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INTRODUCTION 

HE RAMSEY TECHNIQUE [ 11 of separated oscillat- T ing fields for atomic beam spectroscopy is widely used in 
atomic frequency standards, specifically in the cesium beam 
standard which forms the present basis for the definition of 
frequency and time interval. The technique offers the advan- 
tages of narrow linewidth, relative freedom from first-order 
Doppler effects, relaxation of certain constraints on field 
homogeneity in the drift region, and relative ease of 
implementation. 

A difference 6 in the phase of the interrogating RF signals 
as experienced by the atomic beam in the two Ramsey 
interaction regions leads to a displacement of the maximum 
transition probability from the true atomic resonance 
frequency by - 6 / ( T )  where ( T )  represents the average 
flight time between the interaction regions. Care in fabrica- 
tion and assembly of atomic beam apparatus may reduce 
but cannot ultimately eliminate this source of error. Beam 
reversal, a procedure which is only practical for laboratory 
devices, yields information on the value of 6, but the 
accuracy of this technique is limited by a similar effect, that 
of “distributed” phase error, which occurs as a result of a 
phase change across the transverse dimension ofthe interac- 
tion region. This latter effect is much less tractable in 
analytical treatment [2]. These two effects are presently the 
most serious source of uncertainty in the evaluation of 
primary frequency standards. In NBS 6, the IJ.S. primary 
cesium frequency standard, phase-shift effects limit the 
accuracy to - 10-13. The long-term stability ( -  
may also be limited by phase-shift effects. In commercial 
cesium standards phase-shift effects may be major contribu- 
tors to inaccuracy and long-term drift. 

We are attacking the phase-shift problem by relaxing the 
constraint 6 = 0 and allowing the relative phase of the two 
interaction regions to advance (or recede) at a constant rate 
[3]. This will be implemented by driving the two spatially 
separated cavities each with a different frequency near the 
cesium atomic resonance. Fig. 1 depicts such an interroga- 

, tion scheme. The transition probability of an atom travers- 
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ing such a configuration depends upon the relative R F  
phases encountered by the atom in the two field regions. In 
the two-frequency configuration, the relative phase of the 
two RF regions is a time varying parameter due to the offset 
(in frequency) of the two RF signals. The phase difference, as 
observed by the atoms, is thus also time varying producing a 
time varying transition probability whose magnitude is 
unaffected by the initial relative phase of the two RF signals. 

The accuracy with which the atomic resonance may be 
measured thus does not depend upon the ability of the 
experimenter to set and maintain a static value of phase 
between the two RF regions (as in the single-frequency 
Ramsey configuration). 

Detection of the atomic line center does require some 
special techniques, however. We consider below the theory 
of two-frequency atomic beam interrogation and the specific 
requirements for accurately measuring the atomic line 
center. 

THEORY 
The transition probability for an atom experiencing two 

separated RF fields of frequency w 1  and w 2  near the atomic 
resonant frequency w,, and separated from each other in 
frequency by 2R (2R = w 2  - wl;  R may be negative), may 
be developed directly without approximation from the 
time-dependent Schrodinger equation as in Ramsey’s treat- 
ment [ 13. For an atom arriving at the detector at time t (see 
Fig. 1) the transition probability is 

P(r) = A,, + B ,  cos 2Rt - Co sin 2Rt (1) 

where 
1 5  

A ,  = k ,  cos m,T (2) 
r = l l  

10 

B ,  = k ,  cos (m, T + 6,) (3)  

C, = k ,  sin (m, T + 6,) (4) 

r =  1 

10 

I.= 1 

where coefficients k and m are given in Table I ;  T i s  the time 
of flight between interaction regions, and 6, is the phase lead 
of the signal in cavity 2 with respect to the signal in cavity 1 
at t = 0. It is convenient to define frequencies with respect to 
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Fig. 1. Timing chart for atoms arriving at detector at time t. 
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the atomic resonance: I, = o, - oo. (Note that this differs 
in sign from [l].) We also construct the average frequency 
X = *(Al + 1’). These defining relationships are included in 
Table I. 

The signal of interest is the envelope of P ( t )  which may be 
generated analytically by the appropriate velocity and 
trajectory averages 

8’ = (Bo)’ + (C,)’. ( 5 )  
For the near resonance condition A , 4  2b, (see Table I), (3) 
and (4) may be simplified to yield 

Bo = X sin (yT + 6,) + Y cos (yT + 6,) 
Co = Y sin (yT + 6,) - X cos (yT + 6,) 

(6) 

(7) 

(8) 
4X 
b 

X = - sin (qT)(cos (qT) - 1) 

Y = (cos (qT) - 1) 

(COS (qT) - 1) - 4(COS (VT) + I )  (9) I . -  
[a’; I’ 

where X is the average offset frequency 

- 0 0  = +(Al + A,) 0 1  + 0 2  

2 
X =  

and 2R is the difference frequency. y is a frequency 
y = (2p + 1 p  - 2 ;  p = (I, + D)/L which in the limits of 
R = 0 (conventional single-frequency two-cavity Ramsey 
configuration) becomes 1, the offset of the interrogating 
signal from resonance. q is a factor relating to interrogating 
power level and is defined in Table I. Note that y is related to 
system geometry through the parameter p. 

Neglecting, for the moment, the possible effects of differ- 
ent atomic trajectories (causing a spatial dependence of the 
cavity phase shift), we may form the velocity averaged 
functions (Bo)’ and (C,)’ to generate an expression for the 
envelope 

+ cO(TA)cO(TB)} dTA dTB (lo) 

where pA and pB denote the distribution of periods TA and TB 
appropriate for the atomic beam velocity distribution. Alge- 
braic manipulation of (6), (7), and (10) reveal that, at this 
level of approximation, d is independent of do, the cavity 
phase shift. This is a result of the absence of trajectory 
averaging (see below). Equation (10) may be easily eval- 
uated for effusive beam velocity distributions using the 
functions Z(x) and K ( x )  of Kruse and Ramsey [4]. The 
largest term in this expression is (recall the assumption 
1 4 b) 

&(Y) = {I(yL/a) - I ( Y W  + 4 b W  
- Z(yL/a - 4bl/a)}’ 

+ {K(yL/a)  - K(yL/a + 4bI/a) 

- K ( y 4 a  - 4bI/a)}’ (11) 
where tl is the characteristic velocity of the distribution. The 
two squared terms in (11) are the normal Ramsey spectral 
shapes for zero and n/2 phase difference between the two 
interaction regions (see [I, eqs. (V.46) and (V.4711). Opti- 
mum power occurs for 4bl/a = 1 . 2 ~  as in the single- 
frequency separated oscillatory fields technique. Fig. 2 
shows the two Ramsey curves and the envelope generated by 
scanning X. 

Consideration of (10) reveals that 8: is symmetric about 
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Fig. 2. Ramsey spectral shapes for zero and n/2 phase difference and the 
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Fig. 3. Envelope intensity versus average frequency. 

y = 0 [ y  = (2p + 1)n -'XI. Assuming, for the moment, 
p = 0 (which is equivalent to instantaneous detection at the 
second cavity), maximum signal occurs for no offset in cavity 
1 (I, = 0, I, = 2R). This maximum may be understood 
from the following classical argument. Atoms passing 
through cavity 1 are prepared, in a sense, by exposure to 
radiation in that cavity. If cavity 1 is driven at the atoms' 
resonant frequency wo = (wg - W,)/h the individual pre- 
cessions of all atoms remain in phase with the radiation 
in cavity 1 as these atoms drift through the C-field region. 
Atoms entering cavity 2 at a particular instant are all in 
phase with cavity 1 (regardless of when they left cavity 1); as 
a consequence, the relative phase of the two fields as seen by 
the atoms is the same for all atoms in cavity 2 at any given 
instant. The phase difference as observed by the atoms 

entering cavity 2 at a given instant is thus not a function of 
the atoms' velocities (nor times of flight) but is a function of 
time through the time varying phase between cavities 1 and 
2: 6 ( t )  = 6, + 2Rt. Any configuration in which cavity 1 is off 
resonance produces a phase shift (as seen by the atoms) 
which is velocity dependent and must thereby result in 
reduced signal at the detector. 

Returning to the case p # 0, Fig. 3 shows the expected 
envelope generated from an effusive beam (see (20)) experi- 
ment where the average frequency X is swept (since A I ,  I,, 
and y are additively related to 1, they are also swept) and 2R, 
the cavity difference frequency, is held constant at 
2R = 4a/L (This choice for 2R is discussed below.) The 
parameter p has been arbitrarily chosen to be 0.25. Note that 
the envelope peak occurs for X = (2p + 1)n (equivalently 
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y = 0,2, = 2 4 ,  A 2  = 2R(p + 1)). Also shown in Fig. 3 is the 
normal single-frequency Ramsey spectrum which would be 
produced in the same experimental configuration for R = 0 
(assuming cavity phase shift is zero). Examination of higher 
order terms in (5)-(9) reveal a small envelope antisymmetry 
(about y = 0) of order R/b. This is not shown in Fig. 3. The 
curve described above is not a suitable reference for an 
atomic frequency standard due to the imprecision' of the 
quantity p. 

A more comprehensive examination of ( lk(4)  is neces- 
sary to fully investigate other envelope symmetries and to 
consider the effects of beam trajectory averaging. As in ( 5 )  
we form 

where ( ) denotes an average over velocity and over 
trajectory. More explicitly 

a2(X, 0) = dPc dPD .. 11 d7.4 ~ T B P A C P B D  

1 0  10 

. 1 1 krCksD cos (mrCTA - m ~ D T B  + 6C - (13) 
r = l  s = l  

where Pc, PDare a pair of parameter vectors describing pairs 
of detectable trajectories and TA, 7'' cover all pairs of 
velocities, the functional notation being p( TA, Pc) = p Ac, 
kr(Pc) = krc, S(P,) = Sc, etc. We assume P = P,  0 P2 
describes the intercavity trajectory using coordinates P,  in 
cavity j. Note that the phase difference of different trajec- 
tories C,  D is equivalent to the distributed phase difference 
for the two cavities 1, 2 

SC - 6 D  = ( 4 ( p 2 C )  - 4 ( p l C ) )  - (4(p2D) - 4 ( p l D ) )  

Ac,. (14) 

Assuming A C D  4 1, (13) becomes 

10 

1 krC ksD{cos (mrC TA - msD TB)  
r.s= 1 

- ACD sin (mrC TA - msD &)}. (15) 

One concludes from (15) that d is independent of do, the 
initial cavity-to-cavity phase shift, but 8 does depend upon 
the distributed cavity phase shift. 

Note, in Table I, that the operation I@-+ - 1; R ---t - 0) 
preserves A:, ai, and S j  while changing the sign of A j ,  7, and C j  
(assuming bj independent of A j  to first order). As for k and m 

k ~ r -  I " k 2 r  (16) 

is unchanged, while 
10 

C k r c k s D ( - A c D )  sin (%CTA - ~ S D T B )  (19) 
r,s = 1 

changes sign. Thus the envelope 8' of (15) contains a term 
symmetric under'x (18) and a term antisymmetric under x 
(19). The latter term, which represents the effects of dis- 
tributed cavity phase shift, is generally small and under 
certain conditions described below can be made to vanish. 

As demonstrated above, the cavity-to-cavity phase shift 
error can be eliminated by the two-frequency separated 
oscillating fields technique. Potentially, the distributed 
cavity phase shift error may also be eliminated through the 
use of atomic beams which are isotropic with respect to 
velocity distribution shape. In other words, if the trajectories 
(of any detected atoms) exhibit the same velocity distribu- 
tion shape, though the amplitudes may vary, the bias of Aco 
vanishes @.e., p( T, P )  = p( T)p(P)). It should be noted that in 
the single-frequency separated fields configuration elimina- 
tion of the errors of cavity phase shift is not possible via a 
beam with isotropic velocity distribution. Even without 
isotropic velocity distributions, the two-frequency tech- 
nique reduces the distributed cavity phase error from one 
depending directly on spatial velocity distributions to one 
depending upon differences in velocity distribution. 

Neglecting, for the moment, the effects of distributed 
cavity phase, we may generate the expected envelope as a 
function of X for the two signs of R (Fig. 4). As in Fig. 3, we 
choose 2R = 4a/L and arbitrarily set p = 0.25. The envelope 
antisymmetry, mentioned above, is highly exaggerated for 
clarity. In most experiments, the antisymmetric term would 
be quite small (of the order R/b = lo-'). Sign reversal of R 
produces a mirror imaged curve (about X = 0). A simultan- 
eous reversal of the sign of X and R produces 1, a useful and 
symmetric modulation. 

DISCUSSION 
As shown above, the effect ofdistributed cavity phase shift 

may be removed to the extent that beam trajectory is not 
velocity selective. Atomic beam frequency standards 
universally employ magnetic deflection to achieve state 
selection, a process which has many aspects detrimental to 
the formation of isotropic beams. Optical state selection [5 ]  
and detection may be an attractive solution to this problem. 

Another benefit is derived from the two-frequency inter- 
rogation technique. The useful signal at the detector occurs 
at 2 0  and arises from atoms undergoing transition in both 
cavities. Baseline pulling by the broad Rabi pedestals which 
are present in single-frequency separated oscillatory fields 
configurations is much less of a consideration. Although 
other effects (Majorana transitions, quantum state mixing, 
etc.) must be considered, it may be possible to significantly 
reduce the C-field magnitude. This would result in decreased 
sensitivity of the M ,  = 0 transition to magnetic-field fluctu- 
ations (since its sensitivity is proportional to H2). 

The Ramsey envelope exhibits symmetry for the opera- 
tion x :  (1- -1; R +  -R) as shown above. Using the 
operation x as a modulation allows one to find the atomic 
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Fig 4. Envelope intensity including antisymmetry (exaggerated) for 
both signs of S l  

resonance center. To show that this is true, consider the 
example of an experimental configuration. We desire to 
attain the following (assume R > 0): 

A, = o  

and 
A1 = -2R 

x =  -a 
A1 is generated with reference to A,. The sign of X and Rmay 
both be changed by referencing A1 above A, by 2R. The 
envelope amplitude is unchanged by such an operation. On 
the other hand, if A, is in error, i.e., is not centered on the 
atomic resonance, referencing A, above and below A 2  by 2R 
does not produce x ,  the envelope is not constant and an error 
signal may be generated to correct A,. 

The calculations above and the envelope of Fig. 2 are 
characteristic of effusive beam velocity distributions 

p z ( ~ / a ) ~ e - ~ ~ / ~ * .  (20) 

The envelope shape would, of course, vary for different 
distributions; more narrow for broad velocity distributions 
and conversely. In light of the difficulty of producing beams 
with isotropic velocity aistributions, the effusive distribu- 
tion is probably the most applicable. 

As shown in Fig. 2 the envelope has maximum slope at 
y 4 a  = 4. For A = - 20, A, = 0 we may solve for a reason- 
able value of 2R 

2R N 4a/L 

which is approximately equal to the normal Ramsey 
linewidth. 

Due to the reduced signal slope, short-term stability of an 
atomic frequency standard employing the two-frequency 
technique will be somewhat worse than in the single- 
frequency configuration under similar experimental condi- 

Fig. 5. Experimentally generated envelope. 

tions (beam current, I!, etc.). From Fig. 2, which depicts 
signals from an effusive velocity distribution, we may esti- 
mate the degradation to be approximately a factor of two to 
three. Elimination of the errors associated with cavity phase 
shift allows the use of broader (and thus more intense) 
beams, thereby permitting some recovery of this lost 
performance. 

It is of some interest to extrapolate tne performance of 
the primary standard NBS 6 to include the two-frequency 
separated oscillating fields technique. Removal of the cavity 
phase shift (and its uncertainty) [6] and elimination of 
baseline pulling by adjacent Rabi features reduces the 
uncertainties in accuracy to the level of N 10- 14. Short-term 
performance could be expected to deteriorate from its 
present level of 0 = 7 x to approximately 

An experimental program is currently under way at NBS 
to investigate the potential of the two-frequency separated 
oscillatory fields technique. A commercial cesium beam tube 
has been modified to operate with two separate frequencies. 
Conventional magnetic state selection is being retained for 
the initial stages of this experiment. Fig. 5 shows a generated 
envelope for the M ,  = 0 transition. Normal linewidth for 
this device in the single-frequency Ramsey configuration is 
approximately 350 Hz. 

CONCLUSIONS 
The two-frequency separated oscillatory field technique 

has the potential to remove the cavity phase-shift error 
which is the most serious source of error in atomic beam 
frequency standards. With proper beam source and state 
selector design, the distributed phase-shift error may like- 
wise be eliminated. Increased stability through reduced 
magnetic sensitivity is also a potential benefit of this tech- 
nique. However, these benefits will not be attained without 
a small tradeoff in terms of short-term stability. 

OY = 2 x 10-1,r-1J. 
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