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Quantum mechanics allows for many-particle wavefunctions that
cannot be factorized into a product of single-particle wave-
functions, even when the constituent particles are entirely distinct.
Such ‘entangled’ states explicitly demonstrate the non-local char-
acter of quantum theory1, having potential applications in high-
precision spectroscopy2, quantum communication, cryptography
and computation3. In general, the more particles that can be
entangled, the more clearly nonclassical effects are exhibited4,5—
and the more useful the states are for quantum applications. Here
we implement a recently proposed entanglement technique6 to
generate entangled states of two and four trapped ions. Coupling
between the ions is provided through their collective motional
degrees of freedom, but actual motional excitation is minimized.
Entanglement is achieved using a single laser pulse, and the
method can in principle be applied to any number of ions.

Most experimental demonstrations of entanglement to date have
relied on the selection of data from random processes, such as the
preparation and detection of photon pairs in parametric down-
conversion7–9 or of atoms in a thermal beam10. All methods of this
type suffer from inescapable signal degradation when entanglement
of larger numbers of particles is attempted, as the probability of
randomly generating the appropriate conditions decreases expo-
nentially. For instance, in the experiment of ref. 7, two-photon
entangled states could be generated and detected at a rate of roughly
1,000 per second, three-photon states at a rate of 30 per hour, and
four-photon states at an extrapolated rate of several per year.
Trapped ions have been suggested as a system in which such effects
might be avoided11, and we have demonstrated two-particle entan-
glement in a deterministic way12. By ‘deterministic’ we mean that
the desired state could be produced with a high degree of certainty at
a user-specified time13, which is necessary for avoiding the degrada-
tion described above. However, that experiment relied on the
particular behaviour of two ions in a quadrupole radio-frequency
trap, and could not easily be applied to larger numbers of particles.

The entanglement technique proposed by Mølmer and
Sørensen6,14 can be understood by considering a pair of spin-half
charged particles confined together in a harmonic potential. The
energy levels of this system are illustrated in Fig. 1, where ~q0 is the
internal energy splitting of each particle, and n is the oscillation
frequency of a particular collective mode of the particles in the trap.
Using laser-cooling and optical-pumping techniques15, the particles
are initially prepared in their spin-down internal state and in the
ground state of their collective motion: jw〉 ¼ j ↓↓ 0〉. By applying
optical fields oscillating at q0 þ n 2 d and q0 2 n þ d, the two-step
transition from |↓↓ 0〉 to |↑↑ 0〉 is driven. For sufficiently large d, the
intermediate states |↑↓ 1〉 and |↓↑ 1〉 are negligibly occupied, so that no
motional excitation occurs. The resulting interaction hamiltonian,
in the rotating-wave approximation and the Lamb–Dicke limit, is
then

H ¼
~Ω̃

2
ðj↑ ↑ 〉〈 ↓ ↓j þ j↓ ↓ 〉〈 ↑ ↑j þ j↑ ↓ 〉〈 ↓ ↑j þ j↓ ↑ 〉〈 ↑ ↓jÞ ð1Þ

with Ω̃ ¼ h2Ω2=d when the single particle j↓ 〉 ↔ j↑ 〉 transition has

Rabi frequency Ω and the Lamb–Dicke parameter is h. For an
excitation involving momentum transfer ~k and a total particle
mass of M, h is given by (~k2/2Mn)1/2. Entanglement is achieved by
applying H for a time t ¼ p=2Ω̃, making the spin wavefunction
jw2〉 ¼ ðj↑↑ 〉 2 ij↓↓ 〉Þ=Î2. This spin state is in fact created for any
initial motional state |n〉, so long as the Lamb–Dicke criterion
h2n p 1 is satisfied.

In order for the intermediate states |↑↓ 1〉 and |↓↑ 1〉 to be negligibly
occupied, the detuning d must be large compared to the transition
linewidth hΩ. However, it is clear from the expression for Ω̃ that the
entanglement speed is maximized for small d, and in fact the
technique can still be applied for d < hΩ (refs 14, 16). Although
motional excitation does then occur to some degree, for select
values of d the excitation vanishes at precisely the time that the
entangled spin state is created. The condition for this to occur is

d=hΩ ¼ 2
����
m

p
ð2Þ

for any integer m, and the maximum excitation during the pulse
then has mean quantum number n̄ ¼ 1=2m. Our experiment is
operated with m ¼ 1.

As discussed in ref. 6, the entanglement method is scalable in the
sense that precisely the same operation can be used to generate the
N-particle entangled state

jwN 〉 ¼ ðj↑ ↑ … ↑ 〉 þ iNþ1j↓ ↓ … ↓ 〉Þ=
���
2

p
ð3Þ

if N is any even number, while for N odd, |wN〉 can be generated using
one entanglement pulse accompanied by a separate independent
rotation of each particle’s spin.

If the ions are uniformly illuminated, the Mølmer and Sørensen
scheme6,14 requires that they all participate equally in the inter-
mediate motional excitation, which implies that the only suitable
mode for arbitrary N is the centre-of-mass mode. However, this
mode has a practical disadvantage because in our experiments
fluctuating ambient electric fields cause it to heat at a significant
rate. Although for large d the entanglement operation is largely
independent of the motion, so that heating is unimportant, in the
small-d case it is necessary that motional decoherence be avoided.
Modes involving only relative ion motion couple to higher
moments of the field, so heating of these modes is negligible15.
For N ¼ 2 and N ¼ 4, such modes do exist in which each particle
participates with equal amplitude17. In both cases, they are sym-
metric ‘stretch’ modes, in which alternating ions oscillate out of
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Figure 1 Entanglement scheme for two particles. Each ion is initially prepared in the |↓〉
internal state, and the collective motion of the pair is cooled to its ground state |0〉. Laser
fields oscillating near q0 þ n and q0 2 n couple the |↓↓〉 and |↑↑〉 states as shown. By
detuning the single transition frequencies by a small amount d, the populations of the |↓↑1〉
and |↑↓1〉 states are kept small. Then, by driving the double transition for the appropriate
time, the entangled state ðj ↑↑ 〉 2 i j ↓↓ 〉Þ=Î2 is created. For four ions, the same procedure
generates the state ðj ↑↑↑↑ 〉 þ i j ↓↓↓↓ 〉Þ=Î2. We note that in the actual experiment, each
of the single transitions shown is itself a two-photon Raman transition, driven by a pair of
laser beams; the entire process therefore consists of a four-photon transition.
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phase. We use these modes here. Excitation of the centre-of-mass
mode still affects the experiment, as the motion in spectator modes
modifies the coupling strength to the mode of interest14,15. For this
reason, we initially cool both the centre-of-mass and stretch modes
to near their ground state.

The experiment was performed using 9Be+ ions confined in a
miniature linear radio-frequency trap18, with the N ions lying in a
line along the trap’s weak axis. Two spectrally resolved ground-state
hyperfine levels comprise the effective spin-half system, with
j↓ 〉 [ jF ¼ 2;mF ¼ 2 2〉 and j↑ 〉 [ jF ¼ 1;mF ¼ 2 1〉, where F is
the total angular momentum quantum number, and ~mF is the
projection of the angular momentum along the quantization axis
defined by an externally applied magnetic field. The hyperfine
splitting q0/2p is approximately 1.25 GHz. Coherent coupling
between |↓〉 and |↑〉 is provided by stimulated Raman transitions.
The two Raman laser beams have a wavelength of 313 nm with a
difference frequency near q0, and are perpendicular, with their
difference wave-vector lying along the line of ions. They are detuned
,80 GHz blue of the 2P1/2 excited state, with intensities giving
Ω=2p < 500 kHz. For both the two- and four-ion experiments, the
desired stretch-mode frequency n/2p was 8.8 MHz, giving
h ¼ 0:23=N1=2. The two driving frequencies required for the entan-
glement operation are generated by frequency-modulating one of
the Raman beams using an electro-optic modulator.

After the entanglement operation, the ions are probed by illumi-
nating them with a circularly polarized laser beam tuned to the
2S1=2ðF ¼ 2;mF ¼ 2 2Þ ↔ 2P3=2ðF ¼ 3;mF ¼ 2 3Þ cycling transi-
tion. Each ion in |↓〉 fluoresces brightly, leading to the detection of
,15 photons per ion on a photomultiplier tube during a 200-ms
detection period. In contrast, an ion in |↑〉 remains nearly dark.
Because the number of photons detected from a spin-down ion
fluctuates according to Poisson statistics, in a single experiment the
number of spin-down ions can be determined with only a limited
accuracy. For the data reported, each experiment was repeated 1,000
times under the same conditions, and the resulting photon–
number distribution fitted to a sum of poissonians to determine
the probabilities Pj for j ions to be in |↓〉. The results are given in
Table 1, and show that in both cases, the probabilities for all N ions
to be in the same state are large compared to the probabilities for the
other cases. This is characteristic of the states |wN〉, although the fact

that the middle probabilities are non-zero indicates that we do not
generate the entangled states with perfect accuracy.

In order to prove that we are generating a reasonable approxima-
tion to |wN〉, it is necessary to prove that the populations of |↑…↑〉
and |↓…↓〉 are coherent. In terms of the density matrix for the
system, r, we must measure the far off-diagonal element r↑…↑,↓…↓,
whose amplitude will be abbreviated r(↑↓). This can be achieved by
applying a simple analysis pulse to the ions before observing them.
If the Raman difference frequency is set to q0 (and the frequency
modulator turned off), each ion i undergoes ordinary Rabi oscilla-
tions, evolving according to the hamiltonian

Hi ¼
~Ω
2

ðeifj↑ 〉i〈 ↓ji þ e 2 ifj↓ 〉i〈 ↑jiÞ ð4Þ

where f is the phase of the difference frequency relative to that of
the entanglement pulse. This hamiltonian is applied for time p/2Ω
(a p/2 pulse), and the parity

Π [ ^
N

j¼0

ð 2 1ÞjPj ð5Þ

is observed while f is varied. As seen in Fig. 2, for N ions Π oscillates
as cos Nf, and the amplitude of this oscillation is in fact 2r(↑↓) (ref.
2). The resulting values are given in Table 1. From the data shown in
the table, our state preparation fidelity

F [ 〈wN jrjwN 〉 ¼
1

2
ðPð↑Þ þ Pð↓ÞÞ þ rð↑↓Þ ð6Þ

can be determined, where P(↑) is the population of |↑…↑〉 and P(↓) is
the population of |↓…↓〉. For N ¼ 2 we achieve F ¼ 0:83 6 0:01,
while for N ¼ 4, F ¼ 0:57 6 0:02.
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Figure 2 Determination of r(↑↓). a, Interference signal for two ions; b, four ions. After the
entanglement operation of Fig. 1, an analysis pulse with relative phase f is applied on the
single-ion j ↓ 〉 ↔ j ↑ 〉 transition. As f is varied, the parity of the N ions oscillates as

cos Nf, and the amplitude of the oscillation is twice the magnitude of the density-matrix
element r(↑↓). Each data point represents an average of 1,000 experiments, corresponding
to a total integration time of roughly 10 s for each graph.

Table 1 Characterization of two-ion and four-ion states

N P0 P1 P2 P3 P4 r(↑↓)
.............................................................................................................................................................................

2 0.43 0.11 0.46 – – 0.385
4 0.35 0.10 0.10 0.10 0.35 0.215
.............................................................................................................................................................................
N is the number of ions, Pj denotes the probability that j ions were measured to be in |↓〉, and r(↑↓)
denotes the amplitude of the density matrix element r↑…↑,↓…↓. Uncertainties in r(↑↓) and the N ¼ 2
populations are 60.01, and uncertainties in the N ¼ 4 populations are 60.02.
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The fact that r(↑↓) is non-zero is still insufficient to guarantee
entanglement. To be explicit, a system with density matrix r exhibits
N-particle entanglement only if no decomposition r ¼ Skpkjwk〉〈wkj
exists with all the {|wk〉} factorizable into products of wavefunctions
that depend on fewer than N particles. For example, if jw〉i ¼
ðj↑ 〉i þ j↓ 〉iÞ=Î2 is a state of ion i, then the four-particle state
|w〉1|w〉2|w〉3|w〉4 is not entangled, but still has rð↑↓Þ ¼ 1=16. We note
that these are the types of states studied in liquid-state nuclear
magnetic resonance experiments19. Alternatively, for jw〉12 ¼
ðj↑ 〉1j↑ 〉2 þ j↓ 〉1j↓ 〉2Þ=Î2 and jw〉34 ¼ ðj↑ 〉3j↑ 〉4 þ j↓ 〉3j↓ 〉4Þ=Î2, the
state |w〉12|w〉34 exhibits two-particle, but not four-particle entangle-
ment, and has rð↑↓Þ ¼ 1=4.

To establish that we are actually observing N-particle entangle-
ment, consider an arbitrary factorizable wavefunction

jwF〉 ¼ ½aj↑ … ↑ 〉X þ bj↓ … ↓ 〉X þ …ÿ½cj↑ … ↑ 〉Y þ dj↓ … ↓ 〉Y þ …ÿ

ð7Þ

where X and Y refer to two distinct subsets of the N particles, with
|↑…↑〉X indicating the state with all particles in subset X spin-up, and
similarly for the other terms. Normalization of the factor wavefunc-
tions requires jaj2 þ jbj2 < 1 and jcj2 þ jdj2 < 1, which can be
combined and rewritten as

ðjaj 2 jcjÞ2 þ 2jacj þ ðjbj 2 jdjÞ2 þ 2jbdj < 2 ð8Þ

Since the squared terms on the left are positive, equation (8) implies
that jacj þ jbdj < 1, and in turn that ðjacj þ jbdjÞ2 < 1. Expanding
the square yields the desired relation20:

Pð↑Þ þ Pð↓Þ þ 2rð↑↓Þ ¼ 2F < 1 ð9Þ

where Pð↑Þ ¼ jacj2, Pð↓Þ ¼ jbdj2, and rð↑↓Þ ¼ jabcdj are the previously
defined quantities. Since equation (9) holds for any separable
wavefunction, it must also hold for any separable density matrix.
Both our N ¼ 2 and N ¼ 4 experiments give F . 1=2, so the states
they produce exhibit N-particle entanglement.

Quantifying the amount of entanglement present is a more
difficult question. A variety of measures of entanglement have
been proposed, but most are difficult to calculate even
numerically21,22. For N ¼ 2, there is an explicit formula for the
‘‘entanglement of formation’’ E as a function of r (ref. 23). Although
we have not reconstructed the entire two-particle density matrix,
the populations measured place sufficient bounds on the unmea-
sured elements to determine that E < 0:5. This indicates that
roughly two pairs of our ions would be required to carry the
same quantum information as a single perfectly entangled pair.

In the four-ion case, no explicit formula for entanglement is
known. The data do indicate that our density matrix can be
expressed approximately as

r ¼ 0:43jw4〉〈w4j þ 0:57rincoh ð10Þ

where |w4〉 is the desired state and rincoh is completely incoherent
(that is, diagonal). These coefficients are determined directly from
the value of r(↑↓) in Table 1, together with the fact that no evidence
for other off-diagonal matrix elements was observed. To determine a
measure of entanglement, however, it is necessary to decompose r as
a sum of |w4〉 and a ‘worst-case’ factorizable matrix rF, which can be
accomplished as

r ¼ 0:13jw4〉〈w4j þ 0:87rF : ð11Þ

Note that equations (10) and (11) both describe the same physical
state, but that in equation (11), rF consists of a specific mixture of
two- and three-particle entangled states that is highly unlikely to
occur in our experiments. In either description, it is clear that our
state-preparation accuracy is limited.

The source of decoherence in our experiments is not entirely
clear, but evidence suggests that it is related to intensity fluctuations
in the Raman laser beams, a problem we are working to understand

and correct24. The presence of decoherence, and the fact that it
affects the four-ion experiment more strongly than the two-ion one,
illustrates the need to carefully define the sense in which our
entanglement operation is ‘scalable’. Any entanglement experiment
is more sensitive to decoherence as the number of particles involved
is increased, unless sufficient accuracy can be achieved for error-
correction schemes to be usefully applied. Such schemes are thought
to require an error rate of the order of 10−4 per operation25, and we
are certainly far from this regime. However, even if such a level of
fidelity were to be achieved, applications such as quantum comput-
ing still require very large entangled states to be generated in a
reasonable amount of time and using a reasonable amount of
resources. The method demonstrated here is important in this
regard, since it uses only a single operation and requires a time
that scales roughly as N1/2.

In the language of quantum information science, we have realized
a four-quantum-bit logic gate. This system is relevant for the future
development of quantum information technology, as such states
may be used to implement quantum error-detection schemes26 or to
make rudimentary demonstrations of quantum algorithms27,28.
Entanglement of four particles is also interesting in its own right,
as such states can show strong violations of local realism5. Even the
two-particle Bell’s inequality measurement would be interesting to
implement, as the near-perfect detection efficiency for ions would
eliminate the ‘‘fair sampling’’ hypothesis which has been required in
other experiments29. In addition to improved fidelity, applications
such as these do require the ability to perform individual manipu-
lation and detection of each ion, but this is not expected to be a
severe experimental challenge30. M
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Solid hydrogen, a simple system consisting only of protons and
electrons, exhibits a variety of structural phase transitions at high
pressures. Experimental studies1 based on static compression up
to about 230 GPa revealed three relevant phases of solid molecular
hydrogen: phase I (high-temperature, low-pressure phase), phase
II (low-temperature phase) and phase III (high-pressure phase).
Spectroscopic data suggest that symmetry breaking, possibly
related to orientational ordering1,2, accompanies the transition
into phases II and III. The boundaries dividing the three phases
exhibit a strong isotope effect3, indicating that the quantum-
mechanical properties of hydrogen nuclei are important. Here we
report the quantum distributions of protons in the three phases of
solid hydrogen, obtained by a first-principles path-integral mol-
ecular dynamics method. We show that quantum fluctuations of
protons effectively hinder molecular rotation—that is, a quantum
localization occurs. The obtained crystal structures have entirely
different symmetries from those predicted by the conventional
simulations which treat protons classically.

The structures of these broken-symmetry phases have been
extensively investigated both by experimental1–3 and by theoreti-
cal4–9 studies, though the results are still controversial. In most
theoretical studies, even when they precisely compare total energies
of model structures on the basis of electronic-structure calculations,
quantum fluctuations of protons are usually neglected, or roughly
discussed, perhaps due to some technical reason. But as shown by
our previous study on impurity muonium (a bound state comprising

a positive muon and an electron) and hydrogen in crystalline
silicon10, quantum states of light particles may exhibit distributions
significantly different from those expected from stability analyses
based on the classical potential-energy surface. It is therefore
desirable to examine quantitatively the quantum-mechanical
properties of protons in solid hydrogen, especially when we are
concerned with its symmetry breaking under high pressure. Natoli
et al.11 treated both electrons and protons with quantum Monte
Carlo methods; their simulations were, however, performed with
trial wavefunctions based on the fixed static configuration of the
protons, and were restricted to the molecules centred on the
hexagonal close packed (h.c.p.) lattice sites.

The first-principles path-integral molecular dynamics (FP-
PIMD) method enables us to incorporate quantum-mechanical
properties of protons in conventional Car–Parrinello-type first-
principles simulations. The basic formalism was first presented by
Marx and Parrinello12. Recently this scheme was further developed
by the present authors10, and we use this in the present study. We
consider a supercell containing N (= 64) atoms, which is subject to
the periodic boundary conditions. To represent the quantum
properties of protons in the path-integral formalism, imaginary
time b~ (where b is the inverse temperature in units of Boltzmann
constant) is divided into P finite time slices; each proton is thus
represented by a polymer consisting of P ‘beads’ interacting via
intrapolymeric harmonic forces13. Exchange effects between pro-
tons are neglected in this study. Assuming the Born–Oppenheimer
approximation, interatomic forces between protons at each atomic
configuration and at each time slice are determined by electronic-
structure calculation based on the density-functional theory (DFT).
The resultant classical system of NP particles is simulated by
molecular dynamics (MD) at constant volume and temperature
with the aid of the Nosé–Hoover chain thermostat14. In the
evaluation of the exchange-correlation potential in the DFT calcu-
lation, we adopt the generalized gradient approximation (GGA)15.
The interaction between a proton and an electron has been
described by the norm-conserving non-local pseudopotential of
the Troullier–Martins type16; the electronic wavefunctions have
been expanded in plane waves with a cut-off energy of 50 Ry.
Integration over the first Brillouin zone has been achieved by
sampling 8 uniform k-points. Energy eigenvalues of the lowest 32
occupied bands have been explicitly calculated, since the system
should remain an insulator in the relevant pressure range1. The
ground-state electron density has been obtained by minimizing the
total energy functional through the conjugated-gradient method17.
We have verified, through static DFT calculations with these
parameter conditions, that the potential energy surface associated
with molecular rotation in the Pca21 structure obtained earlier by

x

y

ϕ

Figure 1 Illustration of the Pca21 structure projected onto the x–y plane. Thick arrows
represent molecules on the a-plane and thin arrows depict those on the b-plane, both
pointing towards the positive-z hemisphere. These two planes are apart from each other
by c/2 in the z-direction. The quantity v measures the angle between a molecular axis and
the c(z )-axis of the crystal: J is the corresponding azimuthal angle. The Cmc 21 structure
is obtained by setting J ¼ 908.
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