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Abstract-Consider a signal generator whose instantaneous time averages implied in the definitions are normally not available;
output voltage V(t) may be written as thus estimates for the two measures must be used. Estimates of

Sv(f) would be obtained from suitable averages either in the time
V(t) = [V0 + e(t)] sin [2rvot + so(t)] domain or the frequency domain. An obvious estimate for a2(r) is

where V0 and vo are the nominal amplitude and frequency, res- m _ _ 2

pectively, of the output. Provided that e(t) and so(t) = (d4o/(dt) (Y - E

are sufficiently small for all time t, one may define the fractional m k=l 2
instantaneous frequency deviation from nominal by the relation Parameters of the measuring system and estimating procedure

are of critical importance in the specification of frequency stability.
y(t) - In practice, one should experimentally establish confidence limits

27rvo for an estimate of frequency stability by repeated trials.

A proposed definition for the measure of frequency stability is
the spectral density S,,(f) of the function y(t) where the spectrum GLOSSARY OF SYMBOLS
is considered to be one sided on a per hertz basis.
An alternative definition for the measure of stability is the B1(N, r, ,u), Bias function for variances based

infinite time average of the sample variance of two adjacent averages B2(r, IA) on finite samples of a process
of y(t) ; that is, ff with a power-law spectral density.

1 t k+T d (See [13].)
= y(tk) C", A real constant defined by (70).

COY cl Real constants.
where r is the averaging period, lk+l= tk + T, k = 0, 1, 2 *-,to is c0t Areal,cntants.
arbitrary, and T is the time interval between the beginnings of c(t) A real, determinstic function of
two successive measurements of average frequency; then the time.
second measure of stability is DX(r) Expected value of the squared

(9k+1 PX
second difference of x(t) with lag

2( )T) ((Y+= - Yk ) time T. See (80).
\ 2 / f _ w/27r Fourier frequency variable.

where ( ) denotes infinite time average and where T = r. High-frequency cutoff of an ideal-
In practice, data records are of finite length and the infinite ized infinitely sharp cutoff low-pass

filter.
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S An intermiiediate termli used in A Exponent of r. See (29).
deriviing (23). The definitioni of S v(t) Instantaineous frequency of 1 (h).
is given by (64). Definedl bv

Sg(f) One-sided (power) spectral density 1 d
on a per hertz basis of the pure real ( ) y-d(1(t).
function g(t). The dimensions of
Sg(f) are the dimensions of g2(t)/f. VI) Nominal (constant) fre(qLuency of

SY(f) A definition for the measure of fre- V(t).
quency stability. One-sided (power) K(t) The Foouricer trzansformn of nt(t).
spectral density of yj(t) on a per o'(N2 1', r) Sample variance of N caverages
hertz basis. The diimensioins of of y(t), each of dlurati0n -r, tand
Sv(f) are Hz-'. spaiced every T ullits of timc.

'T Time interval between the begill- See (10).
nings of two successive nmeasure- (a2 (N, T, T)) Average value of tlhe.sample varli-
ments of average frequency. ance -_(A, T, r).
tTime variable. 0 2(T) A secoii(l clhoice of the (lefiiiition for

to An arbitrary fixed instant of time. the measuree of frequency, stability.
tk The time coordinate of the begin- Defined by o(r) -- (N( = 2,

ning of the kth measurement of T = r, r)).
average frequenlcy. By definition, (T r) Time stabilitv measure (lefine(l by
tk+1 = tk + T, k = 0, 1, 2 *. ..I o(T) T O(T).

i Dummy variable of integration; T Duration of averaginig period of
u -7rfT. y(t) to obtain ,;. See (9).

V(t) Instanta.neous output voltage of D(t) Instantaneous phase of 11(t). De-
signial generator. See (2). fined by cb(t) 27rvot + ;9(t).

VO Nominal peak amplitude of signal ;dt) Instantaneous pl)hise fluctuations.
generator output. See (2). about the ideail plhiase 27rvot. See (2).

VT (t) Inistantaneous voltage of reference (T!) M\Iean-square timeC error for Doppler
signal. See (40). radar. See (82).

V,,, Peak amplitude of referenice signal. w - 27rJ Angular Fourier fre(luenicy variable.
See (40).

V(t) V/Coltage output of ideal product I. IN-\TRORDUCTIrON-
detector. f -f HE measuremiient of frequencyv tand fluctuations in

v/(t) Low-pass filtered output of product II frequency has received such great attentioni for
detector. Lso many years tlalt it is surprising that the coln-

x(t) Real funcetion of time related to the cept of frequency stability does not have a universally
phase of the signal V(t) by x(t) accepted definitioin. At least part of the reason has been
[,(t)]/(27v(o). that some uses are imlo.st readily dlescribed in the fre-

£(t) A predicted value for x(t). quenvcy domaiin and othler uses in the timie lomain, as
y(t) Fs'ractional frequency offset of V(t) well as in combinations of the twvo. This situation is

from the nominal frequency. See (7). further comiplicated by itlhc fact that only recenitly have
y,dAverage fractional frequency ofset noise models been pliesentedl that both a(leqtuately (e-

during the kth measurement in- scribe performance anid( allow a. translation between the
terval. See (9). time aind frequenev (lomains. Ilnded, only recently h,as

(Y)AN The sample average of N successive it been recognized that there cLan be Ca wide discrepancy
values of 9ik. See (76). betwecn commonly used time (loinain measures them-

zn(t) Nondeterininistic (noise) function selves. Following the NASA-IEEE Symposium on Short-
with (power) spectral density given Term Stability in 1964 and the Special Issue on Fre-

bExponent of I for a power-law queney Stability in the PROCEEDINGS OF THE IEEE,a Exponent of f for a power-law FFebruary 1966, it now seems reasonable to propozse -A
spectral density. definition of frequency stability. rhe present IPCer is

7 Positive real constant. presented as technlical backigroundlc for an eventua.-l :,IpEE
k(- 1) The Kronecker a funcetion definled standard definition.

by~ ~~~1 if(-1r = This lrapem' attempts to present (as concisely as l) Iac-byak(r )
0 otherwise. tical) adlequate, self-consis<tent dlefinitions of frequlency

e(t) Amplitude fluctuations of signall. stability. Since more than one dlefinition of frequlency
See (2). stability is presentedl, an important part of this paper
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(perhaps the most important part) deals with transla- tionary statistics) cannot be logically dependent upon
tions among the suggested definitions of frequency sta- future events (i.e., if the process is terminated some time
bility. The applicability of these definitions to the more in the distant future). Also, the verification of station-
common noise models is demonstrated. arity would involve hypothetical measurements that are

Consistent with an attempt to be concise, the refer- not experimentally feasible, and therefore the concept.of
ences cited have been selected on the basis of being of stationarity is not directly relevant to experimentation.
most value to the reader rather than on the basis of Actually the utility of statistics is in the formation
being exhaustive. An exhaustive reference list covering of idealized models that reasonably describe significant
the subject of frequency stability would itself be a observables of real systems. One may, for example, con-
voluminous publication. sider a hypothetical ensemble of noises with certain
Almost any signal generator is influenced to some ex- properties (such as stationarity) as a model for a par-

tent by its environment. Thus observed frequency in- ticular real device. If a model is to be acceptable, it
stabilities may be traced, for example, to changes in should have at least two properties: first, the model
ambient temperature, supply voltages, magnetic field, should be tractable; that is, one should be able to easily
barometric pressure, humidity, physical vibration, or arrive at estimates for the elements of the models; and
even output loading, to mention the more obvious. While second, the model should be consistent with observables
these environmental influences may be extremely im- derived from the real device that it is simulating.
portant for many applications, the definition of fre- Notice that one does not need to know that the device
quency stability presented here is independent of these was selected from a stationary ensemble, but only that
causal factors. In effect, we cannot hope to present an the observables derived from the device are consistent
exhaustive list of environmental factors and a prescrip- with, say, elements of a hypothetically stationary en-
tion for handling each even though, in some cases, these semble. Notice also that the actual model used may
environmental factors may be by far the most im- depend upon how clever the experimenter-theorist is in
portant. Given a particular signal generator in a partic- generating models.
ular environment, one can obtain its frequency stability It is worth noting, however, that while some texts
with the measures presented below, but one should not on statistics give "tests for stationarity," these tests are
then expect an accurate prediction of frequency stability almost always inadequate. Typically, these tests de-
in a new environment. termine only if there is a substantial fraction of the

It is natural to expect any definition of stability to noise power in Fourier frequencies whose periods are of
involve various statistical considerations such as sta- the same order as the data length or longer. While this
tionarity, ergodicity, average, variance, spectral density, may be very important, it is not logically essential to
etc. There often exist fundamental difficulties in rigorous the concept of stationarity. If a nonstationary model
attempts to bring these concepts into the laboratory. It actually becomes common, it will almost surely be be-
is worth considering, specifically, the concept of sta- cause it is useful or convenient and not because the
tionarity since it is a concept at the root of many statis- process is "actually nonstationary." Indeed, the phrase
tical discussions. "actually nonstationary" appears to have no meaning
A random process is mathematically defined as sta- in an operational sense. In short, stationarity (or non-

tionary if every translation of the time coordinate maps stationarity) is a property of models, not a property of
the ensemble onto itself. As a necessary condition, if one data [1].
looks at the ensemble at one instant of time t, the dis- Fortunately, many statistical models exist that ade-
tribution in values within the ensemble is exactly the quately describe most present-day signal generators;
same as at any other instant of time t'. This is not to many of these models are considered below. It is obvious
imply that the elements of the ensemble are constant that one cannot guarantee that all signal generators are
in time, but, as one element changes value with time, adequately described by these models, but the authors
other elements of the ensemble assume the previous val- do feel they are adequate for the description of most
ues. Looking at it in another way, by observing the signal generators presently encountered.
ensemble at some instant of time, one can deduce no
information as to when the particular instant was chosen. II. STATEMENT OF THE PROBLEM
This same sort of invariance of the joint distribution To be useful, a measure of frequency stability must
holds for any set of times t1, t2, , t, and its transla- allow one to predict performance of signal generators
tion t + T t2 + r, ., t ±I. used in a wide variety of situations as well as allow

It is apparent that any ensemble that has a finite one to make meaningful relative comparisons among
past as well as a finite future cannot be stationary, and signal generators. One must be able to predict perform-
this neatly excludes the real world and anything of ance in devices that may most easily be described either
practical interest. The concept of stationarity does vio- in the time domain, or inl the frequency domain, or in
lence to concepts of causality since we implicitly feel a combination of the two. This prediction of perform-
that current performance (i.e., the applicability of sta- ance may involve actual distribution functions, and thus
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second moment measures (such as power spectra and sent the one-sided spectral density of the (pure real)
variances) are not totally adequate. function g(t) on a per hertz basis; that is, the total
Two common types of equipment used to evaluate the "power" or mean-square value of g(t) is given by

performance of a frequency source are (analog) spectrum
analyzers (frequency domain) and digital electronic P S,(f) df.
counters (time domain). On occasion the digital counter
data are converted to power spectra by computers. One Since the spectral density is such an important con-
must realize that any piece of equipment simultaneously cept to what follows, it is worthwhile to present some
has certain aspects most easily described in the time important references on spectrum estimation. There are
domain and other aspects most easily described in the many references on the estimation of spectra from data
frequency domain. For example, an electronic counter records, but worthy of special note are [2]-[5].
has a high-frequency limitation, an experimental spectra
are determined with finite time averages. IV. DEFINITION OF MEASURES OF FREQUENCY STABILITY
Research has established that ordinary oscillators dem- (SECOND-MOMENT TYPE)

onstrate noise, which appears to be a superposition of
causally generated signals and random nondeterministic A General
noises. The random noises include thermal noise, shot Consider a signal generator whose instantaneous out-
noise, noises of undetermined origin (such as flicker put voltage V(t) may be written as
noise), and integrals of these noises.
One might well expect that for the more general cases V(t) = [VO + e(t)] sin [2irvot + (t)] (2)

one would need to use a nonstationary model (not sta- where VO and vo are the nominal amplitude and fre-
tionary even in the wide sense, i.e., the covariance sense). quency, respectively, of the output and it is assumed
Nonstationarity would, however, introduce significant dif- that
ficulties in the passage between the frequency and time
domains. It is interesting to note that, so far, experi- E(t) << 1 (3)
menters have seldom found a nonstationary (covariance) Io
model useful in describing actual oscillators. and

In what follows, an attempt has been made to separate
general statements that hold for any noise or perturba- <<(t)< 1 (4)
tion from the statements that apply only to specific mod- 2rvo
els. It is important that these distinctions be kept in for substantially all time t. Making use of (1) and (2)
mind. one sees that

III. BACKGROUND AND DEFINITIONS +(t) = 2xrvot + so(t) (5)

To discuss the concept of frequency stability imme- and
diately implies that frequency can change with time and
thus one is not considering Fourier frequencies (at least v(t) = v, +- t). (6)
at this point). The conventional definition of instantan- 27rW
eous (angular) frequency is the time rate of change of Equations (3) and (4) are essential in order that ~c(t)
phase; that is may be defined conveniently and unambiguously (see

d (t) = (1) measurement section).
27rv(t) d Since (4) must be valid even to speak of an instantan-

eous frequency, there is no real need to distinguish
where ¢ (t) is the instantaneous phase of the oscillator. stability measures from instability measures. That is,
This paper uses the convention that time-dependent any fractional frequency stability measure will be far
frequencies of oscillators are denoted by v(t) (cycle fre- from unity, and the chance of confusion is slight. It is
quency, hertz), and Fourier frequencies are denoted by true that in a very strict sense people usually measure
w (angular frequency) or f (cycle frequency, hertz) where instability and speak of stability. Because the chances of

27rf. In order for (1) to have meaning, the phase '1 (t) confusion are so slight, the authors have chosen to con-
must be a well-defined function. This restriction imme- tinue in the custom of measuring "instability" and speak-
diately eliminates some "nonsinusoidal" signals such as ing of stability (a number always much less than unity).
a pure random uncorrelated ("white") noise. For most Of significant interest to many people is the radio fre-
real signal generators, the concept of phase is reasonably quency (RF) spectral density Sv(f). This is of direct
amenable to an operational definition and this restric- concern in spectroscopy and radar. However, this is not
tion is not serious. a good primary measure of frequency stability for two

Of great importance to this paper is the concept of reasons. First, fluctuations in the amplitude e(t) contrib-
spectral density, S0 (f). The notation Sg(f) is to repre- ute directly to Sv(f); and second, for many cases when
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c(t) is insignificant, the RF spectrum Sv(f) is not the Fourier frequency range below one cycle per year.
uniquely related to the frequency fluctuations [6]. In order to improve comparability of data, it is important

to specify particular N and T. For the preferred definition
B. General:First Definition of the Measure of Frequency we recommend choosing N = 2 and T = r (i.e., no dead
Stability-Frequency Domain time between measurements). Writing (o-i (N = 2, T = ,r))
By definition, let as o (T), the Allan variance [8], the proposed measure of

frequency stability in the time domain may be written as

- 0(t)
y(t) 2wrv ' (7) o2(r) = / +k+-Yk)I (11)

where yo(t) and vo are as in (2). Thus y(t) is the in-
stantaneous fractional frequency deviation from the nom- for T = T.
inal frequency vo. A proposed definition of frequency Of course, the experimental estimate of 2 ((r) must be
stability is the spectral density S, (f) of the instantaneous obtained from finite samples of data, and one can never
fractional frequency fluctuations y (t). The function S, (f) obtain perfect confidence in the estimate; the true time
has the dimensions of Hz-1. average is not realizable in a real situation. One estimates
One can show [7] that if Sp(f) is the spectral density r2(r) from a finite number (say, m) of values of o2(2, r, r)

of the phase fluctuations, then and averages to obtain an estimate of _2(T). Appendix I
l2 shows that the ensemble average of o_2 (2, r, r) is convergent

SY(J) = (1)S(f) (i.e., as m -* cn) even for noise processes that do not have
2rvo convergent (U2 (N, r, r)) as N -a ). Therefore, _2 (T) has

21f2S 8 greater utility as an idealization than does (_2( 0, r, r)
= y-}fS(f). (8) even though both involve assumptions of infinite averages.

In effect, increasing N causes (N, T, r) to become moreThus a knowledge of the spectral density of the phase sensitive to the low-frequency components of Sy(f). In
fluctuations S~(f) allows a knowledge of the spectral Datc,oems ltnus ewe neprmna

denityofthefreuecy lucuaion 5, (), he irt df-practice, one must distinguish between an experimentaldensity of the frequency fluctuations Sy(f) the first def- estimate of a quantity (sav, of _2(T)) and its idealized
inition of frequency stability. Of course, S(f) cannot value. It is reasonable to believe that extensions to the
be perfectly measured-this is the case for any physical concept of statistical ("quality") control [9] may prove
quantity; useful estimates of S(f) are, however, easily useful here. One should, of course, specify the actual
obtainable. number m of independent samples used for an estimate

C. Genweral: Second Definsition of the Measure of Fre- of O(Tr).Stbnli eD in of th M

* In summary, therefore, Sv(f) is the proposed measure of
quency Stability-Time- Domain (instantaneous) frequency stability in the (Fourier)
The second definition is based on the sample variance of frequency domain and o- (r) is the proposed measure of

the fractional frequency fluctuations. In order to present frequency stability in the time domain.
this measure of frequency stability, define Yk by the
relation D. Distributions

I tp _(tk + T) P(tk) It is natural that people first become involved with
7k = y(t) dt = (9) second moment measures of statistical quantities and only

later with actual distributions. This is certainly true with
where tk+l = tk + T, k = 0, 1, 2, , T is the repetition frequency stability. While one can specify the argument
interval for measurements of duration T, and t, is arbitrary. of a distribution function to be, say (9k÷+ - 9), it makes
Conventional frequency counters measure the number of sense to postpone such a specfication until a real use has
cycles in a period r; that is, they measure vor(l + Yk). materialized for a particular distribution function. This
When r is 1 s they count the number of vo(1 + Yk). paper does not attempt to specify a preferred distribution
The second measure of frequency stability, then, is function for frequency fluctuations.
defined in analogy to the sample variance by the relation

I 1 N / N 2\ E. Treatment of Systematic Variations
(<N, T, r))Y.N1 1 l (Yn - k ) (10) 1) General: The definition of frequency stability %(r)

in the time domain is useful for many situations. However,
where (g) denotes the infinite time average of g. This some oscillators, for example, exhibit an aging or almost
measure of frequency stability is dimensionless. linear drift of frequency with time. For some applicationbs,

In many situations it would be wrong to assume that this trend may be calculated and should be removed [8]
(10) converges to a mneaningful limit as N - . First, before estimating o2(r).
Of course, one cannot practically let N approach infinity In general, a systematic trend is perfectly deterministic
and, second, it is known that some actual noise processes (i.e., predictable) while the noise is nondeterministic.
contain substantial fractions of the total noise power in Consider a function g(t), which may be written in the form
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g(t) = c(t) + n(t) (12) where c0 is the frequency intercept at t = to and cl is
the drift rate previously determined. A problem arises

where c(t) is some deterministic function of time and n(t), here because
the noise, is a nondeterministic function of time. We will
define c(t) to be the systematic trend to the function g(t). Sn,(f) Sv(j) (21)
A problem of significance here is to determine when and and
in what sense c(t) is measurable.

2) Specific Case-Linear Drift: As an example, if we ( ktk+T -
consider a typical quartz crystal oscillator whose fractional lim lvariance LTj n'(t) dtjJ = (22)
frequency deviation is y(t), we may let

for the noise model we have assumed. This follows from

g(t) = d y(t) (13) the fact that the (infinite N) variance of a flicker noise
dt process is infinite [7], [8], [10]. Thus, co cannot be

With these conditions, c(t) is the drift rate of the oscil- measured with any realistic precision, at least, in an
lator (e.g., 10-10/day) and n(t) is related to the fre- absolute sense.
quency "noise" of the oscillator by a time derivative. We may interpret these results as follows. After ex-
One sees that the time average of g(t) becomes perimenting with the oscillator for a period of time one

can fit an empirical equation to y (t) of the form
g(t dt = t, 1 n(ot) t (4

T f g(t) dt =c + T f n(t) dt (14) y(t) = co + tc1 + n'(t),

where c (t) c1 is assumed to be the constant drift rate where n'(t) is nondeterministic. At some later time it is
of the oscillator. In order for cl to be an observable, possible to reevaluate the coefficients co and c1. Accord-
it is natural to expect the average of the noise term to ing to what has been said, the drift rate c1 should be
vanish, that is, converge to zero. reproducible to within the confidence estimates of the

It is instructive to assume [8], [10] that in addition experiment regardless of when it is reevaluated. For co,
to a linear drift, the oscillator is perturbed by a flicker however, this is not true. In fact, the more one attempts
noise, i.e., to evaluate c0, the larger the fluctuations are in the

rh-i- 0<fl5f result.
S (J) = Xh 0f2 ° < f . fh (15) Depending on the spectral density of the noise term,

f > fh it may be possible to predict future measurements of

where h1 is a constant (see Section V-A-2) and thus co and to place realistic confidence limits on the predic-
tion [11]. For the case considered here, however, these

f(27r)2h-If 0 < f <.h (16) confidence limits tend to infinity when the prediction
S lof) =~ ' (16) interval is increased. Thus, in a certain sense, co is

f > fh/ "measurable" but it is not in statistical control (to use
for the oscillator we are considering. With these assump- the language of the quality control engineer [9]).
tions, it is seen that

1 t + T V. TRANSLATIONS AMONG FREQUENCY STABILITY
lim - | n(t) dt = K(0) 0 (17) MEASURES
T--o T o

and that A. Frequency Domain to Timne Domain

F1r tk+T 1) General: It is of value to define r = T/r; that is,
lim Ivariance [j f n(t) dtj = 0 (18) r is the ratio of the time interval between successive

measurements to the duration of the averaging period.
where K(f) is the fourier transform of n(t). Since S&(0) Cutler has shown (see Appendix I) that
= 0 K (0) must also vanish both in probability and in
mean square. Thus, not only does n(t) average to zero, (f2(N, T, T))
but one may obtain arbitrarily good confidence on the N [[sin2 (7rfr)] J sin2 (rrfNi)
result by longer averages. (N 1) J0 df Sy(f) (s fT)2 t-N2sin2(7rrfN)f
Having shown that one can reliably estimate the drift

rate c1 of this (common) oscillator, it is instructive to (23)
attempt to fit a straight line to the frequency aging. Eqato (23 iprnplalosnetcluaeth
That is, let time-domain stability (o2(N, T, r)) from the frequency-

g(t) = y(t) (19) domain stability S(;f).

and thus ~~~~~~~~~~2)Specific Model: A model that has been found use-and thus ~~~~~~~~~~ful[8], [10]-[13] consists of a set of five independent

q(t) = c0 + c1(t - t) + n'(t) (20) noise processes Zn (t), n = -2, -1, 0, 1, 2, such that
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y(t) = z-2(t) + z...1(t) + Z(t) + z(t) + Z2(t) (24) Allan [8] and Vessot [12] showed that if

and the spectral density of z,, is given by h ca 0 < <
SY(f) 9, - f _ fh(28)

S ) Jhn nI 0 < f < fh (2)!0 f > fh(25) 0ffS2n(f) =-, fJ

0, f > fh, n = -2, -1, 0, 1, 2, where a is a constant, then
where the hn are constants. Thus, Sy (f) becomes

(a2o(N, T, T)) - ITIM, 2lrTfh>> 1 (29)
Sy(f) = h-2f-2 + h-1f-1 + ho + hif + h2f2, (26)

for N and r = T/r held constant. The constant ,u is
for 0 < f . fh and Sy(f) is assumed to be negligible beyond related to a by the mapping shown1 in Fig. 1. If (28)
this range. In effect, each z,, contributes to both S,(f) and and (29) hold over a reasonable range for a signal gen-

(0r"(N, T, r)) independently of the other zn. The con- erator, then (28) can be substituted into (23) and evaluated
tributions of the z,n to (a_2 (N, T, r)) are tabulated in to determine the constant h, from measurements of
Appendix II. (0f2(N, T, r)). It should be noted that the model of (28)
Any electronic device has a finite bandwidth and this and (29) may be easily extended to a superposition of

certainly applies to frequency-measuring equipment also. similar noises as in (26).
For fractional frequency fluctuations y(t) whose spectral
density varies as C. Translations Among the Time-Domain Measures

S(f) f,a, > -1 (27) 1) General: Since (o-'(N, T, r)) is a function of N, T,

for the higher Fourier components, one sees (from and r (for some types of noise fh is also important), it is

Appendix I) tat(~(NT, mayepenonheeactvery desirable to be able to translate among differentAppendix I) that (or,(N, T, T)) may depend on the exactns >>rrnl* * 1 sets of N, T, and r (fh, held constant). This is, however,shape of the frequency cutoff. This is true because a not possible in general.
substantial fraction of the noise "power' may be in these 2) Specific Model: It is useful to restrict considerationhigher Fourier components. As a simplifying assumption,
this paper assumes a sharp cutoff in noise "power"at the t case described by (28) and (29). Superpositions of
frequency fh for the noise models. It is apparent from the ipendenstieswi. t different power-law tyes of
tables of Appendix II that the time domain measure of spectral densities (i.e., different a) can also be treated by

frequeney stability may depend on fh in a very important sfreqenc stbllly my dpendon h ma vey lporantfunctions," B, and B, by the relations [13]
way, and, in some practical cases, the actual shape of the
frequency cutoff may be very important [7]. On the -(a2(N T, Tr))
other hand, there are many practical measurements B12(N,r,,u)- (o'(2,T,
where the value of fh has little or no effect. Good practice, '
however, dictates that the system noise bandwidth fI and
should be specified with any results.

In actual practice, the model of (24)-(26) seems to fit B( (oy(2, T, T)) (31)
almost all real frequency sources. Typically, only two or (rA= (2, T))3
three of the h-coefficients are actually significant for a
real device and the others can be neglected. Because of where r T/r and g is related to a by the mapping of
its applicability, this model is used in much of what Fig. 1. In words, B1 is the ratio of the average variance
follows. Since the zn are assumed to be independent noises, for N samples to the average variance for two samples
it is normally sufficient to compute the effects for a (everything else held constant), while B2 is the ratio of
general z,, and recognize that the superposition can be the average variance with dead time between measure-
accomplished by simple additions for their contributions ments (r 5 1) to that of no dead time (r = 1 and with
to Sy(f) or (o,(N, T, r)). N = 2 and r held constant). These functions are tabulated

in [13]. Figs. 2 and 3 show a computer plot of-
B. Time Domain to Frequency Domain B1(N, r = 1, A) and B2(r, A).

1) General: For general (a2(N, T, r)) no simple pre- Suppose one has an experimental estimate of (oy(N1,
scription is available for translation into the frequency T,, Tr)) and its spectral type is known, i.e., (28) and (29)
domain. Fo thisareason, one mightipreferSh(f) as a form a good model and A is known. Suppose also that onedomain. For this reason, one miffht 1prefer SB,)f as a

general~mesr f.rqec stblit. Thsi seilly wishes to know the variance at some other set of measure-
true for theoretical work. ment parameters N2, T2, T2. An unbiased estimate of

2) Specific Model: Equations (24)-(26) form a realistic (ov(N2, T2, i)) may be calculated by
model that fits the random nondeterministic noises found
on most signal generators. Obviously, if this is a good lIt should be noted that in Allan [8], the exponent a cor-

model,~~~~~~the th tale inApni I a eue responds to the spectrum of phase fluctuations while variancesmodel thentheables1n Apendl ll ay seusea are taken over average frequency fluctuations. In the present
(in reverse) to translate into the frequency domain, paper, as is identical to the exponent a + 2 in [8].
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Fig. 1. A a mapping.

/1 NrFig. 3. Bias function B2(r, ,).

ferent parameter, such as in the use of an oscillator in
Doppler radar measurements or in clocks.

A. Doppler Radar

1) General: From its transmitted signal, a Doppler
radar receives from a moving target a frequency-shifted

~~ return signal in the presence of other large signals. These
large signals can include clutter (ground return) and
transmitter leakage into the receiver (spillover). In-

Fig. 2. uncionB1(r=1stabilities of radar signals result in noise energy on the
clutter return, on spillover, and on local oscillators in

(ay'(N2, T2, T32)) = 2 the equipment.
-<S2(N2, T2, r2)) = (r2) The limitations of subelutter visibility (SCV) rejec-

1, (N2 , r2, A)B42 , A) 2

tions due to the radar signals themselves are related to
FB N2, r2, g)B2(r2, "H1 (o(NI, T,, Ti)), (32) the RF power spectral density Sv(f). The quantity typi-
LB1 (NI ,r,rit)B2(rl, A)i cally referred to is the carrier-to-noise ratio and can be

where r1 = Ti/T1 and r2 = T2/T2. mathematically approximated by the quantity
3) General: While it is true that the concept of the S

bias functions B1 and B2 could be extended to other S(f)
processes besides those with the power-law types of i Sv(f')df'
spectral densities, this generalization has not been done.
Indeed, spectra of the form given in (28) [or super- The effects of coherence of target return and other
positions of such spectra as in (26)] seem to be the radar parameters are amply considered in the literature
-most common types of nondeterministic noises encoun- [14]-[17].
tered in signal generators and associated equipment. For 2) Special Case: Because FM effects generally pre-
other types of fluctuations (such as causally generated dominate over AM effects, this carrier-to-noise ratio is
perturbations), translations must be handled on an in- approximately given by [6]
dividual basis.

VI. APPLICATIONS OF STABILITY MEASURES Sw(f) 2S, | - v |,(33)

Obviously, if one of the stability measures is exactly°
-the important parameter in the use of a signal generator, for many signal sources provided If -v is sufficiently
-the stability measure's application is trivial. Some non- greater than zero. (The factor of 1- arises from the fact
tirivial applications arise when one is interested in a dif- that S9,(f) is a one-sided spectrum.) Thus, if f - b is
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a frequency separation from the carrier, the carrier-to- y (t). One of the most common techniques is a heterodyne
noise ratio at that point is approximately or beat frequency technique. In this method, the signal

from the oscillator to be tested is mixed with a reference
is - ) = ± ( ) (- (34) signal of almost the same frequency as the test oscillator

2 \f -V'o/ in order that one is left with a lower average frequency
B. Clock Errors for analysis without reducing the frequency (or phase)

fluctuations themselves. Following Vessot et al. [18],
1) General. X. clock is a device that counts the cycles consider an ideal reference oscillator whose output signal

of a periodic phenomenon. Thus, the reading error x(t) is
of a clock run from the signal given by (2) is

V,(t) = V0r sin 2i7rv0t (40)

x(t) (35) and a second oscillator whose output voltage V(t) is
given bv (2): V(t) = [VO + E(t)] sin [2-7rvot + so(t)]. Let

and the dimensions of x (t) are seconds. these two signals be mixed in a product detector; that is,
If this clock is a secondary standard, then one could the output of the product detector v(t) is equal to the

have available some past history of x(t), the time error product dV(t) X V,(t), where
c

is a constant (see Fig. 4).
relative to the standard clock. It often occurs that one Let v(t), in turn, be processed by a sharp low-pass filterg
is interested in predicting the clock error x(t) for some with cutoff frequencyfb such that
future date, say to + r, where to is the present date.
Obviously, this is a problem in pure prediction and can 0 K fA < fb < vn. (41)
be handled by conventional methods [3]. One may write

2) Special Case: Although one could handle the predic-
tion of clock errors by the rigorous methods of prediction
theory, it is more common to use simpler prediction = eVor(V0o + E)[sin 2-rvot][sin (2wrvo + so)]
methods [10], [11]. In particular, one often predicts a clock
error for the future by adding to the present error a = v(t) = Y ( 1 + - [cos fo- cos (4rvot + so)].
correction that is derived from the current rate of gain 2 ° (42)
(or loss) of time. That is, the predicted error x(to + r) Assume that cos [o(t)] has essentially no power in Fourieris related to the past history of x(t) byAsuetaco[s()hsesnilynopwrnFuir

frequencies f in the region f > fh. The effect of the low-pass
2(to + T) = x(t0,) + rTFx(to)_-_xto-- T) (36) filter then is to remove the second term on the extreme

LT iright of (42); that is
It is typical to let T = r. VrV I/ e \
Thus, the mean-square error of prediction for T = v'(t) = z 2 " 1 + 7-) coss(t). (43)

becomes
This separation of terms by the filter is correct only if

([X(to + T) -X(t0 + T)]2) IU<(t)/2irvo]I << 1 for all t (4).

- ([x(to + r) - 2x(to) + x(to- T)]2), (37) The following two cases are of interest.
Case I. The relative phase of the oscillators is ad-

which, with the aid of (11), can be written in the form justed so that If(t) << 1 (in-phase condition) during

K[x(to + T) -A(to + r)]2) = 2r2of(r). (38) the period of nieasurement. Under these conditions
y~~~ ~~~~~~~y-

One can define a time stability measure o-(,r) byv() V0V± Vr(),4)
2' (T) ay () * (39)

since cos ,(t) _- 1. That is to say one detects the amapli--
Clearly, however, the actual errors of prediction of clock tude noise E(t) of the siignal.
readings are dependent on the prediction algorithm used Case II. The relative phase of the oscillators is ad-
and the utility of such a definition as oJ(r) is not great. justed to be in approximate quadrature; that is
Caution should be used in employing this definition.

VII. MEASUREMENT TECHNIQUES FOR FREQUENCY 2'(t) = s(t) + 2 (45)
STABILITY where |So'(t) < 1. Under these conditions,

A. Heterodyne Techniques (General) cos (p(t) = sin yn'(t) so~'(t) (46)

It is possible for oscillators to be very stable and ad
values of 0.y(T) can be as small as 10's4 in some state-of-
the-art equipmaent. Thus, one often needs measuring tech--
niques capable of resolving very small fluctuations in v'(t) = 7j V0r V09'(/) ± 12 VOr(P'(t)E(t). (47,>
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Loop that one may make a reasonable approximation to
r I Filter I - (0f(N, T, ro)) using period measurements.

Reference C. Period Measurement With Heterodvning
Oscillator .(

Suppose that p(t) is a monotonic fuinction of time.
Product rVA > Low Pass _ The output of the filter of Section VII-A (43) becomes
Detector Fil vter(

Vol vof lv'(t) y 2 cos(t) (51)Oscillator h V )t 2

Fig. 4. Heterodyne scheme. if [E(t)/Vo] << 1. T'hen one may measure the period
T of two successive positive zero crossings of v'(t). Thus

If it is true that I[E(t)/VoI! << 1 for all t (3), then 1 _
(47) becomes o- L0I (52)

and for the Mth positive crossover
v'(t) t' 2 Vo VOp'f(t); (48)

M_
that is, v'(t) is proportional to the phase fluctuations. -=- IYhL (53)
Thus, in order to observe p/(t) by this method, (3) and The magnitude bars appear because cos (t) is an even
(4) must be valid. For different average phase values, function of 'p(t). It is impossible to determine by this
mixtures of amplitude and phase noise are observed. method alone whether 'p is increasing with time or de-

In order to maintain the two signals in quadrature for creasing with time. Sinco- Y/n may be very small (-10-long observational periods, the reference oscillator can 12or 10-2 for very g,ood oscillators), T may be quite long
be a voltage-controlled oscillator (VCO) and one may and thus measurable with a good relative precision.
feed back the phase error voltage as defined in (48) to If the phase (t) is not monotonic, the true may be
control the frequency of the VCO [19]. In this condition* ~~~~near zero but one could still have many zeros of cos, w(t)
of the phase-locked oscillator, the voltage v'(t) is the and thus (52) and (53) would not be valid.
analog of the phase fluctuations for Fourier frequencies
above the loop cutoff frequency of the locked loop. For D. Frequency Counters
Fourier frequencies below the loop cutoff frequency of Assume the phase (either 4 or 'p) is a montonic func-
the loop, v'(t) is the analog of frequency fluctuations. tion of time. If one counts the number M of positive going
In practice, one should measure the complete servo-loop zero crossings in a period of time r, then the average fre-
response. quency of the signal is M/7. If we assume that the signal

B. Period Measurement is V(t) as defined in (2), then

Assume one has an oscillator whose voltage output M (1 + 9 ) 54
may be represented by (2). If I[E(t)/VO]I << 1 for all -r
t and the total phase If.we assume that the signal is v'(t) as defined in (48),

'thenc1(t) = 27rvot + p(t) (5)
is a monotonic function of time (that is, [¢(t)/2irv0]j < 1), M - Il

o
. (55)

then the time t between successive positive going zero T
crossings of V(t) is related to the average frequency during Again, one measures only positive frequencies.
the interval r. Specifically

E. Frequency Discriminators
1 = vo(l + Yn). (49) A frequency discriminator is a device that converts

If one lets bteiefrequency fluctuations into an analog voltage by means
If one lets Tbe the time between a positive going of a dispersive element. For example, by slightly detuning
crossing of V(t) and the Mth successive positive going a resonant circuit from the signal V(t) the frequency
zero crossing, then fluctuations (1/2ir)]so(t) are converted to amplitude fluc-

M tuations of the output signal. Provided the input amplitude
-= v'o(1 ± Yn). (50) fluctuations [E(t)]/Vo are insignificant, the output ampli-

tude fluctuations can be a good measure of the frequency
If the variations AT of the period are small compared to fluctuations. Obviously, more sophisticated frequency
the average period To, Cutler and Searle [7] have shown discriminators exist (e.g., the cesium beam).
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From the analog voltage one may use analog spectrum are a few points, however, which are worthy of special
analyzers to determine Sy (f), the frequency stability. By notice: a) data aliasing (similar to predetection band-
converting to digital data, other analyses are possible width problems); b) spectral resolution; and c) con-

on a computer. fidence of the estimate.
4) Variances of Frequency Fluctuations o(r(T): It is not

uncommon to have discrete frequency modulation of a
source such as that associated with the power supply

1) Errors Caused by Signal-Processing Equipment: The frequencies. The existence of discrete frequencies in Sy(f)
intent of most frequency stability measurements is to can cause o2 (r) to be a very -rapidly changing function
evaluate the source and not the measuring equipment. of r. An interesting situation results when r is an exact
Thus, one must know the performance of the measuring multiple of the period of the modulation frequency (e.g.,
system. Of obvious importance are such aspects of the one makes r = 1 s and there exists 60-Hz frequency
measuring equipment as noise level, dynamic range, modulation on the signal). In this situation, 2(r = 1 s)
resolution (dead time), and frequency range. can be very optimistic relative to values with slightly

It has been pointed out that the noise bandwidth fh is different values of r.
very essential for the mathematical convergence of certain One also must be concerned with the convergence
expressions. Insofar as one wants to measure the signal properties of U2(T) since not all noise processes will have
source, one must know that the measuring system is not finite limits to the estimates of o-2('r) (see Appendix I).
limiting the frequlency response. At the very least, one One must be as critically aware of any "dead time" in the
must recognize that the frequency limit of the measuring measurement process as of the system bandwidth.
system may be a very important, implicit parameter for 5) Signal Source and Loading: In measuring frequency
either _2(t) or S,(f). Indeed, one must account for any stability one should specify the exact location in the
deviations of the measuring system form ideality such as circuit from which the signal is obtained and the nature
a "nonflat" frequency response of the spectrum analyzer of the load used. It is obvious that the transfer character-
itself. istics of the device being specified will depend on the load
Almost any electronic circuit that processes a signal and that the measured frequency stability might be

will, to some extent, convert amplitude fluctuations at the affected. If the load itself is not constant during the
input terminals into phase fluctuations at the output. measurements, one expects large effects on frequency
Thus, AM noise at the input will cause a time-varying stability.
phase (or FM noise) at the output. This can impose im- 6) Confidence of the Estimate: As with any measurement
portant constraints on limiters and automatic gain control in science, one wants to know the confidence to assign to
(AGC) circuits when good frequency stability is needed. numerical results. Thus, when one measures S,(f) or oJ2(T),
Similarly, this imposes constraints on equipment used for it is important to know the accuracies of these estimates.
frequency stability measurements. a) The Allan Variance: It is apparent that a single

2) Analog Spectrum Analyzers (Frequency Dornain): sample variance o-'(4, r, r) does not have good confidence,
Typical analog spectrum analyzers are very similar in but, by averaging many independent samples, one can
design to radio receivers of the superheterodyne type, and improve the accuracy of the estimate greatly. There is a
thus certain design features are quite similar. For exam- key point in this statement, "independent samples." For
ple, image rejection (related to predetection bandwidth) this argument to be true, it is important that one sample
is very important. Similarly, the actual shape of the variance be independent of the next. Sincen(2,e r) is
analyzer's frequency window is important since this af- related to the first difference of the frequency (11),
fects spectral resolution. As with receivers, dynamic it is sufficient that the noise perturbing y(t) have "inde-
range can be critical for the analysis of weak signals in pendent increments," i.e., that y(t) be a random walk.
the presence of substantial power in relatively narrow In other words, it is suifficient that S,(f) -- f 2 for low
bandwidths (e.g., 60 Hz). frequencies. One can show that for noise processes that
The slewing rate of the analyzer must be consistent are more divergent at low frequencies than f2, it is

with the analyzer's frequency window and the post-detec- difficult (or impossible) to gain good confidence on
tion bandwidth. If one has a frequency window of 1 Hz, estimates of oJ2(r). For noise processes that are less
one cannot reliably estimate the intensity of a bright divergent than f2, no problem exists.
line unless the slewing rate is much slower than 1 Hz/s. It is worth noting that if we were interested in
Additional post-detection filtering will further reduce the o2(N = o, r, r), then the limit noise would become
maximum usable slewing rate. Sv(f) '-~ f° instead of f2 as it is for o2(2, r, T). Since most

3) Spectral Density Estimation from Time Domlain real signal generators possess low-frequency divergent
Data: It is beyond the scope of this paper to present a noises, (af2(2, r, T)) is more useful than o-(N = ~, r, r).
comprehensive list of hazards for spectral density estima- Although the sample variances or2(2, T, ) will not be
tion; one should consult the literature [2]-[5]. There normally distributed, the vrariance of the average of m
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independent (nonoverlapping) samples of o- (2, X, T) APPENDIX I
(i.e., the variance of the Allan variance) will decrease as We want to derive (23) in the text. Starting from (10)
1/m provided the conditions on low-frequency divergence we have
are met. For sufficiently large m, the distribution of the
m sample averages of or'(2, r, T) will tend toward normal Kff(N, T, r))
(central limit theorem). It is thus possible to estimate N / N 2
confidence intervals based on the normal distribution. = 1 Z (Yn- Z yk))
As always, one may be interested in r values approach- 1 l N k=1

ing the limits of available data. Clearly, when one is 1 fN N N

interested in r values of the order of a year, one is severely = N-i .1 (V)-N E (ZJZ
limited in the size of m, the number of samples of o_2 (2, , r).
Unfortunately, there seems to be no substitute for many - 1 ± n+ rt + t

samples and one extends r at the expense of confidence in (N - n1)T ddntn
the results. "Truth in packaging" dictates that the sample 1 N N t; +r tj +
size m be stated with the results. - E E dt" f dt' (Y(t')Y(t"))j (56)

b) Spectral Density: As before, one is referred to the N 1=1 j=1 t
literature for discussions of spectrum estimation [2]-[5]. where (9) has been used. Now
It is worth pointing out, however, that for S,(f) there are
basically two different types of averaging that can be (y(t')y(t")) = Ry(t' - t") (57)
employed: sample averaging of independent estimates where R,(-) is the autocorrelation function of y(t) and
of Sjf), and frequency averaging where the resolution is the Fourier transform of S,(f), the power spectral
bandwidth is made much greater than the reciprocal data density of y (t). Equation (57) is true provided that
length. y(t) is stationary (at least in the wide or covariance

sense), and that the average exists. If we assume the
VIII. CONCLUSIONS power spectral density of y(t), Ss,(f) has low and high

A good measure of frequency stability is the spectral frequency cutoffs fl and fh (if necessary) so that
density S,(f) of fractional frequency fluctuations y(t).
An alternative is the expected variance of N sample f S(f) df
averages of y(t) taken over a duration r. With the begin- o
ning of successive sample periods spaced everv T units exists, then if y is a random variable, the average does
of time, the variance is denoted by o-'(N, T, r). The exist and we may safely assume stationarity.
stability measure, then, is the expected value of many In practice, the high-frequency cutoff fh is always
measurements of o-2(N, T, r) with N = 2 and T = ; present either in the device being measured or in the
that is, o2(r) For all real experiments one has a finite measuring equipment itself. When the high-frequency
bandwidth. In general, the time domain measure of cutoff is necessary for convergence of integrals of S,(f)
frequency stability o-¢ (r) is dependent on the noise band- (or is too low in frequency), the stability measure will
width of the system. Thus, there are four important depend on fh. The latter case can occur when the measur-
parameters to the time domain measure of frequency ing equipment is too narrow-band. In fact, a useful
stability. type of spectral analysis may be done by varying fh

N Number of sample averages (N = 2 for preferred purposefully [18].
measure). The low-frequency cutoff f, may be taken to be much

T Repetition time for successive sample averages smaller than the reciprocal of the longest time of inter-
(T = r for preferred measure). est. The results of calculations as well as measurements

r Duration of each sample average. will be meaningful if they are independent of f, as f,
fh Svstem noise bandwidth. approaches zero. The range of exponents in power law

spectral densities for which this is true will be discussed
Translations among the various stability measures for and are given in Fig. 1.

common noise types are possible, but there are significant To continue, the derivation requires the Fourier trans-
reasons for choosing N = 2 and T = X- for the preferred form relationships between the autocorrelation function
measure of frequency stability in the time domain. This and the power spectral density
measure, the Allan variance, (N = 2) has been referenced

Alhog[1] 2]S2(J) appears to be a function of the single Su(f) = 4 Jft£(Tr) COS 2wfrf dr
variable f, actual experimental estimation procedures a
for the spectral density involve a great many parameters. Rg(T) = Jw Su(f) cos 2irfr df. (8
Indeed, its experimental estimation can be at least as °(8
involved as the estimation of o2(r). Using (58) and (57) in (56) gives
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QT(N, T, T)) = -N- 1)2 Jdf S(f) dtn I
in+-r~ ~ 1N N co4 0 0 0 0 0 0

* dt' COS 27rf(t! t") -N df Sy(f)
tn- - 3 il0j 0 0 0 0 0

titi+,+ t i ar

* fti+T dt" dt' cos 27rf(t' -t") 2 10 O\ O 0 0 0

(1 t0 0 o O O O

[ dfSuyj(fif)in 7rf] o-(AN 1)r72r)0 1

N I'0 I 0 \
0 0

N1 E [ df 7(rf)2 (2 cos 27rfT(j i)
AT (2f) -2 0 0'O

1] ~ ~~~~~~0o o O01 0 0
-COS 2i7rf1L'(j i) + r] - cos 2wf[T(j - i)- r])

-4- c 2 O O [
(59)

(The interchanges in order of integration are permissible
here since the integrals are uniformly convergent with Fig. 5. Region of summation for i and k for N 4.
the given restrictions on Sy,(f).) The first summation in
the curly brackets is independent of the summation in- This may be written as
dex n and thus gives just (26

N tdf S (t) sinrfr (6)S = N + 2 Re [N __1d E eikx (66)
N fdfS ((t)5i~.jT f)where Re[U] means the real part of U and d/dx

The kernel in the second term in the curly brackets is the differential operator. The series is a simple geo-
may be further simplified metric series and may be summed easily, giving

2 cos 27rf'(j- i) - cos 27rf(T(j - i) + T) 1 xe-I
S = N ~~~~~~~+2 Re --Id ex_e

- cos 2irf(T(j - i) - r) = 4 sin2 7rfr cos 2irfT(j- i). dx I e'x
(61) = 12Rf - eiNx - N(I1-ex

The second term is then 4= N + 2 Re sin1 x/2 I

1 o N N sin Nx/2
-N(t df ( sin2 7rfr cos 27rfT(j - i)) (62) sin2 x/2 (67)

(The interchange of summation and integration is justi- Combining everything we get, after some rearrangement,
fied.) We must now do the double sum. Let (0f2(N, T, T))

j-i-k NV cf df SY(f) sin2 wfr sin2 7rrfNr (6)

2rfT =x. (63) (N f )
N sInlii]

Changing summation indices from i and i to i and k where r = T/r. This is the result given in (23).
gives for the sum We can determine a number of things very easily from

this equation. First let us change variables. Let irfr = u,
N N N N-i then

Sm Cos x(j - i) = cos kx. (64) te
i=lj=l i=1 k=l-i (0 2(N, T, r))

The region of summation over the discrete variables i \ 2 (
and k isshowninFig. 5 forN = 4. N

co

du S( u sin' u -_ in Nru
The summand is independent of i so that one may inter- (N -1)7rT O ir/ u N sin ruj

change the order of summation and sum over i first. (69)
The summand is even in k and the contributions for Thekernelbehaveslikeu2 as u -O 0 and likeu2 as u -* co.
k < 0 are equal to those for k > 0, and so we may pull Therefore (&f2(N, T, T)) is convergent for power law
out the term for k = 0 separately and write spectral densities, 5,/f) =hafa without any low- or high-

fN-1 N-k \ N frequency cutofFs for -3 < a < 1. Using (69) for power
S = 2(Z cos lkx E i)±+Zi law spectral densities we find

kl i=li +

N-1 (2~~~~Q(N, T, r)) Thra-hCf, -3 < at K<
= 2(ZE(N-k) coslkx) +N. (6)= 7Mha.C . ,,-a-i
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and APPENDIX II

N________ Sii2u fs i NruLet y (t) be a sample function of a random noise pro-
Ca _= N X du ua sin2 u {1 _ lin2 Nru } cess with a spectral density Sv(f). The function y(t) isCa du u1)2±1 2 2(N 1 N sin ru assumed to be pure real and Sy (f) is a one-sided spectral

(70) density relative to a cycle frequency (i.e., the dimensions
of Sy (f) are that of y2 per hertz). (For additional infor-

This is the basis for the plot in Fig. 1 in the text of # mation see Appendix I, [7], [8], [18].)
versus a. For a > 1 we must include the high-frequency Let x (t) be defined by the equation
cutoff fh,
For N = 2 and r =1 the results are particularly sim- x(t)-x

.t(1)y(t) ~~~~(73)
pie. We have X dt =

2 o Define the following. to is arbitrary instant of time and
(aY(2, r, T)) = _r X,h+1I du u'2 sin4 u (71) t + T, n = 0,1,2, , (74)

t-+ 1Ct,~ xt
+ Tiy1 ) -. x( 74)

for power law spectral densities. For N = 2 and gen- - y(t) dt + T)X (75)
eral r we get T n

iN
('Y(2, T, T)) Kg3N EZ gn (76)

1 r U and let fh be a high-frequency cutoff (infinitely sharp)
2 - L du Sy with 27rfhr >» 1.

cos 2u(r+ 1) cos 2u(r-1) Definition:
1-cos 2u-cos 2ru+ 2-2 T, / zN (

2 ((N, r)) N 1 ()N) (77)

9_ l0\ sin2 usin2 Special Case:
= 2~ ft du Sa ) sm s2mru. (72) (0 (2, T, r)) ( 2 ) (78)

The first form in (72) is particularly simple and is also
useful for r 1l in place of (71). Special Case:
Let us discuss the case for a > 1 in a little more de- o_2(7) = (o2(2, r, r))

tail. As mentioned above we must include the high-fre- -[x(t + 2r)- 2(to + T) +X(t')]2
quency cutoff fh for convergence. The general behavior =_2 - 2 -J (79)
can be seen most easily from (68). After placing the
factor T2 outside the integral and combining the factor Definition:
f2 with S, (f) we find that the remaining part of the + X(t0)]2). (80)
kernel consists of some constants and some oscillatory =
terms. If 2rfhr »> 1 it is apparent that the rapidly oscil- Consequence of Definitions:
lating terms contribute very little to the integral. Most D2(r) = 2 ro20(T) 2o-f(-). (81)
of the contribution comes from the integral over the
constant term causing the major portion of the r de- Definition:
pendence to be the T-2 factor outside the integral. This is X,2(T r) = ([z(t ± T + T) -X(t0 ± T)
the reason for the vertical slope at ,t = -2 in the X

p, versus a plot in Fig. 1 in the text. _x(to + r) + x(to)]2). (82)
One other point deserves some mention. The constant Consequence of Definitions:

term of the kernel discussed in the preceding paragraph
is different for r = 1 from the value for r # 1. This is )4x'(T, r) = 2r(_3(2, T, r)) (83)
readily seen from (72) for N = 2; for r = 1 the constant Special Case:
term is 3/2 while for r #z 1 it is 1. This is the reason
for 8,k(r - 1), which appears in some of the results of it'2(r, Tr) = D2(A). (84)
Appendix II. In practice, Ak(- 1) does not have zero RadmWly
width but iS smeared out over a width of approximzately RadmWl
(2wrfhrY-'. If there must be dead time r # 1, it is wise to S,(f) =-2 (S()= -
choose (r - 1) »> (27rfhT)>1 or (r - 1) << (27rfhT)'1 but ft (27r)2f1
with 2wrfhr »> 1. In the latter case, one may assume _T
r~ 1. r_-, 0.<f.<f;a.
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Quantity Relation (T, r) ho -17, r > 1

(2w)2 HI ho-T, r < 1. (100)(0f2(N, T7, r)) h-2 2T [r(N + 1)- 1], r . 1
(85) Flicker x

(cyN, T, r)) h_2 *N, r = 1 (86) Sy(f) = hi IfI(S)if(2ISf)

7h ) II r T/r, 2rfhr» 1, 2rfhT >> 1
0 < f < fh.av(r h -2 ()1, N =2,r= 1 (87)

Quantity Relation

6~~~~~~~~~~~~~~~~~(0(,T, T)) h -2+In(rhTD~(r) = 2ao2(r) 9(2w2 ( (88(JvNT,r) hl.(2)2- {2 + in (27rfhr)

4,'(xT r) h 26()H (3r 1), r > A+(N n)
_ AT~~~~~~~~~~~~~~~~~~~~~~~~~(N- 1)n=

h-2 ()T I , r < 1 (89) 1In [rn ]} >> 1 (101)

Flicker y (2(N )) ht N ±1)[2 1 (2wfthr) -_

Sv(f) = ht (J(1) = (21r)2fr3= 1 (102)

rT=l'/r, 0 < f < fh * crv2(O ) hl. 2(9)2 {3[2 + In (2tfhr)] - In 2
Quantity Relation

1N N = 2, r = 1 (103)
~~0'y T)) h-1.N(N I'

1

(N -nKnv(N, T, r)) h_ N(N1- Z)E (N-n) D (r) = 202(r) (2h)2 2{3[2 + In (2irfhr)] - In 2} (104)

* [-2 nr)2 In (nr) + (nr + 1)2 In (nr + 1)

±+(nr - 1)21in nr - lI] (90) 4t2 (T, r) h .(24 [2 + In (27fh-r)], r»>1

(o2(N, rT)) h AN InN (r 1) (91) 2N i ~~~~~~~~~~hi.(93[2 1n(rh r n 2}+2(wfr)
a(yr) h, .2 In 2, (N = 2, r 1) (92) r =1 (105)

DX2r) = 2a4(r) h1* 4r2 In 2 (93) h 4 [2 + in (2wf;T)], r « i

x2(,T) h-12[-2r2 Inr + (r + 1)2 In (r 1)

+ (r - 1)2 In Ir - 11] (94) White x

r~~~h_I2r2(2 + In r), r >>1 Sy(f) = h2f S((t) (27r)2)
-_l2T2(2-inrr, r << 1 (95) ri= T,r; ak(r 1) =1 if r = 1

White y (Random Walk x) ro, otherwise

Sy(f) = ho Sx.(f) - (2h)of 27rth»1,r>> O < f < th

r = T/I-, 0 f < fh Quantity Relation

Quantity Relation (o/(N, T, r)) h2 .N + fk(r -1) 2fh (106)

(G(N,y T, T)) TI-r , r > 1 (2M(N, r,T)) hN+ 12fh r=1

ho.6r(N ± 1) III~, Nr < 1 (96) 3
h2 4Q~-(r) h2 2 , N =2, r=1 (108)

Kov(N, r, r)) ho IrK_ r =1 (97) (T

D~(r) = 2a, (r) h2 -A27(109)
cv(r) ho|r|0 N = 2, r = 1 (98) (_T)

D7(r) = 2ot(r) ho.IrI (99) i,'(T, T) h2*[2 + Ak(r - 1)] 9f ) (110)
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Short Papers

Simple Voltage-to-Time Converter With High Linearity This paper presents a very simple circuit for voltage-to-time
converter. The circuit consists of only one monostable multivi-

YOSHIAKI TADOKORO AND TAKESHI ANAYAMA brator with a constant current source.
As shown in Fig. 1(a), the pulsewidth of the usual mono-

stable multivibrator is determined by the time constant CR
Abstract-A simple voltage-to-time converter having a high and not by the source voltage Vx. If we change the resistance

linearity of time/voltage relationship is described. This circuit R for a constant current source Io, as shown in Fig. 1(b), the
consists of one monostable multivibrator with a constant current pulsewidth is represented by the capacitance C, the constant
source. The circuit does not have a ramp generator and a voltage current Jo, and the voltage Vx. Namely, the pulsewidth
comparator. T is expressed as
The linearity error of the time/voltage relationship is less than

+0.05 percent for a voltage variation from 0.5 to 14 V. Ta- Vx. (1)
Io

I. INTRODUCTION In Fig. 1 (b), the amplitudes of output pulses are influenced by

Voltage-to-time converters a-re employed in digital voltme- the change of the source voltage Vx. On the other hand, out-
ters, A-D converters, pulsewidth modulators, etc. The opera- put pulses with the constant amplitudes can be obtained from
tion of the voltage-to-time converter is based mostly on the the circuit shown in Fig. l(c).
use of ramp generators and voltage comparators. 2 For high The experiment was performed in the circuit as shown in
linearity of the time/voltage relationship, the circuit of this Fig. 1(c) .
type is rather complex.

II. CALCULATION OF THE PU,LSEWIDTH AND

Manuscript received November 10, 1970. LIMITATION OF SIGNAL FREQUENCY
The authors are with the Department of Electronic Engineering, Tohoku Uni- Fi.2sosvlaewvfrsa ohcletrC n

versity, Aoba, Aramaki, Sendai, Japan.Fg hw otg aeorsa ohcletrC n
1 S. Imai, Transistor DA .AD Converter. Japan: SanHo, 1967, pp. 108-112. base 2 of the circuit shown in Fig 1(c).
2 B. D. Rakovich and 5. L. Tesic, "A wide range linear time delay circuit"20ng',

Electron. Eng., vol. 42, Apr. 1970, pp. 57-60. ' It is assumed that a signal trigger is applied to Cl and that


