LASER LINES AND FREQUENCY MEASUREMENTS OF FULLY DEUTERATED ISOTOPOMERS OF METHANOL

E. C. C. Vasconcellos,¹ S. C. Zerbetto,¹ L. R. Zink,² and K. M. Evenson²

> ¹Instituto de Física, Gleb Wataghin Departamento de Electrônica Quântica State University of Campinas (UNICAMP) 13083-970 Campinas, SP, Brazil ²Time and Frequency Division National Institute of Standards and Technology Boulder, Colorado 80303-3328

> > Received November 30, 1997

ABSTRACT

Fully deuterated isotopomers of methanol (${}^{12}CD_3OD$ and ${}^{13}CD_3OD$) were optically pumped with a CO₂ laser. Five new far-infrared laser lines were discovered in ${}^{12}CD_3OD$ and 25 in ${}^{13}CD_3OD$ in the range 43.697 to 719.426 μ m. The frequencies of these new and some previously reported laser lines, the pump offset, the relative polarization, the relative intensity, and the optimum pressure of operation were measured.

Key Words: ¹²CD₃OD, ¹³CD₃OD, fully deuterated isotopomers, new laser lines, far-infrared laser, frequency measurement, CO₂ laser pump.

INTRODUCTION

Thirty new far-infrared lines of methanol were discovered when optically pumping with a CO₂ laser: five in ¹²CD₃OD and 25 in ¹³CD₃OD. These lie in the wavelength region from 43.697 to 719.426 μm .

Methanol and its isotopomers are the most important far-infrared (FIR) active media, generating nearly 2200 laser lines in the range 19 to $3030\mu m$. Previous to this work, optical pumping of fully deuterated

isotopomers of methanol with a CO₂ laser produced 214 far-infrared laser lines in ¹²CD₃OD and 38 far-infrared laser lines in ¹³CD₃OD.^{1,2} Nineteen other lines were also reported as observed when ¹²CD₃OD was pumped with CO₂ isotope lasers.

EXPERIMENT

A high-resolution, cw CO_2 laser with emission in the infrared (IR) wavelength range from 9 to 11 μ m, operating on regular, hot, and sequenceband laser lines³ was used to pump the molecules. The high-Q, Fabry-Perot laser cavity is 1.5 m long and delivers an output power of up to 40 W for the regular-band lines and up to 15 W for the sequence and hot-band lines.

The FIR laser has a 2 m long, metal-dielectric waveguide cavity and two flat end mirrors.⁴ The FIR laser is longitudinally pumped with CO_2 radiation entering the laser through a hole in one of these end mirrors. A small, 45°, polished copper mirror near this end couples out a fraction of the FIR radiation. The other end mirror is mounted on a micrometer to tune the cavity into resonance with the FIR radiation. A Brewster-angled Si output window transmits most of the FIR, but blocks most residual CO_2 radiation. The FIR radiation is detected with either a pyroelectric detector or a metalinsulator-metal (MIM) diode.

MEASUREMENTS

The CO₂ laser pump lines are scanned by rotating the grating and looking for absorption of the radiation by the laser media at a pressure of about 650 to 1300 Pa. Monitoring is done with the photo-acoustic signal from a microphone mounted inside the FIR laser cavity. For every pump line that shows absorption we lower and vary the pressure within a range between 40 and 800 Pa (30 and 600 mTorr). A search for FIR emission is then done by simultaneously tuning the FIR cavity length and the CO₂ laser pump frequency. Once a FIR laser signal is detected, the pressure, output coupling, and pump offset (the difference between the absorption frequency and the CO₂ laser-line-center frequency) are adjusted to optimize the signal. Then a scan of the laser modes is recorded as a function of FIR cavity length. This gives a first measurement of the number of FIR lines that lase under these conditions and their wavelengths. Finally, measuring the difference in cavity

Laser Lines of Methanol

length between 20 laser modes (10λ) gives a value for the wavelength accurate to about 0.1%. This process is repeated for every CO₂ pump line which gives a microphone signal when absorbed by the medium.

The measured value of the wavelength is used to calculate the corresponding preliminary value of the frequency and synthesize a frequency close to this value with two locked CO_2 lasers. In our case the FIR radiation is mixed in a MIM diode with radiation from two reference CO_2 lasers and a microwave synthesizer. The diode generates frequencies of various mixing orders between these four sources. In our case

$$\delta v = v_{\text{FIR}} - n |v_1 - v_2| \pm m v_m, \qquad (1)$$

where δv is the beat frequency generated in the diode (between 0 and 1.5 GHz), v_{FIR} is the FIR laser frequency, v_1 and v_2 are the CO₂ laser frequencies, and v_m is the microwave frequency. The integers *n* and *m* are the mixing orders of each component. Once δv is observed, the values and sign of the mixing components are determined, and the FIR laser frequency is calculated. This and other frequency measurement techniques are described in in ref. 5.

The beat frequency δv from the MIM diode is amplified and observed with a spectrum analyzer. Tuning the FIR laser across its gain curve maps out the change in amplitude of δv using a peak-hold feature on the spectrum analyzer. The center of this beat note is then measured with a marker frequency. Observing this beat note as the FIR and microwave radiations are changed (one at a time) gives the value and sign of *n* and *m*. For all of these measurements *n*=1 or 2 and *m*=1 or 2. The CO₂ reference frequencies and the microwave frequency are chosen to give a δv within the 1.5 GHz bandwidth of our amplifier and spectrum analyzer.

The CO₂ reference lasers are frequency-stabilized to ± 10 kHz, and their frequencies are known to an accuracy of 2.5 kHz. The microwave source is also accurate within 10 Hz or less. Setting the FIR laser to the center of its gain curve determines the accuracy of the FIR laser frequency. We generally measure each frequency five times or more and report the average of these measurements. Our 1 σ uncertainty is $2x10^{-7}$ times the frequency and is due to the uncertainty in determining the center of the FIR

Vasconcellos, Zerbetto, Zink, and Evenson

gain curve.

Pump frequency offset measurements are important for assigning these FIR laser transitions. Measuring the offset is a simple matter of setting the pump frequency for maximum FIR power and then mixing, in a MIM diode, some of the pump radiation with a reference laser locked to the appropriate line center. Just as with the FIR frequency measurements, the diode generates a beat note between the two laser frequencies and is measured as above. Since some residual pump radiation is coupled out of the FIR laser along with the FIR radiation, any CO₂ filters in front of the FIR-measuring MIM diode are removed and the measurement is easily performed. For regular pump lines, the reference laser is set to the same laser transitions as the pump line. For hot and sequence- band lines, the closest regular line is used for the reference and the difference made up by a microwave synthesizer. Our pump offset measurements are reproducible to within 2 MHz. Our pump lasers free spectral range is ± 37.5 MHz from line center, so any offset measurements ≥ 38 MHz are very near the edge of the CO₂ gain curve.

The polarization of each FIR laser line relative to the polarization of the pump laser, the relative intensity of each FIR laser line, and its optimum pressure were also recorded.

RESULTS AND COMMENTS

In Table 1 the 30 new and the two previously known FIR laser lines observed in the fully deuterated methanol, along with their pump line, relative intensity, relative polarization, pressure, and frequency offsets of the pump laser are reported. The new lines have wavelengths in the range 43.697 to 719.426 μ m. Most of them are of medium and strong relative intensity. The 10R(18) pumped 43.697 μ m line is the strongest. The line 62.6 μ m in ¹³CD₃OD, pumped by 10R(8)', is rated as weak, and coincidentally there is a 63.0 μ m line in ¹³CD₃OH also pumped by 10R(8), reported as having medium relative intensity.^{*} Frequency measurements of both lines are not available yet. Once measured they will allow us to determine if they refer to the same line. If they are the same line then the line appearing weaker in the fully deuterated methanol is probably due to contamination caused by the exchange of OH for OD on the walls of the laser.

Laser Lines of Methanol

In Table 2 the lines are presented in order of increasing wavelength, with their frequency measurements, their calculated wavelengths, and calculated wavenumbers (calculated from their measured frequencies using c = 299~792~458 m/s) also included. The frequencies are in the range 416 710.4 to 6 860 664.6 MHz.

Previous reports have shown only 33 frequency measured lines for the fully deuterated isotopomers of methanol. Our work adds 28 new frequency measured lines, and there are still many more frequencies to be measured. Sixteen percent of these lines have wavelengths shorter than 100 μ m and these are the ones needed for applications in the spectroscopy of free radicals and ions where there is a shortage of lines.

ACKNOWLEDGMENTS

We are pleased to acknowledge financial support for this research from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazilian government), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Brazilian government), NASA Grant W-19, 167, and the National Institute of Standards and Technology (NIST-US government), not subject to copyright.

CO ₂ Pump Laser	Wavelength µm	Offset MHz	Pressure Pa(mTorr)	Pol.	Rel. Int.	Ref.
¹² CD,OD						
9R(50)	246.2		27(200)	//	S	new
10R(52)	265.019		15(110)	//	w	new
10R(48)'	45.362		27(200)	//	М	new
10R(48)"	79.257		11(80)	//	w	new
10R(34)	180.741		52(390)	T	w	3
10R(18)	43.697		21(160)	Ŧ	VS	new

Table 1. Far-infrared laser lines from optically pumped ¹²CD₁OD and ¹³CD₁OD

Vasconcellos, Zerbetto, Zink, and Evenson

CO ₂ Pump Laser	Wavelength μm	Offset MHz	Pressure Pa(mTorr)	Pol.	Rel. Int.	Ref.
^u CD ₃ OD						
10R(54)	215.005	+22	19(140)	//	М	new
10R(52)	105.696	+26	43(320)	//	М	new
10R(50)	132.862	-19	23(170)	T	М	new
10R(46)	52.2		- 27(200)	//	w	new
10R(44)	65.449	-44	55(410)	//	S	new
	134.920	+3	13(100)	//	w	new
	140.354		28(210)	//	М	new
10R(40)′	70.947		33(250)	//	М	new
10R(40)"	164.142	-32	21(160)	//	S	new
10R(38)	719.426	0	20(150)	//	М	new
10R(32)'	46.4		16(120)	//	w	new
10R(32)"	72.194	+17	16(120)	//	М	new
10R(28)	252.738	+6.	11(80)	//	М	new
10R(26)	146.326	-28	24(180)	T	S	new
10R(24)	90.155		35(260)	//	М	new
10SR(23)	54.159		17(130)	//	w	new
10SR(17)'	95.93	-18	24(180)	Ţ	М	new
10SR(17)"	100.506	-21	23(170)	//	М	new
10SR(17)'"	110.6		23(170)	//	W	new
10R(12)	215.466	+37	29(220)	//	w	new
10SR(13)	74.817		21(160)	//	w	псw

. . .

.

τ.

Wavelength μm	Offset MHz	Pressure Pa(mTorr)	Pol.	Rel. Int.	Ref.
62.6		33(250)	//	w	new
464,455	-9	13(100)	//	S	4
138.040	+3	20(150)	//	W	new
298.811	+28	20(150)	//	м	new
146,129		16(120)	//	М	new
	Wavelength µm 62.6 464.455 138.040 298.811 146.129	Wavelength µm Offset MHz 62.6 -9 138.040 +3 298.811 +28 146.129 -9	Wavelength μm Offset MHz Pressure Pa(mTorr) 62.6 33(250) 464.455 -9 13(100) 138.040 +3 20(150) 298.811 +28 20(150) 146.129 16(120)	Wavelength μm Offset MHz Pressure Pa(mTorr) Pol. 62.6 33(250) // 464.455 -9 13(100) // 138.040 +3 20(150) // 298.811 +28 20(150) // 146.129 16(120) //	Wavelength μm Offset MHz Pressure $Pa(mTorr)$ Pol.Rel. Int.62.6 $33(250)$ //W464.455-9 $13(100)$ //S138.040+3 $20(150)$ //W298.811+28 $20(150)$ //M146.12916(120)//M

', ", and '" indicate different CO2 laser frequency offsets.

able 2. List of laser lines of ¹²CD₃OD and ¹³CD₃OD by increasing wavelength and frequency measurements.

CO ₂ Laser	Frequency* MHz	Wavelength ^ь μm	Wavenumber ^b cm ⁻¹	Pressure Pa(mTorr)	Rel. Int.	Offset MHz
"CD ₃ OD						
IOR(18)	6 860 664.6	43.697	228.8471	21(160)	vs	
10R(48)'	6 608 862.5	45.362	220.4479	27(200)	М	
10R(48)"	3 782 558.7	79.257	126,1726	11(80)	w	
10R(34)	1 658 687.9	180.741°	55.3279	52(390)	w	
9R(50)		246.2	40.62	27(200)	S	
10R(52)	1 131 211.7	265.019	37.7332	15(110)	w	
uCD,OD						
10 R (32)′		46.4	215.52	16(120)	w	
10R(46)		52.2	191.57	27(200)	w	
10SR(23)	5 535 464.2	54.159	184.6432	17(130)	w	

Vasconceilos.	Zerbetto,	Zink,	and	Evenson
---------------	-----------	-------	-----	---------

t	472		Vasconcellos, Zerbetto, Zink, and Evenson						
	CO ₂ Laser	Frequency ^a MHz	Wavelength ^b μm	Wavenumber ^b cm ⁻¹	Pressure Pa(mTorr)	Rel. Int.	Offset MHz	Rei. Pol.	
	10R(8)'		62.6°	159.74	33(250)	w		//	
	10R(44)	4 580 534.6	65.449	152.7902	55(410)	S	-44	//	
	10R(40)	4 225 588.4	70.947	140.9505	33(250)	М		- //	
	10R(32)"	4 152 617.0	72.194	138,5164	16(120)	М	17	//	
	10SR(13)	4 007 023.0	74.817	133.6599	21(160)	w		//	
	10R(24)	3 325 304.5	90.155°	110.9202	35(260)	м		//	
	10SR(17)'	3 125 109.1	95.93	104.2424	24(180)	м	-18	Ŧ	
	10SR(17)*	2 982 828.9	100.506	99,4965	23(170)	м	-21	//	
	10R(52)	2 836 366.0	105.696	94.611	43(320)	М	26	//	
	10SR(17)'"		110.6	90.42	23(170)	w		//	
	10R(50)	2 256 426.6	132.862	75,2663	23(170)	м	-19	T	
	10R(44)	2 222 002.5	134.92	74.118	13(100)	w	3	11	
	10R(4)	2 171 779.5	138.04	72.4428	20(150)	w	3	//	
	10R(44)	2 135 979.8	140.354	71,2486	28(210)	М		//	
	10P(8)	2 051 564.5	146.129	68.4328	16(120)	М		//	
	10R(26)	2 048 803.8	146.326°	68.3407	24(180)	S	-28	T	
	10R(40)	1 826 416.2	164.142	60.9227	21(160)	S	-32	//	
	10R(54)	1 394 348.0	215.005	46.5104	19(140)	М	22	//	
	10R(12)	1 391 365.1	215.466	46.4109	29(220)	w	37	//	
	10R(28)	1 186 180.4	252.738	39.5667	11(80)	м	6	//	
	10R(2)	1 003 282.9	298.811	33.4659	20(150)	М	28	//	
	10R(8)"	645 471.7	464.455°	21.5306	13(100)	S	-9	11	
	10R(38)	416 710.4	719.426	13.9	20(150)	М	0	h	

•

estir calc not

£- 1

Laser Lines of Methanol

', " and '" indicate different CO₂ laser frequency offsets.

*estimated uncertainty in the reproducibility of the FIR laser frequency: $\Delta v/v = 2 \times 10^{-7}$.

^b calculated from the measured frequency with c= 299 792 458 m/s.

^c not a new line, see reference in Table 1.

REFERENCES

- 1. S.C. Zerbetto, E.C.C. Vasconcellos, "Far-Infrared Laser Lines Produced by Methanol and its Isotopic Species," Int. J. IR & MM Waves, 15, pp. 889-932 (1994).
- D. Pereira, J.C.S. Moraes, E.M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C.A. Massa, "A review of optically pumped farinfrared laser lines from methanol isotopes," *Int. J. IR & MM Waves*, 15, pp. 1-44 (1994).
- K. M. Evenson, C. Chou, B. W. Bach, and K. G. Bach, "New cw CO₂ laser lines: the 9 µm hot band," *IEEE J. Quantum Electron.*, QE-30, pp. 1187-1188, 1994.
- M. Inguscio, F. Strumia, K.M. Evenson, D.A. Jennings, A. Scalabrin, S. R. Stein, "Far Infrared CH₃F Stark Laser," *Opt. Lett.*, 4, pp. 9-11 (1979).
- M. Inguscio, G. Moruzzi, K. M. Evenson, and D. A. Jennings, "A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz," J. Appl. Phys., 60, pp. R161-R192 (1986).
- E.C.C. Vasconcellos, A. Scalabrin, F.R. Petersen, and K. M. Evenson, "New FIR Laser Lines and Frequency Measurements in CD₃OD," *Int.* J. IR & MM Waves 2, pp. 533-539 (1981).
- E.C.C. Vasconcellos, K.M. Evenson, "New Far Infrared Laser Lines Obtained by Optically Pumping ¹³CD₃OD," *Int. J. IR & MM Waves* 6, pp. 1157-1167 (1985).
- D. Pereira, E.M. Telles, J.C.S. Moraes, A. Scalabrin, G. Carelli, N. Ioli, A. Moretti, F. Strumia, "Observation of New FIR Laser Lines from ¹³CD₃OH," *Conference Digest 17th Int. Conf. IR & MM Waves*, Pasadena, CA, pp. 236-237 (1992).