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Abstract 
We illustrate the general methods for applying relativistic corrections needed by a GPS 
receiver in providing time or position to a user. We focus on estimating the time interval it 
takes for GPS signals to propagate from the transmitter to the receiver, the geometric range 
delay. We present a few cases which apply to many common uses of GPS. The most 
common case for positioning is illustrated numerically. 

INTRODUCTION 
A GPS receiver needs to make two corrections that are related to relativity in order to provide time or position 
to a user. We discuss these c o d o m  and focus mostly on estimating the geometric range delay, AtD, the time 
for GPS signals to propagate from the transmitter to the receiver. Proper estimation of AtD is essential for 
solving for position or time. This is an application of the relativistic principle of the constancy of the velocity 
of light which states that electromagnetic signals travel in Euclidean straight lines with velocity c relative to 
an inertial reference frame. We present a few cases which apply to many common uses of GPS. The case 
where measurements of satellite signals are time-tagged at the receiver for positioning, probably the most 
common GPS application, is illustrated numerically. 

The theory behind corrections is presented with references given for any derivations not done here. Through 
our theoretical discussion we show that the Interface Control Document (ICD-GPS-200) specifications, as 
issued by the Joint Program Office of the Global Positioning System [l], consistently cover the requirements 
of relativity down to the sub-nanosecond level for time. We respond to questions in the literature [2,3] as to 
whether the ICD specifications include relativity corrections with enough accuracy for certain applications. 
In particular we discuss the relativistic Doppler effect, the formula for its instantaneous magnitude, and its 
relationship mith typical GPS receiver operation. We also address the use of camer-phase measurements, 
which is not discussed in the ICD. 

THEORY 
Generally, a GPS navigation user measures the arrival times, on a local clock, of timing signals from at least 
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four different satellites, then solves for four unknowns: user position x,y,z and the receiver clock offset fiom 
GPS time t .  The signals from the satellites can be thought of effectively as continuous timing signals from the 
satellite clocks arriving at the receiver. The receiver has its own local clock for comparison. The user 
measures either I) the times in the received timing signals at a specific local clock time, or 2) the arrival times 
on the local clock of a specific time-tag in the received timing signals. The reception time (according to the 
local clock) minus the transmission time at one satellite (according to GPS time) is called thepseudorange. 
These pseudoranges are used to solve for user position and time. 

For the ordmary user of broadcast ephemerides, there are two and only two relativistic effects that must be 
considered. First, the receiver must apply a correction to the transmitted time to account for relativistic effects 
arising from orbit eccentricity of the transmitting satellite. This is the A6 term defined in the ICD. Second, 
the finite and universally constant speed c of signals propagating from transmitter to receiver, relative to an 
inertial frame (the geometric path delay), must be accounted for. 

RELEVANT RELATIVITY 
Three effects in relativity are germane to GPS. Rates of clocks in GPS are adjusted (as for International 
Atomic Time) to match the rate that clocks would run on the geoid of the earth. This is a surface of 
gravitational equipotential in the rotating frame in which the effects 2) and 3) below add to a constant value. 
The relativity effects are as follows. 

1) GPS time is defined using the principle of the constancy of c to synchronize an imagined system of clocks 
everywhere in space in the neighborhood of the earth (Einstein synchronization). GPS satellite clocks are in 
principle adjusted to agree with this imagined system of clocks. This network of synchronized GPS clocks 
realize a coordinate time. This definition of GPS time requires a locally inertial coordinate system. GPS time 
is thus dehed relative to an &-centered inertial coordinate system (an ECI), but the rate is set to match the 
rate at which clocks would run on the geoid. An ECI is also used to simplify the paths of signals propagating 
from satellites, since they move in Euclidean straight lines at the velocity c in vacuum relative to such inertial 
frames. 

2) A clock moving with respect to an ECI runs slower relative to coordinate time than if it were at rest in the 
ECI. This is the time dilation effect due to the magnitude of the relative velocity, sometimes called the second- 
order Doppler effect. For satellites in GPS orbits, the fr-actio~l frequency offset needed to compensate for this 
is approximately +8.3-10-” relative to the rate of clocks on the earth’s geoid. 

3) A clock in a lower gravitational potential runs slower relative to coordinate time than if it were at rest in 
a higher potential. This is called the gravitational red shift. Thus, standard clocks closer to the earth run 
slower than standard clocks farther away, since the potential becomes more negative closer to the earth. Clocks 
on GPS satellites need to be adjusted by about -5.3.10-’0 relative to the earth’s geoid, to compensate for this 
effect. 

Atomic clocks in GPS satellites are given a fixed rate offset of -4.4645*10’0 as a consequence of the 
requirement that GPS satellite clocks run at the rate that a standard clock on the geoid would run, and of the 
relativistic effects in 2) and 3) for circular orbits. These three relativistic effects explain the reasons for the , 



two corrections the user must apply. The first relativity correction is the At, term defined in the ICD. This 
term corrects the satellite vehicle (SV) clock offset due to any eccentricity in GPS orbits. Eccentricity produces 
frequency offsets from the nominal fixed rate offset of -4.4645.10-’0 due to the combined effects of 2) and 3) 
on the SV clock rate. The second correction applies to users’ estimates of the geometric range delay, the time 
delay from the transmitter to the receiver if the signal traveled in vacuum. This is most easily calculated in an 
ECI where signals travel in Euclidean straight lines at the speed of light, the constant c. 

There can be many ECI coordinate systems, differing by constant spatial rotations from each other, which serve 
these purposes. All frames with the same origin at the earth’s center, and non-rotating with respect to the 
“fixed” stars, will define simultaneity in the same way. AI1 such frames are equivalent for determining the 
propagation delay. Yet users need to reference their positions to the earth. Satellites broadcast their positions 
relative to an earthantered, earth-ked coordinate system (an ECEF), the WGS-84 coordinate system. Users 
fixed on the earth often know their coordinates as constants in the ECEF frame. 

USER CORRECTIONS 
At any arbitrarily chosen instant the ECEF frame coincides with an ECI frame having identical x-, y-, and 
z-axes, but not rotating. Removing the rotation of the earth from the ECEF defines a coordinate system that 
is close enough to an inertial frame to serve for estimating the path delay. As time passes the ECEF system 
rotates, while this ECI system remains behind, so to speak. Any such coordinate system may serve as an ECI 
for estimating geometric range by using the Euclidean distance between the coordinates in the ECI of the 
satellite at transmission and the coordmates of reception. The time for the signal to travel this path, the 
geometric path delay, may be estimated as the geometric range divided by the defined velocity of light, c, to 
better than 200 ps [4]. 

The principle of the constancy of the speed of light in an inertial frame requires that an ECI be used for 
geometric path delay if it is calculated by dividing the Euclidean distance by c. Using such an ECI greatly 
simplifies the problem of solving for a GPS user’s position or time. Whereas GPS is intended to provide users 
with their position or bine in the ECEF system, if we use those coordinates for geometric range with the simple 
Euclidean distance metric and divide by c to obtain geometric path delay, we will make significant errors. 

In general, a navigation solution requires pseudo-range measurements to at least four satellites. These are used 
to obtain geometric range delay estimates, which in turn are used to solve for position. To use the simplicity 
of the Euclidean distance metric that comes with an ECI, all satellite positions at the transmission epochs must 
be transformed into the common ECI h e .  The user may then solve for the receiver position in this coordinate 
fi-ame, and for the GPS time, t ,  corresponding to this solution. Finally, the user must find the receiver 
coordinates in the ECEF at the GPS time t by accounting for the rotation of the ECEF between the chosen 
moment tc at which the ECI fiame is defined, and the GPS time t. 

With a receiver using four satellites we generally have five different times of interest as candidates for tc: either 
a single GPS transmission time and four different reception times (time tagging at transmission time), or a 
slngle reception time and four different transmission times (time tagging at reception time). In any case an ECI 
fi-ame can always be found which coincides with the ECEF frame at a chosen instant of time, and in this sense 
the ECEF can determine an inertial coordinate system. This answers the need for a coordinate system in which 
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the speed of light is c in vacuum during the transmission of the signals, and in which all the GPS satellite clocks 
can in principle be synchronized. We will give a number of examples below for using this general prescription. 
Our focus here will remain on relativistic corrections for GPS users. We do not consider corrections for 

non-relativistic delays: ionospheric plasma delays, tropospheric delays due to water vapor, multipath 
interference, or receiver system delays. Non-relativistic delays must certainly be accounted for; however here 
our topic is relativity. 

DOPPLER EFFECT 
A receiver system that uses the instantaneous Doppler shift of the received canier signal must also correct for 
the frequency shift of the received signal within the framework of relativity. As the true range between the 
satellite and receiver changes due to relative motion, the carrier frequency changes due to the Doppler effect. 
The relationship between the received frequency F, and the transmitted frequency, the proper fiequencyf; is 
[4,5,6,71: 

’ f = F  
,m( 1-5)’ 

. . .  

’ f = F  
,m( 1-5)’ 

where 
v = transmitter velocity in ECI coordinates, 
V = receiver velocity in ECI coordinates, 
N = ECI unit vector in the direction of propagation of the signal, and 

1 
Y(V)= 

The change in frequency is closely related to the rate of change of range. In fact the relativistic Doppler 
frequency shift equation can be derived by differentiating the geometric path delay [4,6]. This proves the 
conceptual equivalence, within the h e w o r k  of Special and General Relativity, of the methods of pseudorauge 
(to obtain an instantaneous position solution) and integrated Doppler frequency (to obtain changes in position). 
A user of integrated Doppler frequency can account for the relativistic Doppler shift by accounting for the 
geometric path delay. 

THE ROTATION MATRIX 
Almost always the user of the broadcast ephemerides will want to use coordinate transformations which 

correspond to rotations of the coordinate system about the z-axis. For convenience we write out here an 
example of such a rotation matrix. Consider an ECI h e  with z-axis which coincides with the WGS-84 axis. 
Let the position coordinates of some point of interest in these ECI coordinates be denoted by 
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Suppose that the ECI axes coincide with the ECEF axes at the time tc. The angle through which the ECEF 
coordinates rotate relative to the ECI during the time interval t-t, is 

0 = i2,(t-tc), 
where: 

fie = 7.292115.10-5 rad/s, 
the WGS84 earth rotation rate. 

(4) 

The time interval t-tc must be small since the earth rotation rate varies. With t-t, as large as 3 s, errors no 
larger than 0.05 mm are introduced [4]. With this rotation, the point denoted X& in ECI coordmates has 
coordinates in the ECEF of 

where @ is the sidereal rotation matrix. This is an example of a “passive” rotation, a rotation of the coordinate 
axes keeping physical position vectors unchanged. 

CASES 
Generally, a GPS navigation user measures the amval times of signals from four dfferent satellites, and uses 
them to solve for four unknowns: position x,y,z and time t. A common way of doing so is to make the four 
measurements at one instant at the receiver (“time-tagging at the receiver”). A less common method is to use 
signals which left the satellites at a common GPS time (“time-tagging at the transmitters”). The latter method 
is more complex both because the signals are not received simultaneously, and because the clocks on the 
satellites are synchronized for the user by adding a transmitted clock correction. The clocks themselves may 
differ by no more than 1 ms [ 13. Thus we must account both for the motion of the user during the intervals 
between transmission and reception, and the differences in transmission time of a common GPS time due to 
clock offsets from system time. 

TIME-TAGGING AT THE RECEIVER: GENERAL PRESCRIPTION 
1. At a chosen reception time, measure the transmission times using the received pseudo-random noise (PRN) 
d e s  fiom four satellites. This gives us the time tsv according to the SV clock at transmission for the signals 
received at the chosen reception time. 

We need the GPS time of transmission for each satellite and the common reception time according to 
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the (possibly biased) local clock. We obtain the time of reception from our local clock. The 
transmission time is ended in the received signal. Since we are locked to the code, we can determine 
the offset of the locally generated PRN sequence required to maintain lock. 

2.  Apply the prescription for corrections to obtain GPS system time t of Table 20-lV, at transmission. 
This includes the ecCentricity correction, AC from section 20.3.3.3.3.1, an effect due to relativity. At, 
is a correction which applies to the SV clock; it is the same correction no matter where the receiver 
is or how the receiver is moving. The value of At, will generally be different for the clocks in different 
satellites. 

3. Compute each satellite's position in the ECEF at its transmission time. 
This is a straightforward application of the equations of Table 20-N for determining the x-, y-, z- 
coordinates of the satellite at the instant of transmission. Note that the broadcast message gives the 
satellite positions in ECEF coordinates-specifically in the WGS84 reference frame. 

4. Choose an ECI frame for computation of the path delays. 
This choice is arbitrary, but some choices are more convenient than others. Simplification may 
sometimes occur if the choice is appropriately made. A natural choice for the case of time-tagging at 
the receiver is the GPS time equal to the local clock time of reception. 

5 .  Transform the ECEF coordinates of each SV obtained in step 3 into the chosen ECI. 
This will normally require at least three, and perhaps four, of such ECEF position vectors to be 
rotated. We may freeze the ECEF at any instant to define an earth-centered inertial system. If we 
choose the GPS time equal to the local clock's reception time, the later corrections may be small. If 
the local clock is sufljciently close to GPS time at the instant of reception, then the last step below, 7, 
would not need to be done. Alternatively we might choose an ECI frame which matches the ECEF 
frame at the instant of transmission from one of the satellites. 

6. Solve the path delay equations for the receiver's position and time. 
This can be done by linearizing the propagation delay equations and solving them iteratively. Note that 
other contributions to path delay, ionospheric and tropospheric delays, should be incorporated in this 
process. We use an initial estimate of position to solve for the linearized corrections to receiver 
position and the time offset. If these corrections are not small enough for the user, they may be used 
to obtain a next edmate of position and time. This, in turn, may be used to obtain the next linearized 
correction for position and time offset. 

7. Rotate the user's position coordinates into the ECEF reference frame. 
After finding the user's position in the chosen ECI coordinate system and the correct GPS system t h e ,  
the receiver's ECI position coordinates are rotated into the ECEF reference frame at the instant 
corresponding to the measured reception time. 

TIME-TAGGING AT THE TRANSMITTER: GENERAL PRESCRIPTION 
Let us now consider time-tagging at the transmitter with four satellites. This approach requires an estimate 
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of velocity and' perhaps acceleration over the interval of signal reception. If all signals leave satellites 
simultaneously With respect to the ECEF, most users Will receive these signals within a 100 ms interval. For 
most users acceleration will contribute negligibly. We parallel the seven steps above. 

1. Measure the time on the local clock at the reception of a given GPS time from each of four satellites. 
Each SV clock is generally offset from each other and from GPS time. We measure the time of 
reception of a given epoch in the code from each satellite. This, then, needs to be corrected according 
to the ICD by the relativistic correction A6 and the broadcast second-order polynomial correction for 
the SV clock offset from GPS time. 

2. Apply the prescription for corrections to obtain GPS system time t of Table 20-N at transmission. 
The difference here from example A is that the GPS system time t will be the same for the clocks in 
all satellites. 

3. Compute each satellite's position in the ECEF at its transmission time. 
This is a straightforward application of the equations of Table 20-N, for determining the x-, y-, z- 
coordinates of the satellite at the instant of transmission. 

4. Choose an ECI frame for computation of the one-way light times. 
In this case the natural choice is to freeze the ECEF at the GPS transmission time, t .  Note that the 
actual time of transmission will differ for each satellite, since it is determined by the SV clocks. The 
difference will be less than 1 ms. 

5 .  Ifthe ECI is defined by freezing the ECEF at GPS transmissi'on time, the coordinates of each satellite will 
need to be rotated due to the time offset, Atsv, of the SV clock from GPS time. We also need to transform the 
estimated receiver positions at the arrival times,into the ECI. 

We may use a deterministic estimate of the change in receiver position over the reception interval. 
Since this model is usually a velocity, we will refer to it that way here for simplicity. This velocity 
estimate does not change during the solution of user position and time. It is necessary to obtain the 
velocity estimate in the coordinates of the chosen ECI. Now we may rotate the estimated user 
coordinates into the chosen ECI at the first instant of reception, and use the velocity to extend to the 
other reception times. We assume the user clock offset from GPS time is constant over the interval 
of reception. 

6. Solve the equations for the geometric path delays to find the receiver's position and time offset at a specific 
time. 

Again we linearize the propagation delay equations and solve them iteratively. We may iterate to find 
the position at the first reception time, using the velocity estimate to extend to the other reception times. 
This iteration is similar to step 6 in the of time-tagging at the receiver example. 

7. Rotate the user's position coordinates into the ECEF reference frame for each of the reception times. 
If we have chosen the ECI coordinate system coinciding with the ECEF at the transmission time, we 
will most certainly have to perform these h a 1  rotations. For, the reception times will be at least of 
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order 100 ms from the transmission time, and the ECEF will have changed significantly. We could 
pedorm only one rotation for the user position at the first reception time if we have the velocity vector 
in the ECEF as well as in the ECI. We could then use the ECEF velocity to obtain the coordinates for 
the other positions. 

It would be possible to update the velocity estimate using positions obtained from two transmission time tags. 
This leads into other concerns and options associated with using GPS: filtering estimates over time. 
Techniques for e&"g position, velocity, and acceleration could be coupled with strategies for filtering these 
estimates over time. We will not discuss these options here. We will mention, however, that if there are 
infrequent measurements of GPS signals fiom individual satellites, the local clock may be used to flywheel 
between them and jind a solution. This may require car& filtering algorithms for estimation of the local clock 
frequency. In particular, relativistic effects on the local clock frequency due to velocity or gravitational 
potential may have to be considered. 

GPS TIME TRANSFER WlTH POSITION KNOWN 
In this case we may use each pseudo-range measurement from each satellite separately to estimate our clock 
of€& from GPS time. We either time-tag measurements at a transmission time and measure time of reception, 
or time-tag measurements at a reception time and determine time of transmission from the code lock of the 
receiver. We then use the prescriptions from Table 20-N to obtain the satellite position in the ECEF. We 
must edmate the geometric path delay At,, in addition to the ionospheric and tropospheric corrections. Since 
we know the receiver position we may compute AtD as follows. 

If ECI position vectors are referenced to the time of signal transmission, then 

where: 
r is the SV position vector, 
R is the receiver position vector, 
tT and tR are GPS time at respectively transmit and receive times, and 
V is the receiver velocity vector in the ECI. 

In the case of an earth-fixed user, 

V = axR. (7) 

If ECI position vectors are referenced to the time of signal reception (instead of satellite transmission time), 
then 
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where v is the satellite velocity vector in the ECI. 

EXAMPLE: MULTI-CHANNEL RECEIVER, TIME-TAGGING AT THE RECEIVER 
In this example we simulate a navigation solution using an example receiver position and data from the GPS 
constellation as it was late 1995. We choose four satellites from this constellation in view from our receiver 
location with elevations above 20 ". Suppose the receiver is truly at ECEF latitude and longitude 35 ON, 0 "E, 
with elevation on the reference ellipsoid, and the operator desires to make a measurement of position and GPS 
time at t=37 240.000 000 000 0 s of the week. 

The receiver ECEF coordinates at this instant will be 

\R cos35"] 15 224 663.389 m] 

658 348.690 m 
(9) 

where R=6378136.300 m. Such accuracy is not justified, but we are giving positions to a millimeter so that 
the convergence of the algorithms can be checked. The actual position is given here for comparison with the 
navigation solution. 

We follow the step numbering from the cases section above, for this case. 
1. Suppose we already have the SV clock time tsv for the signals received at the chosen reception time. 

2. We apply the prescription from ICD-GPS-200 according to Section 20.3.3.3.3.1 describing the user 
algorithm, to obtain the system time t ,  for each satellite i, the GPS time of transmission. The relativistic 
eccentricity correction is part of this calculation. The subscript i is not used in the ICD, but is added here for 

3. We obtain the ECEF coordinates of the satellites from the prescriptions given in Table 20-Tv of the 
ICD-GPS-200. From the GPS h i e  t,, the time interval t k =  f-to, from ephemeris reference epoch is calculated. 
Then tk may then be used in the algorithm for computation of ephemerides. This gives the x- J- ,z-coordinates 
of the satellite, in the ECEF frame, at its transmission epoch. 

Table I gives the results after these steps. Note that in Table I, GPS system times t, rather than the time 
intervals t k =  t, - t, from ephemeris reference epoch, are used to label the events. The subscript i varying from 
1 to 4 labels data from the different satellites. 
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SV# Transmission Epoch ti xi Yi 

1 37 239.924 422 365 6 s 13 005 878.255 m 18 996 947.213 m 

2 37 239.920 713 391 8 s 20 451 225.952 m 16 359 086.310 m 

2, 

13 246 718.721 m 

-4 436 309.875 m 

5. We transform the coordinates in Table I into this ECI. The rotation matrix is different for each transmission 
epoch. To rotate fiom ECEF to ECI coordinates, the inverse of the rotation matrix of equation 5 is required. 
Thus we need @'(ti - tc)) -: which must be calculated and applied to the coordinates of each satellite 
individually. The subscriptj labels data fiom the different satellites after transforming to the chosen ECI. tj  
will be different for each satellite, but tc is the same for all satellites. We use a subscript C to indicate that the 
inertial system has been arbitrarily chosen. The results fiom transforming to the ECI frame are given in Table 
II. 

~ ~~ ~ 

3 

4 

37 239.925 307 870 0 s 

37 239.929 346 353 9 s 

20 983 704.633 m 

13 798 849.321 m 

15 906 974.416 m 

-8 706 113.822 m 

3 486 595.546 m 

20 959 777.407 m 

6. We now solve the equations for the geometric path delays simultaneously to solving for the receiver's 
position and time. The notation is as follows. The four GPS satellites, at GPS times $, send out signals from 
the ECI locations rj. These four signals are received simultaneously at GPS time t by a receiver at position 
R. The problem is to determine t and R at the receiver. The velocity of the receiver does not enter in the 
problem. The receiver's position R at the time of reception t will be determined by the solution of four 
equations which express the condition that the speed of propagation is c. The four equations to be solved are 

SV # Transmission Epoch t, xi YJ 

1 37 239.924 422 365 6 s 13 004 597.642 m 18 997 823.895 m 

2 37 239.920 713 391 8 s 20 450 127.566 m 16 360 459.358 m 

3 37 239.925 307 870 0 s 20 982 631.270 m 15 908 390.245 m 

4 37 239.929 346 353 9 s 13 799 439.294 m -8 705 178.668 m 

(R-rj)2 - c 2 ( t  - $)2 = 0; j = 1,2,3,4. 

'j  

13 246 718.721 m 

-4 436 309.875 m 

3 486 595.546 m 

20 959 777.407 m 
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However, if the position R and time t are known approximately, the equations can be reduced to a system of 
four linear equations which can be solved by standard matrix inversion techniques. These equations are derived 
in [4], and are 

In equation 11 , the quantity c(P- t,) is the i' estimate of the pseudorange from the receiver to the j" satellite, 
and Rfi' is the i' estimate of the receiver position in ECI coordinates. The equations (1 1) form a system of 
linear inhomogeneous equations in the corrections AR, At, which can be solved by matrix inversion. The 
matrix of coefficients of the unlcnowns dR, At will usually be nonsingular, unless the configuration of satellites 
is so unfavorable that the equations do not have a solution (it is possible for this to occur). The solutions 
obtained will be approximate, but can be used to obtain new trial values; the process of iteration can be 
repeated as many times as necessary to obtain the accuracy required. 

To illustrate this process in the present case, as our initial guess at receiver position we take a worst case and 
assume the receiver is at the center of the earth. Also, we do not know the receiver clock bias so we guess that 
the time at the reception event is the time of the first transmission event plus some reasonable estimate of the 
propagation delay. In this case we set t = t, + 0.075 00 s. Table I11 gives the results at each stage of the 
iteration. 

Table III. Results of Iterative Solution of Propagation I 
Trial # I userx-position I user y-position user z-position 

0 (start) t- 
1 2  

1 3  

1 4  

Om O m  

5 057 363.392 m 2 355.126 m 

5 226 931.551 m 354.224 m 

5 224 663.780 m 380.983 m 

5 224 663.374 m 380.988 m 

I 

Om 

3 541 092.792 m 

3 659 938.391 m 

3 658 348.973 m 

3 658 348.689 m 

5 5 224 663.374 m 380.988 m 3 658 348.689 m 

The position converges to within 1 m after three iterations. The GPS time at 
solution, is t, = 37 240.000 000 000 0 s. Thus the receiver clock was off by e 

37 239.999 421 454 1 s 

37 239.997 532 305 8 s 

37 240.000 000 006 0 s 

37 240.000 000 000 0 s 

37 240.000 000 000 0 s 

eception, determined by the 
:actly 1 s. 

7. These results must lastly be transformed into the WGS84 system by applying the rotation @(tR - tJ. That 
is, to obtain WGS84 coordinates at the instant of reception, we must use a sidereal rotation corresponding to 
that instant. Upon applying this rotation to the position coordinates given in the last line of Table III, the 
measured values of the receiver position are 
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5 224 663.388 m 
0 

3 658 348.689 m 

These agree with the true position coordinates to within a millimeter. 

OTHER CONSIDERATIONS 

THE BENEFIT OF BETTER INITIALIZATION 
It pays to be more carehl with our initial guesses. To illustrate this, let us consider the following situation 
which is not unreasonable after the receiver has been working for a while. There may be a good local quartz 
oscillator which can predict time accurately between measurements. After a local history of navigation 
solutions has been computed by the receiver, we may suppose that the GPS time of the next solution can be 
predicted to within 10 ns. If the velocity of the receiver has been monitored a reasonable estimate of the 
receiver position could be accurate to a few hundred meters. (An earth-fixed user can usually do much better.) 
Suppose we follow our example above where we assume the user chooses to take measurements at a time on 
the local clock exactly equal to 37 240.000 000 000 0 s, but that due to quartz oscillator instability the 
measurement is actually taken 10 ns later. We suppose here that the instant chosen to define the ECI frame 
is 37 240.000 000 000 0 s. If we go through the iterations we find two improvements. First, there is more 
rapid convergence, than in the first example. Better estimates of the position could reduce the number of 
iterations down to one. Second, the final solution for GPS time at the receiver is so close to the estimated time 
that the final rotation into the ECEF would not introduce significant changes in the position solution. The 
receiver clock can be updated with no other changes. 

ERRONEOUS USE OF ECEF COORDINATES 
It might seem that earth rotation effects during the propagation times from the satellites to the receiver are 
sufjiciently small that transforming to ECI coordinates is not necessary. We tested this with the example data 
given in Table I, initializing the iteration as in the example but using the ECEF coordinates of the satellites. 
No transformation to ECI coordinates were performed. The results of the iteration, using the same algorithm 
as before, were sigmficantly in error. The receiver time was in error by 14 ns and the position was in error by 
almost 30 m. Thus, it is an error to soIve the geometric range deIay equations in ECEF coordinates. 

ITERATION WITH A SUCCESSION OF INERTIAL FRAMES 
Another approach to the iteration for solving for position and time might be to consider a succession of inertial 
frames in the iteration process, each of which is aligned with the WGS84 frame at the reception time as 
estimated at the previous stage of the iteration. The advantage here is that at the end of the iteration the ECI 
frame would be exactly aligned with the WGS84 frame so no final rotation would be necessary. The 
disadvantage is the ECI coordinates of the transmission events must be recomputed that at each stage of the 
iteration, so more computation is required. During actual use, we might have very good estimates of the 
receiver position available to start the iteration. Possibly few iterations will then yield receiver position with 
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sufficient accuracy. Then this approach might be better. 

CONCLUSIONS 
We have discussed the two relativity-related corrections that a GPS receiver needs to make in order to provide 

. time or position to a user. We have explained where they come from and given general prescriptions for their 
application. We have illustrated these with a numerical example simulated from the actual GPS constellation. 
In particular we emphasize the importance of removing the rotation fiomearth-fixed coordinates in order to 
determine the geometric range delay. This allows us to be consistent with the relativistic principle of the 
constancy of the velocity of light. We have also presented the equation for the relativistic Doppler shift that 
a receiver must account for in order to make use of instantaneous camer phase measurements. A receiver that 
uses measurements of the integrated Doppler shift can correct for the geometric range in the same way as a 
code receiver does. Thus we conclude that the requirements if the ICD-200 which include the relativity 
corrections we have discussed are consistent with the requirements of relativity for range delay measurements 
accurate to better than 200 ps. 

. 
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