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Experimental Demonstration of Entanglement-Enhanced Rotation Angle Estimation
Using Trapped Ions
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We experimentally investigate three methods, utilizing different atomic observables and entangled
states, to increase the sensitivity of rotation angle measurements beyond the “standard quantum limit”
for nonentangled states. All methods use a form of quantum mechanical “squeezing.” In a system of two
entangled trapped 9Be1 ions we observe a reduction in uncertainty of rotation angle below the standard
quantum limit for all three methods including all sources of noise. As an application, we demonstrate
an increase in precision of frequency measurement in a Ramsey spectroscopy experiment.
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Entanglement has played an important role in elucidat-
ing fundamental, and sometimes apparently mysterious,
aspects of quantum mechanics [1]. It is an integral part of
quantum information processing [2], where potential ap-
plications include efficient algorithms for problems that are
computationally hard on classical computers. Entangle-
ment can also provide increased sensitivity in quantum-
limited measurements; here we report experimental
measurements of rotation angle in an atomic ensemble
where the observed uncertainty is smaller than can possibly
be obtained without entanglement.

Generally, we assume a quantum system where an ob-
servable Õ depends on a system parameter z . Using mea-
surements of Õ�z � to determine z , the uncertainty in our
determination of z for a single measurement is given by

dz �
DÕ

j≠�Õ��≠z j
, (1)

where �DÕ�2 � �Õ2� 2 �Õ�2 is a measure of the rms fluc-
tuations in repeated measurements of Õ. The specific
problem we investigate is efficient estimation of spin ro-
tation angle. We consider a system of N spin-1�2 particles
with total angular momentum J �

PN
i�1 Si , where Si is

the spin of the ith particle. For each spin, j#�i and j"�i

are spin eigenstates with respect to a chosen axis. Rota-
tions of the entire system are characterized by the opera-
tor R � exp�2izJ ? û� for z an angle and û the axis of
rotation. To make the best estimate of z , we want to pre-
pare an input state and choose an observable Õ that will
minimize dz . This problem is analogous to measurements
of path-dependent phase differences in a Mach-Zehnder
interferometer [3–5] or transition frequencies in spectro-
scopy [6–8].

For nonentangled spin-1�2 particles, the states which
minimize dz are (angular momentum) coherent states [9].
Coherent states can be obtained from the state jC0� �
j#�1j#�2 · · · j#�N � jJ � N�2, mJ � 2N�2� by an overall
rotation. In this case Õ � J̃� minimizes dz , where J̃�

is the angular momentum operator perpendicular to �J�
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in the plane of rotation (Fig. 1). Then, dz � DJ��j�J�j
[10]. Assuming no additional sources of error, for coherent
states we obtain dz � dzc � 1�

p
N , the standard quan-

tum limit (SQL) [3–8].
We examine three proposed methods to reduce dz

using entangled states. The first uses states well described
by “spin squeezing” [3,4,6], as depicted in Fig. 1b. Here,
we take Õ � J̃� and dz � DJ��j�J�j as for coherent
states. A second method [11–13] has been discussed in
the context of a Mach-Zehnder interferometer for bosons,
where the angle z to be measured is the interferometer
phase offset due to unequal arm length. In the spin context
here, a state of the form jC� � jJ � N�2, mJ � 0� is
rotated and subsequently measured with the variance
operator Ṽ � J̃2

z 2 �J̃z�2. A third method [8] uses
states of the form jC� � �jJ, 2J� 1 eibjJ, 1J���

p
2 �

�j#�1j#�2 · · · j#�N 1 eibj"�1j"�2 · · · j"�N ��
p

2 that are rotated
and subsequently measured with the parity operator Õ �
P̃ �

QN
i�1 szi , where szi � 2Szi�h̄ is the Pauli spin op-

erator in the z direction for the ith particle. In experiments
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FIG. 1. (a) For spins in a coherent state the uncertainty dis-
tribution of the perpendicular spin components DJ� is uniform
and forms a circle of radius

p
J�2, whereas for entangled spins

(b) the distribution of DJ� can be “squeezed” in one direction,
forming an ellipse. To measure DJ�, we rotate the spin J into
the x-y plane and measure DJz , observing its oscillation with
respect to the phase angle f. From this and the measured value
of j�J�j we determine du (Fig. 2).
© 2001 The American Physical Society
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FIG. 2. The ideal phase sensitivity of the state jC� �
cos�p�10� j##� 1 i sin�p�10� j""� is shown as the dashed curve
[Eq. (4)]. The full circles are the values determined from 10 000
experiments (	1 ms per experiment) per data point. Error bars
are smaller than the marker size. The dotted line marks the
standard quantum limit duc � 1�

p
2, which is independent of

f [7].

with two ions, we use each of these methods and measure
a value of dz , dzc. We quantify these results with
the parameter jR � dz�dzc [6], related to the entangle-
ment of the system [14]. The minimum possible value
of jR is 1�

p
N (dz � 1�N), the Heisenberg limit [3–8].

The experiments use two 9Be1 ions that are confined
along the axis of a miniature linear radio frequency trap
[15]. The spectrally resolved jF � 1, mF � 21� � j"�
and jF � 2, mF � 22� � j#� 2S1�2 ground-state hyper-
fine levels of 9Be1 form the basis of an effective spin-1�2
system. Coherent superpositions between j#� and j"� are
generated by laser-driven two-photon stimulated-Raman
transitions [16]. Defining the quantization axis to be the z
axis, these operations are equivalent to the spin rotation R
for û in the x-y plane:

j#� ! cos u

2 j#� 2 sin u

2 e2ifj"� , (2a)

j"� ! cos u

2 j"� 1 sin u

2 eifj#� , (2b)

where f is the laser phase and u is proportional to the
duration the laser pulses are applied (Fig. 1b). Using
stimulated-Raman transitions that couple to the ions’ mo-
tion [17,18], we can also realize the entangling operation:

j##� ! jC� � cosaj##� 1 i sinaj""� , (3)

where a is proportional to the laser pulses’ duration. At
the end of each experiment, we detect the number of ions
in the j#� or j"� state with state-sensitive fluorescence [19].

For spin squeezing, we take jC� with values of a fi

Mp�4 (M odd) in which case �J� � �Jz� � 2 cos�2a�
does not vanish. In the experiment, we extract �J� by ap-
plying the rotation of Eqs. (2), varying u, and recording
�Jz� (“Rabi flopping”). In general DJ� depends on f, as
indicated in Fig. 1b. To determine DJ��f�, we rotate jC�
into the x-y plane by driving a “ p�2-pulse” on both ions
[Eqs. (2) with u � p�2] and measure DJz for different
values of f. This operation preserves the expectation val-
ues of �J� and DJ� in the rotated frame. Therefore we
can regard the experiment as measuring the precision of
our z � u � p�2 rotation of the spins for the initial state
jC�; this precision will be optimized for certain values of
f. For the ideal case, we have

du�f� �
DJ��f�
j�J�j

�

q
1
2 �1 2 sin�2a� sin�2f��

j cos�2a�j
. (4)

We performed experiments for several values of a,
obtaining the highest sensitivity for a � p�10 (Fig. 2).
From the Rabi flopping curves we measure j�J�j to be
0.768(2) in this case (ideally, we expect 0.809). The high-
est measured sensitivities achieved are dumin � 0.65�1�,
or jR � 0.92�1�. [Ideally dumin � 0.561 �jR � 0.794�].
An increase in sensitivity over the SQL for two non-
entangled spins �duc � 1�

p
2 � is visible for a range of

about p�4 rad. The discrepancy with the theoretically
expected minimal values is caused primarily by imperfect
entangled-state preparation. Note that ideally, for two
spins, dumin ! 1�2 (the Heisenberg limit) as a ! p�4.
However, then �J� ! 0 so that any added noise prevents
achieving this limit.

The improvements in phase sensitivity over the SQL
arise from spin squeezing. For angular momentum states,
the uncertainty relation �DJi�2�DJj�2 $

1
4 h̄2j�Jk�j2 allows

for one of the variances �DJi�2 to be reduced (squeez-
ing) at the cost of �DJj�2 increasing (antisqueezing). j�Jk�j
must also shrink. The Hamiltonian H � xJ2

x which car-
ries the state j##� into jC� [Eq. (3)] [4,17,20] establishes a
correlation between the spins of both particles that results
in spin squeezing [4]. The redistributed variances of the
spins are indicated as an ellipse in Fig. 1b and allow us
to obtain values of jR , 1 when DJi shrinks more than
j�Jk�j. Recently, observations of spin squeezing have been
reported in Refs. [21] and [22], but the results were not
cast in terms of measured dz or jR ; therefore, a direct
comparison is precluded.

For the maximally entangled state jCM� � �j##� 1

ij""���
p

2 [a � p�4 in Eq. (3)], or the state jJ � 1, mJ �
0�, �J� � 0 [23] so that the above method is experimen-
tally inaccessible. In these cases, the parity operator P̃
or the variance Ṽ can be used to increase the sensitivity
of a phase measurement. For two ions, jJ � 1, mJ �
0� � �j#"� 1 j"#���

p
2 can be obtained from jCM�

by a rotation [Eqs. (2) with u � p�2 and f �
p�4]. For two ions, we have Ṽ � �1 1 P̃��2 2

�J̃z�2, so that, except for an offset and scale factor, the
measured values of Ṽ and P̃ are the same. Therefore we
can explore the second and third methods cited in the
introduction with the same experiment. Here, we cast the
experiment in terms of jCM� and the parity operator P̃.

We view the experiment as performing a p�2 ro-
tation of the state jCM� [Eqs. (2) with u � p�2] and
desire to determine z � f with maximum sensitivity.
To do this, we prepare the state jCM�, perform a p�2
rotation for various values of f, and measure P̃�f�, in
which case df � DP̃�j≠�P̃��≠fj. The measurements
5871



VOLUME 86, NUMBER 26 P H Y S I C A L R E V I E W L E T T E R S 25 JUNE 2001
are displayed in Fig. 3b. The amplitude of the observed
sinusoidal oscillation is 0.845�2� rather than the theo-
retical maximum of 1, due primarily to imperfections
in state creation. Because of these imperfections, df

also depends on f as shown in Fig. 3c. Ideally, we have
df � 1�2 �jR � 1�

p
2 �, the Heisenberg limit, indepen-

dent of f [8]. In the experiment, we observe df , dfc

for a limited range of f values. The minimal uncer-
tainty observed is df � 0.59�1� , 1�

p
2 � dfc [jR �

0.83�1�]. Note that the period of the oscillation of �P̃�
with respect to f is half (in general 1�N [8]) that of the
period when the observable is Jz (Fig. 1b). This results
in a relative increase in j≠�Õ��≠fj, which is the main
reason we can find values of jR , 1. The analog of

FIG. 3. In (a), we plot the theoretical value �P̃�f�� for an
initial state jCM� � �j##� 1 ij""���

p
2 which has been rotated

through angles u � p�2, f [Eqs. (2)]. The bars represent the
variance �DP̃�2 of the parity. In (b), we show the corresponding
measured values from 10 000 experiments (experiment duration
	1 ms) per data point and a fit to the expected sinusoidal de-
pendence. (c) The resulting phase sensitivity df � DP̃�j ≠�P̃�

≠f j,
as determined from the data of (b). For the idealized experi-
ment df � 1�2, independent of f [8], the Heisenberg limit.
The dotted line at 1�

p
2 represents the SQL. All figures share

the same abscissa [shown in (c)].
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this experiment using entangled photon pairs has been
reported in Ref. [24].

These methods are of interest for improved frequency
measurements [6,8]. Here, we consider use of the parity
operator P̃ in combination with maximally entangled
states [8]. In Ramsey separated-field spectroscopy [25], if
the state after the first Ramsey pulse is of the form jC� �
�j#�1j#�2 · · · j#�N 1 eibj"�1j"�2 · · · j"�N ��

p
2, the transition

frequency between the states j#� and j"� can be determined
with a precision of d�v 2 v0� � dz�T � 1��NT � [8].
In this expression, T is the time difference between the
first and the second Ramsey pulse and d�v 2 v0� is the
uncertainty in the measured frequency difference between
the atoms’ transition frequency v0 and the frequency v

of the applied radiation. Therefore, here phase sensitivity
translates into frequency sensitivity through the relation
dz � d�v 2 v0�T . The gain of a factor of 1�

p
N

compared to spectroscopy of atoms in coherent states is of
particular interest for precision spectroscopy, which has
come close to the SQL [7,26].

To demonstrate the use of entangled states for spec-
troscopy, we prepare an initial state of two ions of the form
jCR� 
 �j#"� 1 j"#���

p
2. The Ramsey experiment was

performed on j#� $ j"� transitions using stimulated Raman
excitation with v�2p detuned by about 10 kHz from
v0�2p 
 1.25 GHz. We varied the time T between
the two Ramsey pulses to change the phase difference
z � �v 2 v0�T for the experiments; that is, we de-
termine v 2 v0 by varying T and measuring P̃. In
Fig. 4 the maximal gain in precision is a factor of 1.14�1�
[jR � 0.88�1�], compared to an idealized Ramsey experi-
ment using two ions in a coherent state where preparation
and detection are perfect.

In summary, we have demonstrated a fundamental
increase in sensitivity of rotation angle measurement
benefiting from entanglement. The reported measure-
ments include all sources of noise (no noise subtraction)

FIG. 4. Uncertainty in frequency determination in a Ramsey
experiment using the input state jCR� � �j#"� 1 j"#���

p
2. We

vary the time T between the Ramsey pulses for fixed frequency
detuning jv 2 v0j�2p 
 10 kHz. We performed 10 000 ex-
periments (experiment duration 	1 ms) per data point. The
dotted line represents the SQL for two ions in a coherent spin
state [7]. The dashed line marks the Heisenberg limit.
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and demonstrate a sensitivity better than that which can
be obtained without entanglement under ideal conditions.
The most important limitation of our experiments is the
imperfection of initial state preparation induced by heating
of the ions to higher motional states [15], which reduces
the degree of entanglement. Maintaining the ions close
to their motional ground state should significantly reduce
these effects [17]. In an application to a Ramsey spec-
troscopy experiment, we achieved an increased precision in
frequency measurement compared to an idealized experi-
ment using unentangled particles. This may be of signifi-
cance for the construction of more precise atomic clocks.

We thank J. J. Bollinger and B. E. King for helpful com-
ments on the manuscript. This work was supported by
the U.S. National Security Agency (NSA) and the Ad-
vanced Research and Development Activity (ARDA) un-
der Contract No. MOD-7171.00, the U.S. Office of Naval
Research, and the U.S. Army Research Office. This paper
is a contribution of the National Institute of Standards and
Technology and is not subject to U.S. copyright.

Note in proof.—Since our submission, number-
squeezed atomic states have been reported [27]. Such
states are analogous to the jJ � 1, mJ � 0� state of
our experiment [3–5] and are an important step toward
sub-shot-noise atom interferometry [12].
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