NEW FAR-INFRARED LASER LINES AND FREQUENCY MEASUREMENTS OF ACETALDEHYDE AND VINYL FLUORIDE*

E. C. C. Vasconcellos,¹ S. C. Zerbetto,¹ L.-H. Xu,² R. M. Lees,³ L. R. Zink,⁴ and K. M. Evenson⁴

¹Instituto de Física, Gleb Wataghin Departamento de Electrônica Quântica State University of Campinas, UNICAMP 13083-970 Campinas, SP, Brazil ²Department of Physical Sciences University of New Brunswick Saint John, New Brunswick, Canada E2L 4L5 ³Department of Physics University of New Brunswick Fredericton, New Brunswick, Canada E3B 5A3 ⁴Time and Frequency Division National Institute of Standards and Technology Boulder, Colorado 80303-3328

Received March 13, 1998

ABSTRACT

Eight far-infrared laser lines have been obtained by optically pumping acetaldehyde (CH₃CHO) and nine by pumping vinyl fluoride (CH₂CHF) with a cw CO₂ laser. The far-infrared laser structure used a metal-dielectric waveguide cavity. This is the first reported observation of four of the laser lines in acetaldehyde. In this work, we measure the frequency, optimum pressure of operation, relative intensity, relative polarization, and pump offset from CO₂ laser-line center.

Key Words: far-infrared laser, frequency measurement, acetaldehyde (CH₃CHO), vinyl fluoride (CH₂CHF), cw CO₂ laser, new lines.

719

0195-9271/98/0500-0719\$15.00/0 © 1998 Plenum Publishing Corporation

INTRODUCTION

Many lines of optically pumped far-infrared (FIR) lasers have been discovered and measured in different molecules¹ in search of coherent sources to fill some gaps especially in the 30 to 100 μ m region, which is very important in ion and molecular spectroscopy.

Acetaldehyde and vinyl fluoride have been investigated before, and the wavelengths of lines have been reported.¹⁻⁵ This work presents frequency measurements of new and previously known laser lines which were obtained by optically pumping acetaldehyde (CH₃CHO) and vinyl fluoride (CH₂CHF) with a cw CO₂ laser. Eight far-infrared laser lines have been obtained by optically pumping acetaldehyde (CH₃CHO) and nine by pumping vinyl fluoride (CH₂CHF) with a cw CO₂ laser. The far-infrared laser structure used a metal-dielectric waveguide cavity. This is the first reported observation of four of the laser lines in acetaldehyde. In this work, we measure the frequency, optimum pressure of operation, relative intensity, relative polarization, and pump offset from CO₂ laser line center.

EXPERIMENT

The cw CO_2 laser is a 2 m long, Fabry-Perot resonator with a high-Q cavity.⁶ It lases in the regular-band, sequence-band, and hot-band lines with powers up to 40 W in the regular-band lines and up to 15 W in the sequence-band and hot-band lines.

The FIR laser has a 2 m long, metal-dielectric waveguide cavity closed by two, flat end mirrors.⁷ It is longitudinally pumped with CO_2 pump radiation entering the cavity through a 1mm diameter hole in one of these end mirrors. A small 45° polished copper mirror near this end couples out a fraction of the FIR radiation. The other end mirror is mounted on a micrometer to tune the cavity into resonance with the FIR radiation. A Brewster-angled Si output window transmits most of the FIR, but blocks most of any residual CO_2 pump radiation. The FIR radiation is detected with either a pyroelectric detector or a metal-insulator-metal (MIM) diode.

MEASUREMENTS

A measurement of the FIR wavelength was carried out by varying the cavity length over about ten wavelengths. This was accomplished by translating one of the mirrors and measuring the length difference with a micrometer. The value thus obtained can be accurate to about 0.05 μ m, and the corresponding estimated frequency is used to select two CO₂ laser lines for the heterodyne frequency measurement.^{*}

A MIM diode is used as a detector of the laser radiation and also as a mixer for the frequency measurements. The FIR radiation is mixed in the MIM diode with selected radiation from two frequency-stabilized CO₂ lasers and with radiation from a microwave source.⁸ The diode generates frequencies of various mixing orders among these four radiation sources. The RF beat note generated in the diode (between 0 and 1.5 GHz) is amplified and observed with a spectrum analyser. Tuning the FIR laser across its gain curve maps out the change in amplitude of the beat note frequency by using a peakhold feature on the spectrum analyzer. The center of this recorded mapping is then measured with a marker frequency. The FIR frequency is obtained by the equation

$$\mathbf{v}_{\text{FIR}} = \mathbf{n} \left[\mathbf{v}_1 - \mathbf{v}_2 \right] \pm \mathbf{m} \mathbf{v}_{\text{unarge}} \pm \mathbf{v}_{\text{best}} , \qquad (1)$$

where v_1 and v_2 are the stabilized CO₂ frequencies, $v_{\mu\nu\sigma\nu}$ is the microwave frequency, v_{best} is the beat frequency (between 0 and 1.5 GHz which is the bandwidth of our amplifier and spectrum analyzer), and n and m are the order of the harmonics general d by the MIM diode. Observing the beat note display on the spectrum analyzer as the FIR and microwave radiations are changed (one at a time) gives the value and sign of n' and m. The same diode is used to measure the offsets of the pump laser (the difference in frequency between the absorption frequency and the CO₂ frequency at line center). In this case, a frequency-stabilized CO₂ laser set to the same laser line as the pump is mixed in the diode with the pump radiation and the generated beat note in the diode is the pump offset frequency.

The CO_2 reference lasers are frequency-stabilized to ± 10 kHz and their center frequencies are known to an accuracy of 2.5 kHz. The microwave source is accurate within 10 Hz. The largest uncertainty comes

from setting the FIR laser to the center of its gain curve. We generally measure each frequency five times or more and report the average of these measurements, and the fractional frequency uncertainty is typically $\approx 2x10^{-7}$ (1 σ).

RESULTS

Tables 1 and 2 present the pump line, the wavelength, the relative intensity, the relative polarization, the optimum pressure of operation, and the reference for each observed laser line in acetaldehyde and vinyl fluoride, respectively. The data are presented in order of pump line.

Eight lines with wavelengths in the range 319.154 to 528.277 μ m were observed in acetaldehyde; four are new and four others have been reported previously.^{1,2} The wavelengths reported previously were not measured with high precision. When the reported values were within 1 to 2.5 μ m from our values, we considered the laser line as being reported previously; otherwise we called it new. This is the case for the line 335.282 μ m pumped by 9R(30) in CH₃CHO; previous work^{1,2} report a line pumped by the same pump line at 343 μ m and so we considered the line 335.282 μ m new. The wavelengths of all nine lines observed in vinyl fluoride, ranging from 148.137 to 671.128 μ m have been reported before^{1, 3-5}.

In this work we also measured the frequency, the relative polarization, and the pump offset from CO_2 laser line center for all observed lines. These data are presented in Tables 3 and 4 together with the calculated wavelength, the calculated wavenumber, and the reference to previous reports for each line of acetaldehyde and vinyl fluoride, respectively. The laser lines are presented in order of increasing wavelength in these tables'.

ACKNOWLEDGMENTS

We are pleased to acknowledge financial support for this research from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazilian government), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Brazilian government), NASA grant W-19,167 and the National Institute of Standards and Technology (NIST-US government).

٠

Table 1. Observed laser lines of acetaldehyde (CH₃CHO) by pump line.

CO ₂ Pump	Wavelength *	ngth Relat.		Pressure	Ref.
Line	μm	Intens. μV	Polar.	Pa(mTorr)	
9R(50)	528.277	100	//	8 (60)	new
9R(50)	470.967	10	//	11(80)	new
9 R (40)	415.356	200	//	20(150)	2
9R(38)	319.154	120	//	8 (60)	new
9R(36)	509.706	150	//	20(150)	2
9R(30)	385.102	300	//	13(100)	2
9R(30)	335.282	40	//	13(100)	new
9R(22)	328.784	250		40(300)	2

* calculated from the measured frequency with c = 299 792 458 m/s. // stands for parallel.

Table 2. Observed laser lines of vinyl fluoride (CH₂CHF) by pump line.

CO ₂ Pump Line	Wavelength * µm	Relat. Intens. mV	Relat. Polar.	Pressure Pa(mTorr)	Ref.
10R(50)	148.137	1.0	//	19(140)	3
10R(50)	445.831	0.8	//	19(140)	3
10R(20)	444.797	2.0	//	31(230)	4
10P(6)	332.363	5.0	//	60(450)	5
10P(14)	376.824	0.7	Ť	21(160)	4
10P(36)	671.128	0.6	T	11(80)	4
10P(38)	337.095	0.7	Ť	13(100)	5

.

CO ₂ Pump Line	Wavelength * µm	Relat. Intens. mV	Relat. Polar.	Pressure Pa(mToп)	Ref.
10P(48)	275.839	1.5	//	13(100)	3
10P(54)	194.255	2.0	//	13(100)	3

^a calculated from the measured frequency with c = 299 792 458 m/s. *I* and \perp stand for parallel and perpendicular.

Table 3. Frequency Measurements of acetaldehyde (CH₃CHO) by increasing wavelength.

CO ₂ Pump Line	Calculated * Wavelength µm	Calculated * Wavenumber cm ⁻¹	Measured ^b Frequency MHz	Rel. Pol.	Pump Offset MHz	Ref.
9R(38)	319.154	31.3328	939 334.4	//	- 31	new
9R(22)	328.784	30.4151	911 823.0	//	+6	2
9R(30)	335.282	29.8256	8 94 1 5 0.0	//	+26	new
9R(30)	385.102	25.9671	778 474.6	//	+ 26	2
9R(40)	415.356	24.0757	721 771.9	//	+16	2
9R(50)	470.967	21.2329	636 546.2	//	+10	new
9R(36)	509.706	19.6191	588 167.0	//	+9	2
9R(50)	528.277	18.9295	567 490.8	//	+10	new

^a calculated from the measured frequency with $c = 299\ 792\ 458\ m/s$. ^b 1 σ uncertainty, $\Delta v/v$ is $\approx 2x10^{-7}$.

stands for parallel.

Table 4. Frequency Measurements of vinyl fluoride (CH₂CHF) by increasing wavelength.

CO ₂ Pump Line	Calculated * Wavelength µm	Calculated * Wavenumber cm ⁻ⁱ	Measured ^b Frequency MHz	Rel. Pol.	Pump Offset MHz	Ref.
10R(50)	148.137	67.5051	2 023 751.3	//	-24	3
10 P (54)	194.255	51.4788	1 543 295.5	//		3
10P(48)	275.839	36.2531	1 086 840.1	//	+37	3
10 P (6)	332.363	30.0875	902 001.9	//	+22	5
10 P(38)	337.095	29.6652	889 341.2	Ŧ	+5	5
10P(14)	376.824	26.5376	795 577.0	⊥	+33	4
10R(20)	444.797	22.4822	673 998.0	//	+3	4
10R(50)	445.831	22.4300	672 435.5	//	-24	3
10P(36)	671.128	14.9003	446 699.1			4

* calculated from the measured frequency with c = 299792458 m/s.

^b 1 σ uncertainty, $\Delta v/v$ is = 2x10⁻⁷.

and \perp stand for parallel and perpendicular.

REFERENCES

- Work of the US-Government, not subject to copyright.
- 1. N.G. Douglas, Millimeter and Submillimeter Wavelength Lasers, Springer-Verlag, New York, pp. 191 and pp. 200 (1989).
- 2. B.M. Landsberg, M.S. Shafik, R.B. Butcher, *IEEE J. Quantum Electron.* QE-17, pp. 828-829 (1981).
- 3. M. Redon, C. Gastaud, M. Fourrier, Opt. Lett. 9, pp. 71-72 (1984).
- 4. A. R. Calloway, E.J. Danielewicz, Int. J. IR and MM Waves 2, pp. 933-942 (1981).
- 5. F. Temps, H.Gg. Wagner, Appl. Phys. B29, pp. 13-14 (1982).

6. K.M. Evenson, C.C.-Chou, B.W. Bach, K.G. Bach, *IEEE J. Quantum Electron*. QE-30, pp. 1187-1188 (1994).

- M. Inguscio, F. Strumia, K.M. Evenson, D.A. Jennings, A. Scalabrin, S.R. Stein, Opt. Lett. 4, pp. 9-11 (1979).
- 8. F.R. Petersen, K.M. Evenson, D.A. Jennings, J.S. Wells, K. Goto, J.J. Jimenez, *IEEE J. Quantum Electron.*, QE-11, pp. 838-843 (1975).