Extension of tunable far-infrared spectroscopy to 7.9 THz

Hitoshi Odashima

Department of Physics, Toyama University, Gofuku 3190, Toyama 930, Japan

Maki Tachikawa, Lyndon R. Zink, and Kenneth M. Evenson

Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80303

Received February 18, 1997

We generated tunable far-infrared radiation by mixing CO_2 -laser, ¹⁵NH₃-laser, and microwave radiations in a W–Co metal–insulator–metal diode. We used this far-infrared radiation to measure accurately the torsion–rotation transitions of CH₃OH in the 6–8-THz region.

In the 5-10-THz region of the far infrared (FIR), highresolution spectroscopy is difficult because tunable, coherent radiation is difficult to produce.¹ Although Fourier-transform spectroscopy covers this region, its typical resolution is ~ 50 MHz, and its accuracy is limited to $\sim 3 \text{ MHz.}^2$ The powerful Schottkydiode "FIR laser plus microwave sideband" mixing technology³ recently exploited for studies of weakly bound clusters,⁴ molecular ions,⁵ and carbon clusters⁶ has not been extended beyond 4.5 THz and may be limited by the intrinsic capacitance of these mixers. In 1984 Evenson and co-workers invented a tunable far-infrared (TuFIR) spectrometer based on the difference frequency of two CO_2 lasers in a metal-insulator-metal (MIM) diode.⁷⁻⁹ This method provides tunable, coherent FIR radiation with a frequency uncertainty of 14 kHz,¹⁰ permitting measurement of FIR transition frequencies of atoms and molecules with an accuracy that depends generally on finding the center of the absorption line (for CH_3OH , less than 100 kHz).^{11,12} FIR transitions up to 6.5 THz were observed when an isotopic ${}^{13}CO_2$ laser was used as one of the two CO₂ lasers and a regular ¹²CO₂ laser was used as the other.¹¹ The maximum FIR frequency is limited by the maximum frequency difference between two CO₂ lasers.

To generate tunable, coherent radiation above 6 THz, we replaced one of the two CO_2 lasers in a traditional TuFIR spectrometer with an optically pumped, mid-infrared ¹⁵NH₃ laser. Because the ¹⁵NH₃ laser has several lines at lower frequencies (23–27 THz) (Ref. 13) than a ¹³CO₂ laser has (26–31 THz),¹⁴ difference frequencies up to 10 THz are possible.

A block diagram of the spectrometer is shown in Fig. 1. The ammonia laser is optically pumped by the $R(42)_I$ line of a CO₂ laser, which is coincident with the aR(2,0) transition of ¹⁵NH₃. The pump laser power is ~18 W. A grating selects one of five ¹⁵NH₃ laser lines, aP(4,0), aP(4,3), aP(5,3), aP(6,0), or aP(6,3), with a typical power of 300–600 mW. More details of this laser are described elsewhere.¹⁵ After passing through a 17-cm-long CH₃OH absorption cell, which blocks any residual CO₂ laser radiation superposed upon the ammonia laser beam, the ammonia-laser output is split in half. The first half is used to stabilize the ammonia-laser frequency; the second half is used to generate FIR radiation.

The first half is double passed through a 17-cmlong absorption cell of $^{15}\text{NH}_3$ at ~1.3 Pa (10 mTorr), and a saturation-dip signal is observed with a HgCdTe detector. A typical depth of the dip is ~15% of the absorption, and a typical width is a few megahertz. The ammonia laser is stabilized to the center of this dip, with its third-derivative signal used as an error signal.^{16,17} This 3*f* servo technique gives the $^{15}\text{NH}_3$ laser a frequency stability of 100–150 kHz, reducing a systematic frequency shift that is due to an asymmetric gain profile caused by cavity misalignment, off-resonance pumping, and other effects. The 3*f*-stabilized $^{15}\text{NH}_3$ laser frequencies will be reported in Ref. 18.

The other half of the ammonia-laser radiation (frequency ν_1) is mixed with CO₂-laser radiation (ν_2) in a W–Co MIM diode. This CO₂ laser is stabilized to the saturation dip in a 4.3- μ m fluorescence signal of CO₂ with the traditional 1*f* servo technique.¹⁹ The CO₂ reference frequencies are reported in Ref. 14. Typical incident powers are 150 mW for the CO₂ laser and 100–150 mW for the ¹⁵NH₃ laser. Several milliwatts of microwave radiation from the synthesized sweeper ($1 \le \nu_{MW} \le 20$ GHz) is also coupled onto the diode. The W–Co MIM diode generates two tunable

Fig. 1. Block diagram of the TuFIR spectrometer based on the difference frequency of CO_2 and ${}^{15}NH_3$ lasers. Det's, detectors; Amp., amplifier; Osc., oscillator.

FIR frequencies equal to $\nu_{\text{FIR}} = |\nu_1 - \nu_2| \pm \nu_{\text{MW}}$. One changes the synthesized FIR frequency by tuning the microwave source. The generated FIR radiation is collimated with an off-axis parabola and sent through a 1.1-m-long sample cell with $80-\mu$ m-thick polypropylene windows at both ends. It is then detected by a gallium-doped germanium (Ge:Ga) photoconductive detector with an $8-16-\mu m$ diamond scatter filter used to reduce the IR radiation for $\lambda < 14 \ \mu$ m. A 20-cm-long cell of $^{15}\mathrm{NH}_3$ at 133 Pa (1 Torr) is placed in front of the sample cell to eliminate any residual ¹⁵NH₃ laser radiation. The frequencies of both lasers are modulated at 450 Hz with opposite phases for frequency stabilization; hence the generated FIR frequency is also modulated with an amplitude of a few megahertz. The detected signal is demodulated by a lock-in amplifier operated in the 1f mode. Both the microwave sweeper and the lock-in amplifier are computer controlled, and the first-derivative curve of the absorption is recorded on a computer.

 CH_3OH was chosen as a sample gas because of its rich torsion-rotation spectrum over 6 THz. CH_3OH pressure was ~1.3 Pa (10 mTorr), and five transitions

Fig. 2. Observed spectral line of the $A(n,k,J) = (1,5,12) \leftarrow (0,4,11)$ transition of CH₃OH at 7.6 THz. The time constant of the lock-in amplifier is 300 ms. The measured spectrum is the solid curve, and the fitted spectrum is the dashed curve.

from 6 to 8 THz were measured. A plot of the observed absorption from the $A(n, K, J) = (1, 5, 12) \leftarrow (0, 4, 11)$ transition at 7.6 THz is shown in Fig. 2, where *n* is the torsional quantum number. The observed transitions were assigned by reference to Fourier-transform spectrometer data.²⁰ The measured transition frequencies are listed in Table 1. They are the average of several measurements, and their 1σ uncertainties are given by $(\delta s^2 + \delta f^2)^{1/2}$, where δs is the statistical deviation in the repeated measurements and δf is the absolute uncertainty of the difference frequency. The value of δf is given by $(\delta c^2 + \delta n^2)^{1/2}$, where δc is the uncertainty of the CO₂ laser frequency and δn is that of the ¹⁵NH₃ laser frequency. In our system, δc is less than 25 kHz, whereas δn is 100–150 kHz. The uncertainty of the difference is dominated by the ¹⁵NH₃ frequency uncertainty. In the 6–7-THz region, δs and δf make comparable contributions to the total uncertainty of the measured frequency; however, above 7 THz, δs dominates the total uncertainty because of the lower signalto-noise ratio and a larger Doppler width.

Both reduced MIM diode efficiency and reduced detector sensitivity are responsible for the poor signal-to-noise ratio above 7 THz. The MIM diode efficiency decreases as the generated FIR frequency increases, probably because of this diode's finite capacitance. The efficiency is estimated from an analysis based on the equivalent circuit of a MIM diode.²¹ A typical capacitance of 2.5×10^{-3} pF reduces the diode efficiency at 8 THz to ~10% of that at 3 THz. Typical FIR power of ~1 nW is provided at 8 THz. We have observed spectra of CH₃OH up to THz with the Ge:Ga photoconductive detector whose sensitivity peaks near 3 THz and drops to ~10% at 8 THz.

We used third-order generation, in which tunable FIR radiation is obtained with two CO₂ lasers plus microwave sidebands, because of its wide tuning range (± 20 GHz). However, second-order generation, in which tunable FIR radiation is obtained with a tunable-waveguide CO₂ laser without the microwave sidebands, may provide higher-frequency operation because it produces several times as much FIR power. Furthermore, a Ge:Be photoconductive detector is more sensitive in the 6–10-THz region.²² With second-order generation and a Ge:Be detector, this TuFIR technique should be applicable up to ~10 THz.

Table 1. Ob	served Frequ	encies of	CH ₃ OH
-------------	--------------	-----------	--------------------

Transition Symmetry	$(n',K',J') \leftarrow (n'',K'',J'')$	Laser Lines		Observed Frequency (MHz)	
		CO_2	$^{15}\mathrm{NH}_3$	Previous Work ^a	This $Work^b$
A	$(2, 8, 18) \leftarrow (1, 7, 17)$	$R(6)_{II}$	aP(4, 0)	6567405	6567405.01(32)
A	$(3, 6, 6) \leftarrow (2, 5, 5)$	$R(36)_{II}$	aP(4,0)	7134698^c	7134675.03(73)
E	$(1, -4, 9) \leftarrow (0, -3, 9)$	$R(36)_{II}$	aP(4,0)	7134736^{c}	7 134 730.84(117)
A	$(1, 5, 12) \leftarrow (0, 4, 11)$	$R(30)_{II}$	aP(5,3)	7658036	7658033.06(76)
E	$(1, -4, 15) \leftarrow (0, -3, 14)$	$R(42)_{ m II}$	aP(5,3)	7851010	7851003.94(75)

^{*a*}Wave numbers in Ref. 20 are converted into frequencies for comparison.

^bThe numbers in parentheses are the estimated 1σ uncertainties in units of the last quoted digits.

^cThese two transitions are not well resolved in the Fourier-transform spectra, which could explain the large deviation from the present measurements.

The authors thank Lew Mullen for his technical support. This research was supported by NASA contract W-18, 913. M. Tachikawa is grateful to the Telecommunication Advancement Foundation for providing the funds for his study at the National Institute of Standards and Technology.

References

- K. M. Evenson, in Atomic, Molecular, & Optical Physics Handbook, G. W. F. Drake, ed. (American Institute of Physics Press, Woodbury, New York, 1996), p. 473.
- G. Moruzzi, P. Riminucci, F. Strumia, B. Carli, M. Carlotti, R. M. Lees, I. Mukhopadhyay, J. W. C. Johns, B. P. Winnewisser, and M. Winnewisser, J. Mol. Spectrosc. 144, 139 (1990).
- D. D. Bićanić, B. F. J. Zuidberg, and A. Dymanus, Appl. Phys. Lett. **32**, 367 (1978).
- K. Liu, J. D. Cruzan, and R. J. Saykally, Science 271, 929 (1996).
- G. A. Blake, K. B. Laughlin, R. C. Cohen, K. L. Busarow, D.-H. Gwo, C. A. Schmuttenmaer, D. W. Steyert, and R. J. Saykally, Rev. Sci. Instrum. 62, 1693 (1991).
- C. A. Schmuttenmaer, R. C. Cohen, N. Pugliano, J. R. Heath, A. L. Cooksy, K. L. Busarow, and R. J. Saykally, Science 249, 897 (1990).
- K. M. Evenson, D. A. Jennings, and F. R. Petersen, Appl. Phys. Lett. 44, 576 (1984).
- I. G. Nolt, J. V. Radostitz, G. DiLonardo, K. M. Evenson, D. A. Jennings, K. R. Leopold, M. D. Vanek, L. R. Zink, A. Hinz, and K. V. Chance, J. Mol. Spectrosc. 125, 274 (1987).

- F. Matsushima, H. Odashima, D. Wang, S. Tsunekawa, and K. Takagi, Jpn. J. Appl. Phys. 33, 315 (1994).
- T. D. Verberg and K. M. Evenson, IEEE Trans. Instrum. Meas. 42, 412 (1993).
- F. Matsushima, K. M. Evenson, and L. R. Zink, J. Mol. Spectrosc. 164, 517 (1994).
- H. Odashima, F. Matsuchima, K. Nagai, S. Tsunekawa, and K. Takagi, J. Mol. Spectrosc. **173**, 404 (1995).
- 13. K. J. Siemsen and J. Reid, Opt. Lett. 10, 594 (1985).
- A. G. Maki, C.-C. Chou, K. M. Evenson, L. R. Zink, and J.-T. Shy, J. Mol. Spectrosc. 167, 211 (1994).
- M. Tachikawa and K. M. Evenson, Opt. Lett. 21, 1247 (1996).
- L. R. Zink, F. S. Pavone, R. Meucci, M. Prevedelli, and M. Inguscio, Opt. Commun. 77, 41 (1990).
- J. L. Hall, H. G. Robinson, T. Baer, and L. Hollberg, in Advances in Laser Spectroscopy, F. T. Arecchi, F. Strumia, and H. Walther, eds. (Plenum, New York, 1981), p. 99.
- H. Odashima, M. Tachikawa, L. R. Zink, and K. M. Evenson, "Heterodyne frequency measurement of a sub-Doppler stabilized mid-infrared ¹⁵NH₃ laser," J. Mol. Spectrosc. (to be published).
- 19. C. Freed and A. Javan, Appl. Phys. Lett. 17, 53 (1970).
- G. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, and F. Strumia, *Microwave, Infrared* and Laser Transitions of Methanol (CRC, Boca Raton, Fla., 1995), Table 9.2.
- I. H. Odashima, K. Yamamoto, F. Matsushima, S. Tsunekawa, and K. Takagi, IEEE J. Quantum Electron. 32, 350 (1996).
- 22. E. E. Haller, Infrared Phys. Technol. 35, 127 (1994).