instantaneous frequency of a signal and its Fourier 
components for the case of a signal without amplitude 
modulation. Such a signal is of the form 

where Eo is a constant and d(t) is some real function of 
the time. For the following discussion we will consider 
only the function 

f(1) = e’+(O. (20) 

The second term on the right of (19) only serves to 
symmetrize the power spectrum [since E(t )  is real but 
f ( t )  is not]. Thus anything which can be said of the 
frequency of f ( t )  can easily be extended to E(t ) .  

The importance of considering only j ( t )  is that it satis- 
fies the equations 

Thus an instantaneous frequency forf(f) can be defined 
as 

In  order to obtain some connections with the power 
spectrum of f ( t ) ,  consider the function f ~ ( t )  defined by 
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the relations yields 

since 
ThusfT(t) can be represented as a Fourier series in the 
interval 

T T - ~ 

S t $ -  
2 2 

f T ( t )  = C e i ( 2 r n l / T ) C n  

If  we now pass to the limit as T becomes very large, 
27rn/T approaches a continuous variable, say w ,  since 
each unit change in n changes 27rn/T by only 27r/T, a 
very small quantity. Also the first difference of 27rn/T 
is 2 n / T  which approaches dw as T becomes very large. 
Thus ( 2 7 )  becomes in the limit 

-- 

m 

( 2 4 )  
n=-m 

where 

This  is a valid representation for j ~ ( t )  only in the in- 
terval 

where 

J -m 

I UT(@) l 2  P ( w )  = Lim 
T-= 27rT ( 7 )  

L 

is the power spectrum of f ( t ) .  

( w ) ,  of the Fourier components since from (4) 
since the Fourier series in (16) is that of a periodic wave 
of period T beyond this interval. T h u s  by this rather 
conventional means6 we will compute the spectral dis- 

where 

The right side of (28) is ju s t  the average frequency, 

tribution of f ~ ( t )  and then pass to the limit T - + a  J-;P(w)dw = 1 (29) 

f ( t )  = LimfT(t). 
T-. m 

for f ( t )  satisfying (21). Equivalently, the right side of 
(28) is the center of gravity of P(w).  Thus (28) shows 
that the time average of the instantaneous frequency 
is just  the center of gravity of the power spectrum for 
a frequency modulated signal. Returning to (18) we 
see that the elapsed phase method of frequency meas- 
urement gives the time average of the instantaneous 
frequency over the interval of measurement and thus 
if this interval is sufficiently long i t  will give the fre- 
quency of the center of gravity of the power spectrum! 

I t  is also of interest to compute the variance (or 
mean square deviation from the mean) of the instan- 

First, define 

' T C n  = a T  f:) 
where the paranthesis mean GT is a function of ( 2 r n / T )  ; 
so (24) and ( 2 5 )  become 

m 

j T ( t )  = C a T ( F ) e z i * r " t i T i ( - ! - ) ,  (24a) 
n=--Q 

taneous frequency; that  is, the quantity, 

f ( l ) e - i ( 2 r n f / T ) d l ,  ( 2 5 4  
( Q ( t )  - H ) 2  = 5 - 2 Q a ( t )  + a2 

- -  
(30) = QZ - Q 2 .  Substitution of (24a) and its complex conjugate into 

Since Q ( t )  is a real function, ( 2 2 )  gives 

Q ( t )  = Q*(t)  = ij- df" ; 
dl 

Taking the time average of (26) over the interval Applying the procedure used above to (31) we obtain 
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Combining (28), (30) and (32) we obtain 
00 

( Q ( t )  - 3 ) 2  = J P(w)w2dw - [J~I)(y)wI*yl1. (33) 
-e 

But 

J-lP(.)(. - ( W ) ) 2 d W  = S_D. P(w)w2dw - (w),  (34) 

where use has been made of (29) and 

( w )  = J-;P(w)odw. 

Q ( t )  - 2 ) 2  = p(w)(u - ( w ) ) v u .  

Therefore combining (33) and (34) gives 

(35) 
-w 

That  is, the variance of the instantaneous frequency is 
just the second moment of the power spectrum. 

Returnins now to (19), i t  is easily provable that if  
the average Fourier frequency, (w) ,  of f ( t )  is very large 
compared to the width of the spectrum, the addition of 
the term adds a term to the power spectrum of 
the form P( - w ) ,  and thus it is possible to treat the so- 
called “one sided” power spectrum of E( t ) .  Taking into 
account the multiplicative constant in (19), then (28) 
and (35) take the form 

7 n w  
- L  

n = --J, P’(w)wdw = ( w )  ( 2 8 4  

where P’(w) is the power spectrum of E(t )  and these 
equations are subject to the condition 

which is easily satisfied by most oscillators. 
As an example of an application of (35a), the second 

moment of the spectrum of Fig. 4 turns o u t  to be about 
30,000 cps?/sec2, or the rms frequency deviation is 
about 174 cps, or more than one part i n  lo8. For a one 
second count, however, this oscillator has a spread of 
only about f 2 parts i n  10” from second to second and 
a drift of only a few parts i n  10” per day. One concludes 
that this spectrum must be very stable. 

V. CONCLUSION 

Power spectra of highly stable signal sources can be 
observed with the ammonia maser spectrum analyzer 
in a convenient and rapid way. The short term stability 
of these sources can be obtained from these observed 
spectra simply and without the usual laborious analysis 
of large amounts of data. 
The device has use as an instrument for investigating 

noise properties of signal sources and the multiplication 

processes in frequency multiplier chains. 
Frequency modulation introduced into a crystal os- 

cillator or multiplier chain is enhanced by the frequency 
multiplication process. I n  fact the sidebands in the 
power spectrum are found to be increased in amplitude 
by the factor of frequency multiplication (see Appen- 
dix). This is demonstrated i n  Fig. 2 .  I t  can be demon- 
strated that the power spectrum of a signal that  is fre- 
quency modulated by two or more modulating signals 
of different frequency will in general be unsymmetrical.’ 
This is vividly displayed in the power spectrum of 
Fig. 4. 

Spectrum analysis has provided a particularly useful 
tool in designing crystal oscillators and frequency multi- 
pliers such that they yield signals of the highest purity. 
From a study of the power spectra, one is led to the 
conclusion that one of the most important things in 
obtaining a pure signal is to keep the electronics simple, 
using dc filaments in  the oscillator and early stages of 
multiplication. The signal source that provides the 
Bureau atomic frequency standards with the purest 
s i p a l s  is a system involving a “master .ind a slave” 
oscillator. .4 simple one- or two-tube crystal oscillator 
that  is loosely phase-locked to a more elaborate crystal 
oscillator (with good long term stabilit)) drives the 
frequency multiplier chain. 

A knowledge of the pouer spectrum is important not 
only in describing frequency stability and noise analysis 
but for other reasons also. 

For example, in  atomic beam frequency standards, 
the simple theory of the spectral line shape assumes the 
atomic transition to be excited by pure sinusoidal or 
cosinusoidal radiation. In actual fact, of course, the 
transition is induced by a certain distribution of fre- 
quencies. This distribution is determined by the fre- 
quency multiplier and crystal oscillator from which the 
exciting radiation is derived. The radiation i n  general 
is composed of the carrier frequency, noise and discrete 
sidebands resulting from frequency modulation. The 
discrete sidebands usually result from 60 cps-the 
polver frequenc>.--nnd multiples thereof. I n  the atomic 
clock experiments it is found possible to reduce the 
noise to <I low enough level so that i t  is not the limiting 
factor i n  the precision of the frequency measurenients. 
The discrete sidebands are more difficult to remove. 
These sidebands are multiplied i n  intensity by the 
factor of frequency multiplication. This factor is usually 
quite large (-2000) and consequently these sidebands 
can introduce rather large frequency errors. Errors of 
ihis sort are particularly significant if the power spec- 
trum is unsymmetrical. (Shifts of a a few parts in lo9 
have been observed by actual experiments.) Of course, 
if the power spectrum is known, the proper spectral line 
shape can be calculated in order to find the proper cor- 
rection to the measured frequency. I t  is more desirable 

7 H. S. Black, ”Modulation Theory,” D. Van Nostrand Co., Inc., 
New York, N. Y. p. 195; 1953. 
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-and much simpler-to eliminate these sidebands so To restrict the case to a simple FM wave, let 
that the simple line-shape theory applies. A knowledge 
of the power spectrum is essential in  order to assign a 
figure of accuracy to the atomic beam frequency stand- 
ards. 

APPENDIX 

As an example of the effect of frequency multiplica- 
tion on an F M  signal, consider just one  stage of mult i -  
plication. Assume that the current, [ ( t ) ,  in  the output 
tank of the multiplier is related to ?lie input voltage, 
V(t) ,  by the transfer function, g ( V ) ,  which is a function 
of the input voltage; Le. ,  

$(t)  = w0t + S sin w,! (39) 

where wo is the carrier frequency, w, is the modulating 
frequency, and 6 is the modulation index. Subsitutiorl 
of (39) into (38) yields, 

Z ( f )  = a0 + al cos (wot + 6 sin wmt) + . . 

+ . . . + aN cos (Nwot + 1L'6 sin wmt) + . 
If the impedance, Z ( w ) ,  of the output tank is suf- 

ficiently peaked about w = Nuo, but broader than 
2N6wm, the output voltage, V'( t ) ,  is given approxi- 
mately by 

. . 

If the input signal is of the form Typically um is very much smaller than wg and the 
condition that the bandwidth of the output tank is 

(37) 

where 4(t) is some function of time, then the current 
becomes 

greater than 2N&, is easily satisfied. The condition 
that Z(w) is sharp enough to reject ( N - l ) w o  and 
( N + l ) ~ o  ~ s ~ : ! l l y  requires N to be less than 10. 

Eq. (40) shows that the modulation index is multi- 
plied by the factor of frequency multiplication and the 
frequency of modulation is unchanged. Extensive use is 

V ( t )  = Vo cos $ ( I ) ,  

z = g(V0 cos $)Vo cos 4. 
made of this fact in FM transmitters.8 

Fig. 2 (a) shows the square root of the power spec- 
trum ( t / P ( w ) )  of a signal while Figs. 2(b) and 2(c) 
show the same signal after being multiplied in fre- 
quency by 3 and 9, respectively. 

Since cos 6 is an even function of 4, g( Vo cos 4) is ,tIso 
an even function of 4, and therefore I is an even furl(.- 

tion of 4. Therefore I can be expanded as a Fourier 
cosine series in 4; ie., 

ea 

I = an cos n$. (38) * W. L. Everitt, "Frequency modulation," Trans. AZEE, vol. 59, 
n-0 p. 613; November, 1940. 
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