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Summary 

Stability  in  the  frequency domain is commonly speci- 
fied  in  terms of spectral  densities.  The  spectral  density 
concept is simple,  elegant,  and  very  useful,  but  care 
must  be  exercised  in  its  use.  There  are  several  differ- 
ent  but  closely  related  spectral  densities,  which  are 
relevant to the  specification  and  measurement of stability 
of the  frequency,  phase,  period,  amplitude,  and  power of 
signals.  Concise,  tutorial  descriptions of useful  spectral 
densities  are  given  in  this  survey.  These  include  the 
spectral  densities of fluctuations of (a)  phase,  (b)  fre- 
quency,  (c)  fractional  frequency,  (d)  amplitude,  (e) time 
interval, (f) angular  frequency,  and  (g)  voltage. Also 
included are  the  spectral  densities of radio  frequency  power 
and its two normalized  components,  Script  X(f)  and  Script 
%(f), the  phase modulation and  amplitude modulation 

portions,  respectively. Some of the  simple,  often-needed 
relationships among these  various  spectral  densities  are 
given.  The  use of one-sided  spectral  densities  is  rec- 
ommended.  The  relationship to two-sided  spectral  densi- 
ties is explained.  The  concepts of cross-spectral  densities. 
spectral  densities of time-dependent  spectral  densities, 
and smoothed spectral  densities  are  discussed. 
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Introduction 

The economic importance of highly  stable  signals, 
signal  sources,  and  signal-processors  is  increasing, 
e .   g .  , in  communications  systems,  navigation  systems, 
and  metrology. It is accompanied  by an increasing  need 
for  carefully-defined  and  widely-disseminated  terminol- 
ogy  and  language  for  specification  and  measurement  of 
signal  stability. A significant  contribution was made in 
1964 by  the IEEE-NASA Symposium on  the Definition and 
Measurement of Short-Term  Frequency  Stability.  Its 
Proceedings'  were followed in  February 1966 by  the  very 
useful IEEE Special  Issue  on  Frequency  Stability. In 
1970 the  authoritative  paper,  "Characterization of Fre- 
quency  Stability",  was  published  b  the Subcommittee 
on  Frequency  Stability of the IEEE. It is   the  most defini- 
tive  discussion to date of the  characterization  and mea- 
surement of frequency  stability. 

r 

Recently Shoaf et  al.  have  prepared  a  tutorial, how- 
to-do-it technical  report (NBS  TN632)  on specification 
and  measurement of frequency  stability.  The  present 
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paper is complementary to NBS  TN632 and  relies  espe- 
cially upon the  material  in  it  and  in  references 1 - 3 ,  

Stability  in  the  frequency domain is commonly 
specified in  terms of spectral  densities.  The  spectral 
density  concept is simple,  elegant,  and  very u s e f ~ l , ~  but 
care  must  be  exercised  in  its  use.  There  are  several 
different,  but  closely  related,  spectral  densities  which 
are  relevant  to  the  specification  and  measurement of sta- 
bility of the  frequency,  phase,  period,  amplitude  and 
power of signals. In this  paper, we present  a  tutorial 
discussion of spectral  densities. For background  and 
additional  explanation of the  terms,  language,  and 
methods, we encourage  reference  to NBS  TN632 and to 
references 1 - 3 .  Other  very  important  measures of 
stability  exist; we do  not  discuss them in  this  paper. 
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Some Relevant  Spectral  Densities 

Twelve  spectral  densities  which  are  especially  useful 
in  the  specification  and  measurement of signal  stability 
are  listed  below.  Symbols  otherwise  undefined will be  de- 
fined  in  a  later  section,  where we also will define  and  derive 
the  relationships of the  various  quantities. In our  choice of 
concepts  and  symbols, we try to optimize conformity with 
traditional  usage in  the  field  and  simultaneously  to  mini- 
m i z e  what we see to be  the  hazards of vagueness,  lack 
of completeness,  and  inconsistency. By fluctuations we 
mean noise,  instability,  and  modulation.  The  twelve 
definitions  follow, 

S6 ~ (f)  Spectral  density of phase  fluctu- (1) 
ations 6 $. The  dimensionality is 
radians  squared  per  hertz.  The 
range of Fourier  frequency f is 
&om zero to infinity. 

Spectral  density of frequency  fluc-  (2) 
tuations 6 V .  The  dimensionality is 
hertz  squared  per  hertz.  The  range 
of f is from zero to infinity. We use 
the  relation 2 ~ ( 6  V) = d( 6 +)/dt ,   where 
t is  the  running time variable. 

Spectral  density of fractional  fre-  (3) 
quency  fluctuations y.  The 
dimensionality is per  hertz.  The  range 
of f is from zero to infinity. By definition 
y f 6 V / V  . The symbol y is defined 
and  used  In  reference 3 ,  

Spectral  density of amplitude (4 )  
fluctuations 6 E of a  signal.  The 
dimensionality i s  amplitude  (e. g . ,  
volts)  squared  per  hertz.  The  range 
of f is from zero to infinity. 

0 
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Spectral  density of time interval (5) 
fluctuations 6 'c. The  dimensionality 
is seconds  squared  per  hertz.  The 
range of f is from zero to infinity. 
We use  the  relation 6 T= 6 $1 ( 2 ~  1. 

Spectral  density of time interval (6) 
fluctuations. Same as  S (f) . Both 
x and 6 T are  equal to 6 @ / ( 2 s  vo) , 
See  Eq. (35). The symbol x is 
defined  and  used  in  reference 3 .  

Spectral  density of angular  fre- 
quency  fluctuations 6 R.  
dimensionality is ( rad ls )  / H z .  The 
range  off  is from zero to infinity. 
By definition, Q E 2nv. 

Spectral  density of voltage  fluctu- (8) 
ations  6v.  The  dimensionality is 
volts  squared  per  hertz.  The  range 
of f is from zero  to  infinity. Many 
commercial  spectrum  analyzers  and 
wave  analyzers  exist  which  measure 
and  display  spectral  density  (or 
square  root of spectral  density) of 
voltage  fluctuations. A metrologist 
often  will  choose  to  transduce  the 
fluctuations of a  quantity of interest 
into  analogous  voltage  fluctuations. 
Then  the  spectral  density  (corre- 
sponding to fluctuations of frequency, 
phase, time interval,  amplitude,  or 
. . . ) is measured  with  voltage 
spectrum  analysis  equipment. 

6 T  

The 

SF(V) Spectral  density of (square  root (9) 
RFP of) the  radio  frequency  power P .  The 

power of a  signal is dispersed  over 
the  frequency  spectrum  due to noise, 
instability,  and  modulation.  The  dimen- 
sionality i s  watts  per  hertz.  The  range 
of the  Fourier  variable V i s  from zero 
to infinity.  This  concept i s  similar 
to the  concept of spectral  density of 
voltage  fluctuations, S6 v(f).  Typi- 
cally  the  lat ter,   SGv(f),   is  more con- 
venient  for  characterizing  a  base- 
band  signal  where  voltage  rather 
than  power is  relevant.  The  former, 
S= (v),  typically is more con- 

venient  for  characterizing  the  dis- 
persion of the  signal  power  in  the 
vicinity of the nominal carrier 
frequency v . To relate  the two 
spectral  den%ties, it is necessary 
to specify  the  impedance  associated 
with the  signal.  The  choice of V 
or f for  the  Fourier  frequency  vari- 
able is somewhat arbitrary.  We 
prefer  v  for  carrier-related  measures 
and f for  modulation-related  measures. 
See  later  section  on  relationships among 
spectral  densities. 

%(f 1 Normalized frequency domain ( 10) 
measure of phase  fluctuation  side- 
bands. 6 We have  defined  Script  a(f) 
to be  the  ratio of the  power  in  one 
phase modulation sideband,  referred 
to the  input  carrier  frequency, on a 
spectral  density  basis,  to  the  total 
signal  power,  at  Fourier  frequency 
difference f from the  signal's  average 
frequency V , for  a  single  specified 
signal  or  device.  The  dimensionality 
is per  hertz.  Because  here f is a 
frequency  difference,  the  range of 
f is from minus V to plus  infinity. 

Normalized frequency domain (11) 
measure of fractional  amplitude 
fluctuation  sidebands of a  signal. 
We define  Script m(f) to be  the  ratio 
of the  spectral  density of one  amplitude 
modulation sideband  to  the  total  signal 
power,  at  Fourier  frequency  difference 
f from the  signal's  average  frequency V , 
for  a  single  specified  signal  or  device. 
The  dimensionality is per  hertz.  Because 
here f i s  a  frequency  difference,  the 
range of f i s  from minus V to plus  infinity. 

Script G f )  and  Script%f)  are  similar 
functions;  the  former is a  measure of 
phase modulation (PM) sidebands,  the 
latter i s  a  corresponding  measure of 
amplitude modulation (AM) sidebands. 
W e  introduce  the symbol Scr ip tx( f )   in  
order to have  useful  terminology  for  the 
important  concept of normalized AM 
sideband  power. 

S (f) 
6 g  

Spectral  density of fluctuations (12) 
of any  specified  time-dependent 
quantity  g  (t) . The  dimensionality 
is the  same  as  the  dimensionality of 
the  ratio  g / f .  The  range of f is 
from zero to infinity.  The  total 
variance of 6 g(t)  is the  integral of 
S (f)  over  all f .  The  spectral 

density is the'distribution of the  total 
variance  over  frequency. 

2 

6 g  

Discussion of Spectral  Densities 

One-sided  Versus  Two-sided  Spectral  Densities 

Each of the  above  twelve  spectral  densities is one- 
sided  and is on  a per  hertz of bandwidth  density  basis. 
This  means  that  the total mean-square  fluctuation  (the 
total variance) of frequency,  for  example, is given mathe- 
matically  by  the  integral of the  spectral  density  over  the 
total defined  range of Fourier  frequency f 

m 

Total  Variance = v(f)df, (13) 

As another  example,  since  Script  X(f) is a  normalized 
density,  its  integral  over  the  defined  range of difference 
frequency f is equal to uni ty ,   i .e . ,  
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df = 1. 

0 
The definite integral between two frequencies of the 
spectral  density of the  fluctuations of a  quantity is 
the  variance of that  quantity  for  the  frequency  band 
defined by  the two limit frequencies. We will  con- 
sider  this  in more detail  later. 

Occasionally,  unnecessary confusion arises 
concerning  one-sided  versus  two-sided  spectral 
densities. Two-sided spectral  densities  are  de- 
fined such  that the frequency  range of integration 
is from minus infinity to plus  infinity. For specifi- 
cation of signal  fluctuations as  treated  in  this  paper, 
our one-sided  spectral  density is twice a s  large  as 
the  corresponding two-sided spectrd  density. For 
example,  the total variance is 

I + m  

where f is the  Fourier  frequency  variable. 
Two-sided spectral  densities  are  useful mainly in 
pure mathematical analysis  involving  Fourier  trans- 
formations. We recommend and  use  one-sided 
spectral  densities for experimental  work.  Refer- 
ences 3 and 4 use  one-sided  spectral  densities. 
The terminology  for single  sideband  (upper  or 
lower)  signals  versus  double  sideband  (upper  and 
lower)  signals is totally  distinct from the one-sided 
spectral  density  versus two-sided spectral 
density  terminology.  They are totally  different 
concepts. 

Cross-Spectral  Densities 

Another important concept is  cross-spectral 
densities. For the  case of  two fluctuating  quantities 
6a(t)  and 6 b(t) ,  we can choose the  quantity 6 g(t1 
such  that 

j s g ( t ) l 2  5 [aa<t>]  * I  6b(t)  j .  (16) 

The  real  part of the  cross-spectral  density of the 
fluctuations of a(t)  and b(t)  can  be represented 
then by 

using the general  representation  for  a  spectral  density 
as given in  (12).  The normalized cross-spectral 
density i s  obtained by dividing both sides of Eq.  (17) 
by JP .(f)\ - [ S 6b(f)] . The information  con- 
taine  in  the  cross-spectral  density is not trivial 
when 6 a  and 6 b  are  correlated.  Several manufac- 
turers  provide  cross-spectral  density  analyzers. 
We note there is a  greater  possible complexity 
in  the  cross-spectral  density concept than  in  the 
(auto)  spectral  density  concept. For example,  the 
cross-spectral  density can be  negative  as well as  
positive,  and  an  imaginary component can  be 
defined and  measured  also. Although we will  
not discuss  cross-spectral  densities  further  in 
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this  paper, we recommend their  use for special 
problems of measurement, 
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Time-Dependent Spectral  Densities 

The  spectral  density  concept  as  used  by  experi- 
mentalists  allows  the  spectral  density to be time de- 
pendent.  This time dependence is an  observable,  and 
we  may sometimes desire to specify  the  spectral 
density of its  fluctuations,  as  a  statistical  measure of 
the time dependence. Hence, we arrive  at  the con- 
cept of the spectral  density of the  fluctuations of a 
spectral  density. Although not much use  has been 
made yet of spectral  densities of the  fluctuations of 
spectral  densities,  in  part  due to the  large  quantity 
of data  required for a  precise  measurement,  the 
concept can be  exploited  where confidence measures 
are  desired for spectral  density  statistics. It is a 
quantitative,  statistical  measure for characterizing 
the stability of noise  statistics.  Unless  otherwise 
stated,  it is usually  understood  that  the  spectral 
density of the  fluctuations of a  spectral  density is 
assumed to be  white,  that  is,  it  is  assumed  that 
the  fluctuations of the  spectral  density  are random 
and  uncorrelated. 

It is commonly found that  measured  fluctuations 
have  a  spectral  density of the  fluctuations of their 
spectral  density which is not random and  uncorre- 
lated. Some authors attempt to describe  such 
observations  by  saying  that  the  fluctuations  were 
measured  and  were found to be non-stationary.  Such 
a conclusion i s  logically  absurd  in  stalistics,  for  in 
statistics  the definition of stationarity7 (a measure on 
ensembles  rather  than on a  portion of an ensemble) 
makes it  independent of the  observations of the 
fluctuations of any  particular  entity. Note that  any 
particular  entity is simultaneously  a member of 
stationary  ensembles  as well as  of non-stationary 
ensembles. While stationarity is not a  physical 
observable,  it can be  postulated for a hypothetical 
ensemble,  thereby  giving one bit of information 
about  the  hypothetical  ensemble. 

Some of the fundamental theoretical  aspects 
of time-dependent spectral  densities  are  discussed 
in  references 8 - 10.  Some practical  aspects of the 
time dependence of the RF power spectral  densities 
of typical  high  qualit  frequency  sources  are 
treated  in  reference L where  the  practical  concepts 
of the  fast  linewidth  and  the  fast RF power spectral 
density  are  used.  See also reference 12 for an 
analysis of measurements of time-dependent 
RF power spectral  densities of low-noise oscillators 
using  the  fast  linewidth  concept.  Considerable work 
is needed  in  this  area  in  order to develop operational 
terminology,  languages,  and measurement  methods 
which will be  useful  and commonly accepted. 

The  concept of the  spectral  density of the 
fluctuations of a (time dependent)  spectral  density 
is one of several  concepts which allow quantitative, 
as well as  qualitative,  characterization  and  measure 
ment of the  instability of the  statistical  measures of 
a  signal. We recommend it for that  purpose. 



Measurement of Spectral  Densities 

Smoothed Spectral  Densities 

In the measurement of spectral  densities,  there is 
an important operational  aspect which occasionally  leads 
*to  some unnecessary  confusion. A practical meosure- 
ment actually  gives  us the (weighted)  average of the 
spectral  density  over  a  range of frequency. We 
measure  a smoothed spectral  density - i t  is smoothed 
by being  averaged  in  a  frequency window. To charac- 
terize  the  measurement, we may specify  an  effective 
lower frequency, f an effective higher.frequency. 
f , and information  about the  shape of the window 
function  (bandpass  response).  Alternatively, we 
may prefer to specify  a  center  frequency 
f = (f + f )/2,  the effective bandwidth B = (f2 - fl) ,  
and information  about the  shape of the window function. 
0 2 1  

The  first  type of specification typically is more useful 
when the  higher  frequency is large compared  with 
the lower frequency.  The  alternative  typically is more 
useful  in  the  narrowband  case when the  bandwidth is 
small compared to the  center  frequency. 

1’ 

2 

A s  possible  terminology, we suggest  the  use 
of Script % squared  as  a  frequency domain measure 
to represent  this weighted average  variance.  This 
allows us to reserve  the terminology of. spectral 
density  [symbol:  S(f) 1 for the  differential 
element of variance between f and f + df,  and to 
use for the smoothed spectral  density  (averaged 
over  a  range of f). 

2 

Rectangular  Bandpass Example 

To illustrate  the  relationships,  consider the  hypo- 
thetical case of a window having a  rectangular  bandpass. 
We can write for the  measurable  variance,  Script % 
squared, 

2 x =  

l2 1 df 

df,  

where  the limits of integration  reflect  the  rectangular 
response of the  filter  (the  response is unity between f 1 

and f 2 and is zero for all other  f). Equation ( l e )  can 

be  recast  in  the f , B terminology as 

1 

f - - B  
1 

0 2  

A strictly  rectangular  bandpass is not realizable,  but  it 
is a  useful approximation  for many . practical  situations. 

Lorentzian Bandpass Example 

As another  useful  illustration,  consider  a window 
having a Lorentzian bandpass  response, l3 with a 
center  frequency f and  a  quality  factor Q. The  nor- 
malized filter  response for a Lorentzian shape function 
is 

2 

= [‘ -‘.)‘l (20) 

The effective bandwidth of a Lorentzian is 

Hence, 

B = (-$)($) 
for Script% we  may write 

L 
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m 
Spectral  Density Estimation - Fourier 
Transform  Analysis 

Uniformity Approximation 

If S(f) is approximately  uniform  over  the  region 
of frequency f where  the  response of the  bandpass  is  
significant,  then  a  useful  approximation is 

where B is the  effective  bandwidth,  and f is the 

center  frequency of the  frequency  window  function. 
If the  frequency  window can be  usefully  approxi- 
mated by  a  rectangular  bandpass  response  function, 
then 

f f o  + z B  1 

Combining  Eqs. (25a) and  (25b),  and  recalling  the 
approximations  made, we may write 

S ( f  = f ) .=x I f o ,  B, window . 2 I 
This  approximation,  Eq, (26), i s  commonly used  to 
describe  and  interpret  measurements made by  a 
wave  analyzer or a  spectrum  analyzer. It is  exact 
for white  noise  for  the  case of the  (unrealizable) 
rectangular  bandpass  compare  Eq. (19) . l 

In summary,  note  that  a  wave  analyzer  or  a 
spectrum  analyzer  actually  gives  us  a  measurement 
of n2 or  i ts   square  root,  12. The corresponding 
spectral  density may be  inferred  by  using  the 
approximation of Eq .  (26). If for  a  specific  case 
Eq.  (25a),  (25b),  or  both,  is  a  poor  approxi- 
mation,  then  Eq.  (26) may also  be  a  poor  estimate 
of the  spectral  density.  For  such  cases,  we 
recommend  the use of Script % squared,  and  the 
parameters  associated  with  the  measurement of 
Script 3 squared  should  also  be  quoted.  The 
critical  parameters  include  at  least f , B, and  the 
shape of the  window  function  or  equlvalent 
information. 

? 

It is implicit  in some of the  previous  discussion 
that  we  are  considering  measurements of spectral 
densities  which  use  frequency domain techniques, 
e .  g,  , filtering  in  frequency domain with  resonant 
circ:lits,  Another  widely  used  technique is to 
acquire  data  which are quantized  in  the time domain 
and  then to use  Fourier  transformation to obtain  the 
frequency domain statistics.  There  are  several 
possible  procedures,  and  a common name  for  this 
technique is spectral  density  estimation. A rather 
readable  discussion,  with some relevant  references, 
is presented  by  Richards. l4 The  availability of 
hard-wired  digital  computation  programs  for  imple- 
menting  the  Fast  Fourier  Transform  (FFT),  together 
with  their  steadily  decreasing  cost, is making  this 
technique  more  and  more  attractive  for  on-line 
measurement  (estimation) of spectral  density. 

Some Relationships Amone. Spectral  Densities 

In this  section  we  further  define  and  describe 
the  symbols  and  terminology  we  are  using,  and 
we derive  or  explain some of the useful  relation- 
ships among spectral  densities. 

We use the  Greek  letter  nu,  V,  in two  some- 
what  different  senses  in  this  paper. In one  usage 
it is a  Fourier  frequency  variable  (index),  for 
example,  as  the  argument  in  the RF power  spectral 
density 5 ,,-(v). In another  usage  it  is  the 

frequency of a  signal,  for  example,  the  instanta- 
neous  frequency  v(t)  or  the  average  (nominal) 
frequency  v of a signal.  Our  usage of the 
symbol f is similarly  two-fold.  The  distinction i s  
usually  obvious  in  context  in  our  treatment,  and  we 
sometimes  state  the  usage  explicitly. We urge  caution on 
this  point  in  general; i t  is a  hazard  in  this  paper  and  in 
other  papers on signal  stability. 

RFP 

0. 

We use the operator 6 a s  the  fluctuations  operator. 
For  example,  by 6 we mean phase,  and  by 6 4 we mean 
fluctuations oi phase.  The  rate of change of phase  with 
time t is defined as angular  frequency R .  To  obtain 
cycle  frequency v ,  we normalize  by  dividing  by 2n .  
For  the  fluctuations of these  quantities  we may write 

It f o l l o v ~ ~  from transform  theory  that 

I I 

The  Fourier  variable  for  angular  frequency, W ,  i s  
commonly used.  It  is  related to the  Fourier  variable 
for  cycle  frequency, f ,  by  (L' = 2r f .  The  value of 
6 V ,  normalized to the  average  (nominal)  signal 
frequency V , is called y.  This  usage  is  similar 
to the  usageoin  reference 3 .  
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Hence we may use 

The  basic  relationship  between  phase 0, fre- 
quency W, and time interval T is 

4 = 2 n v 7  t L$,# 

where 4 is an  appropriate  constant.  The  fluctua- 
tions of time interval 6 T a r e  hence  related  to  the 
fluctuations of phase 6 $ by 

Hence 

Combining  Eqs. ( 2 8 )  to (33) 

A s  in  reference 3 ,  x is defined  such  that 

dt 

Hence we see  that  x  and 6 T are  the  same  quantity. 

provided  that 

(30) 
S (fo)df' << 1 rad  

2 

Script x ( f )  

Script   x(f)  is the  normalized  version of the 
phase modulation (PM) portion of S J-- RFP (v) ,  with i t s  
frequency  parameter f referenced  to  the  signal's 
average  frequency v as  the  origin  such  that  the 
difference  frequency f equals W - W . A complete 
definition is given  earlier  by (10) .OScript z f )  and 
Script %(f) represent  concepts  which commonly 
arise  in  the  languages of modulation noise  and of 
stability of signals, 

0 

Script  x(f)  can be  related  in  a  simple way to S (f)  
S $  

but  only  for  the  condition  that  the  phase  fluctuations 
occurring  at  rates f and  faster  are  small  compared to 
one  radian.  Otherwise  Bessel  function  algebra  must 
be used  to  relate  Script  x(f) to S (f) . Fortunately, 
the  "small  angle  condition" is often met i n  random 
noise  problems.  Specifically we find a s  a good approxi- 
ma tion 

6 4  

(37) 

where f prime is a dummy index  for  integration. 

For the  types of signals  under  discussion 
and  for [f I < W , we  often may use  as  a good 

approximation 

We note that  for  pure  phase  modulation.  the RF power 
spectral  density of the  signal  with  sidebands is not 
necessarily  symmetrical. An asymmetric RF power 
spectral  density may reflect  a  mixture of correlated 
AM and PM, but  it  c a n  also  arise from special  cases 
of pure PM (or FM). There is some confusion  in 
the  literature  on  this  point.  For  pure AM,  the RF 
power  spectral  density is strictly  symmetrical. 
This  symmetry  property is used  in  a  later  section 
on  Script  w(f). See Eq. (55) .  

A simple  derivation of Eq. (37) is  possible. We 
combine the  derivation  with  an  example  which 
illustrates  the  operation of a  double-balanced  mixer 
as  a  phase  detector.  Consider two sinusoidal 5-MHz 
signals  (having  negligible  amplitude  modulation) 
feeding  the two input  ports of a  double-balanced 
mixer. When the two signals  are  slightly  different 
in  frequency,  a  slow,  nearly  sinusoidal  beat  with 
a  period of several  seconds  at  the  output of the 
mixer is measured to have  a  peak-to-peak  swing 
of A 

Ptp ' 

(39)  

Without changing  their  amplitudes,  the two signals 
are  tuned to be at  zero  beat  and  in  phase  quadrature 
(that i s ,  d2 out of phase  with  each  other),  and  the 
output of the  mixer i s  a small fluctuating  voltage 
centered on zero  volts.  Provided  this  fluctuating 
voltage is small  compared to A 1 2 ,  the  phase 
quadrature  condition is being  closely  maintained, 
and  the  "small  angle  condition" is being  met. 

PtP 

Phase  fluctuations 6 $ between  the two signals of 
phases Q2 and  respectively,  where 

6 $  = 6 ( 0 2  - I (40) 

give  rise to voltage  fluctuations 6 A  at  the  output of the 
mixer 

where we use  radian measure for  phase  angles,  and 
we use 

sin & $  = & $  (42) 

for  small 6 I$ ( 6  $ << 1 r a d ) .  We solve  Eq.  (41)  for 
6 4 ,  square  both  sides,  and  take  a time average 

426 



The  angular  brackets  indicate  averaging  over  time.  In 
practice,  the  averaging time typically may be  ten 
to  one  thousand  times  the  inverse  bandwidth of the 
measurement  system. If we interpret  the  mean-square 
fluctuations of 6 4 and of 6 A ,  respectively,  in  Eq. (43) 
in a  spectral  density  fashion,  we may write 

where we use 

(44a) 

which is valid  for  the  sinusoidal  beat  signal,. 

For  the  types of signals  under  consideration,  the 
two phase  fluctuation  sidebands  (lower  sideband  and 
upper  sideband,  at -f and +f from U , respectively) of 
a  signal  are  coherent  with  each  other  by  definition. 
A s  already  expressed  in Eq. (391, they  are,  to  a 
good approximation, of equal  intensity  also.  The 
operation of the  mixer when it is driven  at  quadrature 
is  such  that  the  amplitudes of the two phase  side- 
bands  add  linearly  in  the  output of the  mixer,  resulting 
in  four  times as much power  in  the  output a s  would 
be present i f  only  one of the  phase  sidebands  were 
allowed to-contribute to the  output of the  mixer. 
Hence for If I < W we obtain 

0 

r 

where p is the  total  power of the  signal,  and, 

using  the  definition of Scr ipt   x(f) ,  
total 

c 

we find for one  fluctuating  signal 

provided  the  phase  quadrature  condition is approximately 
valid.  The  phase  quadrature  condition  will  be met 
for  a time interval  at  least T long,  provided 

and  hence Eq .  (47) is useful  for  values  off  at  least 

as low as  (Zm)-' . Eqs. (47) and (48) correspond  to 
Eqs. (37) and (38) respectively. 

Script g(f> by  its  definition  [see (lo)] is a 
measure of the  phase  fluctuation  sidebands  referred 
to the  input (rti) of the  unit  under  discussion. 
Sometimes it is more  meaningful to quote  a  measure 

which is referred to the  output  (rto). 

For  this  purpose we find  it to be  convenient  to  place 
a  caret (A) over  the  quantity  which is referenced to 
the  output. For example, f ( f ) ,  6 $ ,  and  Ss$f> 

mean,  respectively,  Script  X(f)  rto,  fluctuations of 
phase  rto,  and  spectral  density of 6 E rto. 

11-12, 15-17 

A Method of Measurement of Sc r ip t   x ( f )  

Usin a  double-balanced  mixer a s  a  phase  sensitive 
detector, we have  one of many ways to easily  measure 
Script   x(f)  with  a  voltage  spectrum  analyzer.  Eq. (49) 
is valid  for  the  case  where  the  reference  signal  has 
negligible  phase  fluctuations  compared to the  test 
signal. 

5 8  

where  v is the  measured  value of ( & A )  r m s  on  a  square 
root  spectral  density  basis.  However,  Eq. ( 5 0 )  is the 
valid  equation  when we have two equally  noisy  signals 
(test  and  reference)  driving  the  mixer. 

I I 

In case  the  device  being  measured  has  frequency 
multiplication  (synthesis)  by  the  factor n ,   the  
definition of Script  'b<f)  requires  that  the  factor 
(l/nI2  appear  in  Eq. (49) and (50) .  Note that  these 
measurements  are smoothed estimates of the  spectral 
densities. 

Figures 1 and 2 illustrate  this  use of double- 
balanced  mixers  driven  in  phase  quadrature  for 
measurement of z ( f ) .   The  method of Figure 1. which 
measures  the  differential  stability  between two parallel 
phase-processing  arms,  is  used  for  singles  or  for  pairs 
of phase-  rocessing  devices  other  than  oscillating  signal 
sources.  The method of Figure 2 is used  for  oscillator 
pairs.  

Scr ip t   W(f)  

Script %(f) is the  normalized  version of the 
amplitude modulation (AM) portion of S 

with i t s  frequency  parameter f referenced to the 
signal's  average  frequency v. taken  as  the  origin 

J%G-(" * 
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such  that  the  difference  frequency f equals 
V - V . A complete  definition is given  earlier 

by (11). 

Script %(f) can  be  related  in  a  simple  way to 
S (f) , the  spectral  density of the  amplitude 
fluctuations, 6 E of a  signal,  defined  in ( 4 ) .  Speci- 
fically we find a s  an  exact  relation 

6 E  

and 

where we use 

the  double-balanced  mixer  at  a  higher  level  than  the 
test  signal. A ratio of 10 dB i s  adequate  except  for 
special  cases,  e.g.,  where  the utmost linearity is 
required. 

Amplitude  fluctuations 6 E of the  signal  under 
test  give rise to  voltage  fluctuations 6 A  at  the  output 
of the  mixer 

6A;: (%)+ . 
0 

We solve  Eq. (56) for 6 E, square both sides,  and  take 
a time average 

Equation (57) is similar  to'Eq. (43 ) .  If we interpret 

spectivelsin  Eq. (57) in a  spectral  density  fashion, we 
may write 

(53) the  mean-square  fluctuations of 6 E and of 6 A ,  re- 

which is valid  for  a  sinusoidal  signal.  The  signal  under 
consideration is represented  by 

where  V(t)  is  the  instantaneous  value of the  signal, V 

is the  average  (nominal)  amplitude of the  signal, 6 E(t) 
represents  the  fluctuations of the  amplitude, t is the 
running time index, 4 is a  constant,  and 6 $(t)  is 
the  fluctuation of the  pfase of the  signal.  This  re- 
lation i s  similar to Eq. 2 of reference 3 .  

0 

For \ f  I < v , Script  m(f) is symmetrical  about 

the  signal's  average  frequency v , 
0 

A simple  derivation of Eqs. (51) and (52)  is possible. 
W e  combine the  derivation  with  an  example  which illu- 
strates  the  operation of a  double-balanced  mixer as an 
amplitude  detector.  Consider two 5-MHz signals  (having 
phase  fluctuations of much less  than  one  radian)  feeding 
the two input  ports of a  double-balanced  mixer. When the 
two signals  are  slightly  different  in  frequency,  a slow, 
nearly  sinusoidal  beat  with  a  period of several  seconds 
at  the  output of the  mixer is measured  to  have  a  peak-to- 
peak  swing of A 

P*' 

Without changing  their  amplitudes,  the two signals 
are  tuned to be  at  zero  beat  and  in  colinear  phase 
(that is,  either  zero  or -+ nsi radians  phase  angle 
difference),  and  the  output of the  mixer i s  a  fluctuating 
voltage  centered on A / 2  volts. W e  note  there is 

no requirement  that  the  output  fluctuations  be  small 
compared to A /2  in  the  measurement of Script w(f). 

PtP 

P tP 

To assure  linearity of the  demodulation,  and to 
make the  measurement  be  sensitive to the AM of 
only  one  (the  test  signal) of the two signals, we 
cause  the  other  signal  (the  reference  signal)  to  drive 

where we use 

(59) 

which is valid  for  the  sinusoidal  beat  signal. 

For  the  types of signals  under  consideration, 
by  definition  the two amplitude  fluctuation  sidebands 
(lower  sideband  and  upper  sideband,  at -f and +f 
from V , respectively) of a  signal  are  coherent  with 

each  other. A s  already  expressed  in  Eq. ( 5 5 1 ,  they 
a re  of equal  intensity  also.  The  operation of the 
mixer when it is driven  at  colinear  phase is such 
that  the  amplitudes of the two AM sidebands  add 
linearly  in  the  output of the  mixer,  resulting  in 
four  times a s  much  power in  the  output  as would 
be  present i f  only  one of the AM sidebands  were 
allowed to contribute to the  output of the  mixer. 
Hence for If 1 < V we  obtain 

0 

0 

and,  using  the  definition of Sc r ip t   w( f ) ,  
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Summing Up 

In  this  tutorial  survey we have  discussed some 
practical  aspects of the  use of spectral  densities  for  the 
measurement  and  characterization of stability of signals. 
We have  suggested some terminology  which may be  use- 
ful  to  the  practicing  metrologist. Some relationships 
among various  types of spectral  densities  were  explained. 
Some common pitfalls  were  identified  and  discussed. 

We thank many people  whose many excellent  insights, 
a s  well a s  some occasional  confusion,  have  provided 
content  for  this  survey  and  have  given  impetus to its 
preparation. We will  appreciate comments and  feedback. 

or,  using  the  normalized  (fractional)  fluctuations 
of amplitude 6 E/V , we may write 

1 0 I 
We note the  similarity of Eq. (63) and  Eq.  (47). 
These  are two very  useful  equations to remember, 

~ 

A Method of Measurement of Script   m(f) 

Using a  double-balanced  mixer as  an  amplitude 
sensitive  detector, we have  one of many ways to easily 
measure  Script %(f) with  a  voltage  spectrum  analyzer. 
Equation (64) is valid  for  the  case  where  the  reference 
signal  contributes  only  a  negligible amount to the  out- 
put  fluctuations of the  mixer  as  compared to the  amount 
contributed  by  the  test  signal. 

where  v  is  the  measured  value of ( & A )  rms  on  a 
square  root  spectral  density  basis.  The  arrange- 
ments  shown  in  Figures 1 and 2 need to be modified 
slightly  in  order to do  the  amplitude  sensitive 
measurements. 

The major change  is  that  the two input  signals to 
the  mixer  must be in  colinear  phase,  that  is,  the  out- 
put  voltage of the  mixer  is  at  an  extremum  rather  than 
at  zero. A more complicated  phase lock  loop is used 
(although in some cases no loop is  required)  than 
the  one  shown  in  Figure 2; the  signal  under  test 
must be  the  weaker of the two input  signals  (hence 
the 10-dB pad  shown  in  Figure 2 must be used in  
the  other  input  for AM sensitive  measurements); 
and some type of DC-blocking may have to be  used 
with  the  amplifiers  when  measuring  the  voltage 
noise of the  demodulated AM in order to avoid 
overload  due to the  large DC component. 

Suggestions  for  Further  Reading 

A measurement  system  for AM and FM noise 
is  thoroughly  described  by  Ondria.  Another 
excellent  standard  reference  for PM and FM noise 
measurements is by  Cutler  and  Searle,20  but  they 
do not consider AM noise  explicitly.  Compared  to 
the  number of papers on PM and FM noise  measure- 
ments,  there  are  relatively  few  publications 
on AM noise  measurements.  For an operational 
approach  to  the  description of electrical  noise 
in  general, we strongly recommend the  excellent 
book by  Bennett.21  For  references to additional 
relevant  publications, we recommend selection from 
the more than  one  hundred  items  in  4ppendix H 
and  the  Bibliography of  NBS TN632. 
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5. 
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PHASE NOISE MEASUREMENT 
Foil AMPLIFIERS. CAMCITORS. CABLES, PADS, 
TRANSMISSION PATHS, FILTERS, ETC. 
ALSO PAIRS OF FREOUENCY MULTIPLIERS 

Figure 1. To measure  Script x ( f > ,  the  double-balanced  mixer is driven  in  phase 
quadrature  as  shown. By driving the two input  ports  in  phase-parallel 
instead,  this system measures  Script %(f> of the  device  under  test. See 
text for additional details  for  measuring  Script %(f>. Note that time 
domain measurements can be made concurrently. 

- -0  
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OSCILLATOR STABILITY MEASUREMENT 
PHASE  SENSITIVE MODE ISHORT TERM1 
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Figure 2 .  To measure  Script x(f>, the  double-balanced mixer i s  driven  in  phase 
quadrature  as  shown. By driving  the two input  ports  in  phase-parallel 
instead,  this system measures S c r i p t w f )  of the  weaker of the two 
driving  signals. See text  for  additional  details. Note that time domain 
measurements can be made concurrently. 

431 


