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Noise analysis of unevenly spaced time series data

C. Hackman and T. E. Parker

Abstract. Two-way satellite time and frequency transfer (TWSTFT) data are typically recorded on Monday,

Wednesday and Friday. This produces an unevenly spaced time series on which it is dif® cult to perform an

accurate two-sample variance analysis. We have investigated the effect of uneven data spacing on the computation

of [1-2]. Evenly spaced simulated data sets were generated for noise processes ranging from white phase

modulation to random walk frequency modulation. was then calculated for each noise type. Data were

subsequently removed from each simulated data set to create two unevenly spaced sets with average intervals

of 2,8 and 3,6 days. These sparse sets correspond to typical TWSTFT data patterns. was then calculated

for each sparse data set using two different approaches. First, the missing data points were replaced by linear

interpolation and calculated from this now full data set. The second approach ignored the fact that the data

were unevenly spaced and calculated as if the data were equally spaced with average spacing of 2,8 or

3,6 days. The impact of uneven data spacing on the results of these two approaches is signi® cant and is discussed.

Finally, techniques are presented for correcting errors caused by uneven data spacing in simulated TWSTFT data

sets, and the appropriate technique is applied to a real data set.

1. Introduction

Data points obtained from an experiment are often not

evenly spaced. In this paper, we examine the application

of [1-2] to the unevenly spaced time-series

data ( is the data spacing) obtained from two-

way satellite time and frequency transfer (TWSTFT).

We do so by using with both evenly and

unevenly spaced data of known power-law noise type

and magnitude. The noise types examined are white

phase modulation (WHPM), ¯ icker phase modulation

(FLPM), white frequency modulation (WHFM), ¯ icker

frequency modulation (FLFM), and random walk

frequency modulation (RWFM) [3].

is not the classical variance of , but rather

a two-sample variance which can be related to the

modi® ed Allan variance, mod , by the equation

[1-2]. Two-sample variances

are preferred to classica l variances in analysing the

frequency or time stability of oscillators because it is

common for oscillators to display non-white frequency

noise at long averaging times. For a white noise process,

the classical variance converges on a ® xed value as the

number of data samples increases. The uncertainty of

that value also decreases. However, if the noise is not

white, the classica l variance does not converge as the

number of data samples increases. In fact, the value

obtained for the classical variance will depend on the

number of samples used. This problem can be avoided
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by using one of the family of two-sample variances (the

Allan variance, ; the modi® ed Allan variance,

mod ; and the time variance, . These

estimators of frequency or time stability converge for

white and non-white processes toward a ® xed value

for a given averaging time even as the sample size

increases. Furthermore, by observing the slopes present

in a log-log plot of , mod , or

versus the averaging time , one can determine which

power-law noise processes dominate at which averaging

times [2-5]. The Allan variance can be used to

determine the presence of RWFM, FLFM and WHFM,

but cannot distinguish between WHPM and FLPM. For

this reason, the modi® ed Allan variance mod

was devised: it can distinguish between all ® ve of the

power-law noise processes. The time variance is

simply a rescaling of the modi® ed Allan variance and

is more useful in analysing systems in which white or

¯ icker phase noise is of primary interest . This is the

case for a time transfer system such as TWSTFT. In

this paper we analyse the use of the time deviation

, which is the square root of the time variance.

Vernotte et al. [6] studied the analysis of noise

and drift in unevenly spaced pulsar data. However, the

data obtained from pulsar studies are much more sparse

in time than are the data obtained from TWSTFT.

For example, Vernotte et al. [6] generated a sequence

of 8192 evenly spaced data points with known noise

type and then removed points so that only 167 of

the initial 8192 points remained. They then tried to

use these 167 points to deduce the noise type of the

underlying 8192-point sequence. In TWSTFT, the task

is less daunting: time transfers are typically measured
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on Monday, Wednesday and Friday, so that, in a perfect

world, we would have a data density of three data points

present out of a possible seven.

This paper is not intended to be a rigorous treatment

of how to calculate in all possible cases of

unevenly spaced data. Rather, our purpose is to suggest

methods and corrections which may be applied to data

such as those produced by TWSTFT in order to obtain

a more accurate assessment of the underlying time

stability and noise type.

The National Institute of Standards and Technology

(NIST) regularly performs time transfers with several

laboratories in North America and Europe. Two of these

laboratories are the United States Naval Observatory

(USNO) in Washington, D.C., and the Van Swinden

Laboratorium (VSL) in Delft, the Netherlands. The

transfers with the USNO occur on Monday, Wednesday

and Friday. The transfers with the VSL occurred on

Monday and Wednesday for modi® ed Julian dates

(MJDs) 49387 to 49533 (4 February 1994 to 30 June

1994). Since then, they have occurred on Mondays,

Wednesdays and Fridays. We use the NIST-USNO

and the NIST-VSL data obtained from MJDs 49387

to 49770 (4 February 1994 to 22 February 1995) as our

data-spacing templates for this experiment. We use two

different data-spacing templates because, among all of

the time transfers that the NIST performed over the

period MJD 49387 to 49770, the transfers that occurred

with the greatest frequency were those with the USNO.

Among those that occurred with lesser frequency were

those with the VSL.

2. Method of evaluation

We evaluated the use of with unevenly spaced

data having the ® ve different power-law noise types:

WHPM, FLPM, WHFM, FLFM and RWFM. Ten data

® les were generated for each noise type. The WHPM,

WHFM and RWFM ® les were generated by using

integration in combination with the random-number

generator of the VAX FORTRAN version 5.0 math

library. The FLPM and FLFM ® les were generated

according to the algorithm of Kasdin and Walter [7]

and used the random number generator RAN1 of Press

et al. [8]. The only difference between the ten ® les of a

given noise type was the seed number used to generate

the data ® le. All ten data ® les of each noise type had

384 evenly spaced data points spaced one day apart,

and the data points were assigned time tags of MJDs

49387 through 49770. In the next step, we removed data

points from each ® le so that the remaining data points

were aligned with the data points obtained from the

NIST-USNO TWSTFT for MJDs 49387 to 49770. This

produced a ® le containing 137 unevenly spaced data

points. The missing data points were then ® lled in by

performing linear interpolation between the remaining

data points. After this last step, there are once again

384 evenly spaced data points.

This process was also performed using the data

spacing obtained from the NIST-VSL time transfers for

MJDs 49387 to 49770. Therefore, for each seed number

of each noise type, we ® nally had ® ve data ® les:

File Type 1: The originally generated 384 evenly

spaced data points with known noise type

and magnitude.

File Type 2: A data ® le of 137 data points spaced as in

the NIST-USNO time transfers of MJDs

49387 to 49770. This ® le is obtained by

removing the appropriate data points from

File #1. The average spacing (see below)

is 2,816 days.

File Type 3: File #2 with the missing data points ® lled

in by linear interpolation.

File Type 4: A data ® le of 108 data points spaced as

in the NIST-VSL time transfers of MJDs

49387 to 49770. This ® le, like File #2,

is obtained by removing points from File

#1. The average spacing (see below) is

3,579 days.

File Type 5: File #4 with the missing data points ® lled

in by linear interpolation.

Having created all ® fty ® les for a given noise type,

we then performed a analysis of each ® le. For

the data ® les with even spacing (File Types 1, 3 and 5

above) we computed ; = 1, 2, 4, 8, 16,

32, 64, 128; = 1 day) in the usual fashion [1-2].

For the ® les with unevenly spaced data (File Types 2

and 4) we computed by treating the adjacent

data points as if they were evenly spaced with

calculated as follows:

= (1)

where MJD ® rst and MJD last are the time tags for the

® rst and last data points, and is the number of data

points. For File Type 2, = 2,816 days, and for

File Type 4, = 3,579 days. In both of these latter

cases, we computed for equal to 1, 2,

4, 8, 16 and 32.

Having obtained versus for all ® fty ® les,

we then computed the average values of for

each ® le type. For example, we had, for File Type 3,

ten sets of versus , where = 1, 2, 4, 8, 16, 32,

64 and 128 days. The average value of ( = 1 day)

was calculated from the ten values of ( = 1 day). We

repeated this process for ( = 2 days), ( = 4 days),

. . . up to ( = 128 days). Therefore, for each power-

law noise type, we ® nally have ® ve plots of

versus :

(1) Average = 1, 2, 4, 8, 16, 32, 64 and

128 days for File Type 1, i.e. the ® les with known

noise type. This plot shows the ª correctº values

for .
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(2) Average = 2,816, 5,632, 11,264, 22,528,

45,056 and 90,112 days for File Type 2. This

represents the results we obtain by using unevenly

spaced data with the NIST-USNO distribution.

(3) Average = 1, 2, 4, 8, 16, 32, 64 and

128 days for File Type 3. This represents the

results we obtain by taking unevenly spaced

data with the NIST-USNO distribution, performing

linear interpolation to make an evenly spaced data

® le, and then performing the analysis.

(4) Average = 3,579, 7,158, 14,316, 28,632,

57,264 and 114,528 days for File Type 4. This

represents the results we obtain by using unevenly

spaced data with the NIST-VSL distribution.

(5) Average = 1, 2, 4, 8, 16, 32, 64 and

128 days for File Type 5. This represents the

results we obtain by taking unevenly spaced data

with the NIST-VSL distribution, performing linear

interpolation to make an evenly spaced data ® le,

and then performing the analysis.

Finally, for each average value of for File

Types 2 to 5, we computed a ª correction factorº . The

correction factor is de® ned as:

(2)

In other words, multiplying the values

obtained using File Type by the correction factors

for File Type produces the correct values for

as given by File Type 1. Because the values for File

Types 2 and 4 do not match the values for File Type 1,

various types of interpolation were used to obtain the

correction factors for these two ® le types. The details of

obtaining the correction factors for the different noise

types and ® le types are discussed in the next section.

3. Results

Figures 1 to 5 show the results obtained for the noise

types WHPM, FLPM, WHFM, FLFM and RWFM,

respectively. As mentioned above, each of the points

shown corresponds to the mean of ten values. The

standard deviation of each set of ten values was also

computed, but, for visual clarity , error bars indicating

± 1 standard deviation are shown only on the File Type 1

(i.e. correct) values. Approximately the same size error

bars should be applied to each of the ® le type curves.

Figure 1 shows the results obtained for white PM

noise. There are several important points here. First of

all, File Types 3 and 5 (interpolating unevenly spaced

data to form evenly spaced data) yield values of

which are much too small when is less than the

of the corresponding unevenly spaced data set. On the

Figure 1. The average values of obtained from

simulated WHPM data. File Type 1 indicates the correct

values obtained from the original evenly spaced simulated

data. The error bars on the File Type 1 data are the standard

deviations associated with each of the average File Type 1

values. File Type 2 and File Type 3 show the results

obtained when some of the original data points are deleted,

thus forming an average data spacing of 2,816 days, and

then the remaining points analysed two different ways.

File Type 4 and File Type 5 indicate results obtained when

data are decimated to produce an average data spacing

of 3,579 days. For visual clarity, the error bars are not

shown for File Types 2 to 5. However, the sizes of the

missing error bars are approximately the same as those

shown for File Type 1.

Figure 2. The average values of x obtained from

simulated FLPM data. See Figure 1 caption for more details.
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other hand, File Types 2 and 4 (the unevenly spaced

data) yield values which have the ±1/2 slope

appropriate to white PM [1], but which are consistently

too high. In fact, for ³ 8 days, all of the methods used

converge to yield approximately the same too-large

values for .

For File Types 2 and 4, the correction factor is in

theory constant for all values of and can be expressed

as:

(3)

It is easily understood why the calculation of

from unevenly spaced data with an underlying WHPM

process yields the correct slope but values of

that are uniformly too high. With WHPM noise each

data point in the time series is independent of all others.

Therefore, the point-to-point ¯ uctations are independent

of the time between the points and

where is the same value throughout this equation.

Because this is true, and because the log-log plot for the

File Type 1 data has a ±1/2 slope, the results obtained

from the File Type 2 and File Type 4 data will also

have the correct ±1/2 slope.

Figure 2 shows the ¯ icker PM results. Once again,

File Types 3 and 5 yield values of which are

Figure 3. The average values of obtained from

simulated WHFM data. See Figure 1 caption for more

details.

Figure 4. The average values of x obtained from

simulated FLFM data. See Figure 1 caption for more details.

too small at short averaging times. Also, the lower-

values of for File Types 2 and 4 are again

too high. However, the results obtained from all ® le

types converge toward the correct value as increases.

Similar results are obtained for white FM (Figure 3)

and ¯ icker FM (Figure 4).

Figure 5 shows the RWFM results. Here, the use of

interpolated data (File Types 3 and 5) provides virtually

the same results as the originally generated data ® le

(File Type 1) and the use of unevenly spaced data (File

Types 2 and 4) provides values of which are too

Figure 5. The average values of x obtained from

simulated RWFM data. See Figure 1 caption for more

details.
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Table 1. Correction factors for File Types 3 and 5.

/days WHPM FLPM WHFM FLFM RWFM

USNO VSL USNO VSL USNO VSL USNO VSL USNO VSL

1 4,02 4,74 3,28 4,02 2,71 3,24 1,94 2,15 1,22 1,23

2 1,56 1,83 1,51 1,85 1,51 1,80 1,38 1,53 1,16 1,18

4 0,88 0,93 1,07 1,22 1,16 1,32 1,13 1,24 1,07 1,11

8 0,67 0,64 0,98 1,01 1,05 1,13 1,04 1,08 1,02 1,06

16 0,60 0,53 0,98 0,96 1,01 1,02 1,01 1,02 1,01 1,02

32 0,61 0,57 0,95 0,94 1,00 1,00 1,00 1,01 1,00 1,00

64 0,58 0,53 0,91 0,93 1,00 1,00 1,00 1,00 1,00 1,00

128 0,50 0,49 1,02 1,08 1,00 1,00 1,00 1,00 1,00 1,00

large at small . In fact, as we progress from the WHPM

process to the low-frequency-dominated noise processes

(e.g. RWFM) [3], the use of linear interpolation to ® ll

in missing data points becomes an increasingly better

approximation of the truth. For smaller values of ,

using the unevenly spaced data becomes an increasingly

worse approximation of the truth. As we progress from

FLPM to RWFM, the results obtained using all methods

converge on the correct value as increases.

From the results shown in Figures 1 to 5 we

have computed correction factors. Table 1 shows

the correction factors obtained from the ® le types

(3 and 5) which have evenly spaced data. These

correction factors were obtained by simply taking the

ratio

where = 1 day. Tables 2 to 3 show the correction

factors obtained for the ® le types (2 and 4) with

unevenly spaced data. Because the averaging times for

Table 2. Correction factors for File Type 2.

/days WHPM FLPM WHFM FLFM RWFM

2,816 0,60 0,67 0,80 0,64 0,16

4 0,59 0,71 0,87 0,76 0,27

5,632 0,59 0,81 0,92 0,86 0,41

8 0,58 0,85 0,95 0,94 0,57

11,264 0,58 0,90 0,97 0,99 0,71

16 0,57 0,94 0,99 1,01 0,84

22,528 0,57 0,97 1,00 1,01 0,92

32 0,56 0,94 1,00 1,01 0,97

45,056 0,56 0,89 1,02 1,01 1,00

64 0,55 0,88 1,04 1,02 1,00

90,112 0,55 0,95 1,08 1,05 1,00

Table 3. Correction factors for File Type 4.

/days WHPM FLPM WHFM FLFM RWFM

3,579 0,49 0,65 0,80 0,50 0,12

4 0,49 0,66 0,82 0,56 0,14

7,158 0,50 0,80 0,91 0,81 0,33

8 0,50 0,81 0,92 0,85 0,38

14,316 0,50 0,91 0,97 0,94 0,59

16 0,50 0,91 0,98 0,95 0,63

28,632 0,51 0,91 1,00 0,93 0,78

32 0,51 0,90 1,01 0,92 0,80

57,264 0,52 0,80 1,03 0,92 0,90

64 0,52 0,81 1,04 0,92 0,93

114,528 0,52 1,04 1,09 1,06 1,10

the unevenly spaced ® les (e.g. 2,816, 5,632, . . ., etc.

days for File Type 2) do not match the averaging times

for File Type 1 (1, 2, 4, . . ., etc. days), we cannot simply

take a ratio of two values to obtain the correction factor.

Generally, interpolation of some sort is required. For

white PM, we performed linear ® ts to the File Type 1,

2 and 4 data and then used the linear ® ts to compute the

correction values. Note that the correction factors for

WHPM shown in Tables 2 and 3 all fall within 10 %

of the values calculated from (3). For ¯ icker PM, we

interpolated between points as needed: for example, to

get the correction factor for File Type 2, = 2,816 days,

we used

(4)

where the quantity in the numerator is obtained by

performing linear interpolation between = 2 days

and = 4 days . For white FM, ¯ icker FM and

random walk FM we performed a cubic ® t to each

of the curves and then used the ® ts to compute the

correction factors.

4. Discussion

There is, unfortunately, no way to apply these results

blindly. The user will need to have an idea of what

sort of noise types make sense in the context of the

measurement. Initially, one log versus log ( )

plot using the original set of unevenly spaced data and

one log versus log ( ) plot using a full data set

formed by linear interpolation should be constructed.

At medium-to-large averaging times (in our

experiments, ³ 8 days), almost all methods, in their

uncorrected state, provide the correct slope for the log

versus log ( ) plot. For WHPM, the unevenly

spaced data give the correct slope at all values of .

Thus, the user can determine which power-law noise

process dominates at medium-to-large averaging times.

(The exception to this rule occurs when RWFM predom-

inates, and the unevenly spaced data are used to make

the log versus log ( ) plot. In this case, the slope

of the plot is slow in converging to the correct + 3/2

Metrologia, 1996, 33, 457-466 461



C. Hackman and T. E. Parker

value.) The more dif® cult part arises when the value of

in = is small. It is here that we see the largest

effects of not having an evenly spaced data set. In addi-

tion, in this regime the noise process which dominates

a measurement often changes from one type to another.

If data are recorded on Monday, Wednesday and

Friday, it will be impossible to get a reliable estimate

of = 1 day ± that information simply is not

available. One can, however, make a fair estimate

of = 2 days in this case because Monday-

Wednesday and Wednesday-Friday are each two-day

intervals. To be completely safe, one could avoid stating

values of for < . Finally, in this analysis,

the ratio of the data length (384 days) to (2,816

and 3,579 days) was always greater than 100; therefore,

it may not be appropriate to use these results with short,

sparse data sets.

If there is only one, known, noise type present,

then the correction factors shown in Tables 1 to 3

can be applied. Unless a user has exactly the same

average data spacing as we did, some interpolation

may be needed in order to use the correction factors.

Fortunately, the values of most of the correction factors

are not strongly dependent on the average spacing for

the range of spacing that was examined. If the noise

type is not known, one could begin by deciding into

which of the two following categories the experiment

® ts: (i) the results contain only measurement noise; or

(ii) the results contain measurement noise and clock

behaviour.

Examples of the former category are common-clock

or closure TWSTFT experiments. An example of the

latter category is performing TWSTFT between two

remotely located clocks. We examine each of these

situations below.

4.1 Measurement noise

If the results should only contain measurement noise,

then the noise type will most likely be white PM or

¯ icker PM. Fortunately, as Figure 1 shows, if WHPM is

the dominant noise type, the log versus log ( )

plot for the unevenly spaced data will have a clear

±1/2 slope and it will be obvious that the WHPM

corrections should be applied. This method was used

in [9]. Similarly, if the log versus log ( ) plot has

zero slope at large (Figure 2), then apply the FLPM

corrections. In this case it is important to be certain that

the noise type at large has been correctly ascertained

because, if the noise type is FLPM, the corrections

which are applied at large are fairly small. If the

noise type is WHPM, the corrections which are applied

at large are relative ly large.

4.2 Combination of clock noise

and measurement noise

If the experiment measures clock behaviour (or some

other quantity which is characterized by a low-

frequency-dominated noise type), then the situation

becomes more complicated because the results will

contain a mixture of noise types ± the noise type

associated with the measurement and the noise type(s)

associated with the behaviour of the clocks under study.

We have evaluated various analysis techniques and

have arrived at the following recommendations which

combine ease of use with acceptable accuracy.

First, examine the plots for evidence of

measurement noise (WHPM, FLPM). The simplest way

to see if there is any measurement noise is to look at

the plot of the interpolated data set in the region

where is small to medium. As Figures 1 to 3 show,

for WHPM, FLPM and WHFM, the plot of the

interpolated data will curve down as decreases to

approach = 1 day. In the case of FLFM, the

plot of the interpolated data makes a straight line as

decreases. In the case of RWFM, the plot curves

up slightly as decreases. Therefore, if a downward

curve is present at small and if there is evidence of

a ¯ at transition area at medium , there is probably

signi ® cant measurement noise present.

If there indeed is measurement noise mixed in with

the long-term noise, we suggest the following procedure

(hereafter called the ª hybrid methodº ): compute

from the unevenly spaced data and then simply use the

values obtained from the interpolated data for

> . Then, estimate , where

is the largest integral multiple of that is less than

, as follows:

(a) Using the values of log and

log obtained from the unevenly

spaced data, perform a linear extrapolation to

smaller to obtain an estimate for log

for the unevenly spaced data set.

(b) Compute the average of log

obtained from (a) and log

obtained from the interpolated data set.

(c) Use this average value as an estimate of the correct

value of log . From this obtain

.

For example, the NIST-USNO data have

2,816 days. Therefore, to obtain values of

(4 days £ 128 days) we would use the values

obtained from the interpolated data. To estimate

( 2 days) we would use the three steps outlined

above. Further examples of this process are presented

below.

This technique works because, for typical clock

noise types (WHFM, FLFM, RWFM), the uncorrected

values obtained from the interpolated data set are a

pretty good estimate of the true values for medium

to long averaging times. For measurement noise types

WHPM, FLPM and WHFM, at small values of , taking

the average of the logarithm of s associated with

the interpolated and the unevenly spaced data sets yields
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an acceptable estimate of the true value of .

Note that this averaging technique works very poorly at

small for RWFM (Figure 5) and not so well at small

for FLFM (Figure 4). Therefore, this technique should

not be used if it looks as if clock noise dominates all

the way down to small values of .

If inspection of the plots reveals no hint

of measurement noise (i.e. it appears that clock noise

dominates even at small ), then determine the noise

type from the large- values of and apply the

appropriate correction factors from Table 1 to the

values obtained from the interpolated data set.

We now give three examples of the analysis of

mixed simulated noise types, ranging from situations

in which the measurement noise dominates out to

medium to situations in which the measurement

noise is quickly overwhelmed by clock behaviour.

In combination 1 (Figures 6a and 6b), we see a

case in which inspection of the initia l plots

(Figure 6a) reveals obvious signs of the presence of

both measurement and clock noise. The average data

spacing is 2,816 days. As Figure 6b shows, using

the hybrid method provides very good estimates of

the correct values of : the largest error is

only 10 % of the true . In addition, we do

not need to know precisely what types of noise are

present (in this case, WHPM and WHFM) in order

to arrive at the ® nal estimates for . Finally,

note that we do not attempt to obtain a value for

= 1 day. We obtain the estimate of = 2 days)

as follows: for the unevenly spaced data, log

( = 2,816 days , in nanoseconds) = 0,113, and log

= 5,632 days = 0,031. By performing a linear

extrapolation from these two points, we can estimate

that log = 2 days = 0,154. From the interpolated

data, we obtain log = 2 days = ±0,222. By

taking the average of these two values of log

= 2 days , we obtain our ® nal estimate that log

= 2 days = ±0,034.

In combination 2, we again see signs of both

measurement noise and clock noise in the initial

plots (Figure 7a). The average data spacing for

combinations 2 and 3 (see below) is 3,008 days. As

Figure 7b shows, the hybrid method again provides a

good estimate of the correct values for this combination

of WHPM and FLFM.

In combination 3, it is dif® cult to tell if there is

any measurement noise present. The plot of the

interpolated data set does exhibit a very faint downward

curve as decreases towards 1 day, but other than that,

it looks like FLFM (Figure 8a). We have used both

the hybrid technique and the simple application of the

FLFM corrections (Table 1). As Figure 8b shows, the

FLFM corrections work marginally better . As it turns

out, the true curve shows clear evidence of

measurement noise (WHPM) only at = 1 day ± a time

interval about which we can gain no information from

the sparse ( = 3,008 days) data set.

(a)

(b)

Figure 6. Figure 6a shows the uncorrected

values obtained from a sparse data set with a mixture

(combination 1) of noise types. Figure 6b shows the

corrected values of x obtained using the hybrid method

(see text) and the values obtained from the original, evenly

spaced data set.

4.3 Experimental data

To demonstrate the usefulness of the hybrid method

on real rather than simulated TWSTFT data, we have

analysed data from a series of TWSTFT measurements

made between masers at the NIST and the USNO.

Hydrogen masers were used in order to minimize the

clock noise. Details of these measurements are given
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(a)

(b)

Figure 7. These ® gures (7a and 7b) are similar to those

of Figure 6. However, a different mixture of noise types

(combination 2) is used.

in [9]. Over a 129 day period, 5 minute time transfers

were made on Mondays, Wednesdays and Fridays.

However, during one three-week subset of these

measurements, time transfers were also performed on

Tuesdays, Thursdays, Saturdays and Sundays, resulting

in the formation of a 21 day set of once-per-day time

transfers.

Figure 9 shows the two sets of versus

computed from these data. The squares in Figure 9

represent the values of calculated from the

(a)

(b)

Figure 8. Figure 8a is similar to Figures 6a and 7a;

however, a different mixture of noise types (combination 3)

is used. Figure 8b shows the results of applying two types

of corrections: those obtained using the hybrid method and

those obtained using FLFM corrections. Again, the values

as obtained from the original, evenly spaced data set are

also shown in Figure 8b.

21 day data set in which data were taken every day.

Here the values of range from 1 day to 4 days. Since

these data were evenly spaced, no special techniques

were required to calculate . The diamonds

represent the values of calculated from a data

set consisting only of the Monday, Wednesday and
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Figure 9. The values of for a set of real TWSTFT

data obtained between masers at the NIST and the USNO.

The squares represent the stability of a set of 21 consecutive

daily time transfers. The diamonds represent the stability

of a set of time transfers taken approximately three times

per week over the course of 129 days. The hybrid method

(Section 4.2) was used to compute the latter values of

x .

Friday time transfers taken over the 129 days. This

set, which represents a typical TWSTFT data pattern,

contains 48 measurements and thus has an average data

interval of 2,7 days. The hybrid method, as described in

Section 4.2, was used to calculate these values of

for values ranging from 2 days to 32 days. The error

bars for the diamonds and the squares represent 95 %

con® dence limits [10].

Unlike the simulated data in Section 4.2, we do

not know the true noise levels in the experimental

data of Figure 9. For greater than about 5 days the

observed noise is close to FLFM and is consistent

with the maser noise. In this region the interpolated

TWSTFT data should be a good measure of the true

noise level, as observed in Section 4.2. However, it is

at the smaller values of ( £ 5 days) that the effect of

the uneven data spacing is most prominent. Here, the

best we can do is to use the 21 days of consecutive

data to estimate the true noise levels at small values

of . It is clear from these data that the dominant noise

process at small values is either WHPM or FLPM

and that this is de® nitely not clock noise [9] but rather

the noise of the TWSTFT process. The values

in Figure 9 calculated using the hybrid method are in

good agreement at small with the values of

calculated from the 21 days of consecutive data. The

hybrid method values fall well within the con ® dence

limits of the values from the evenly spaced

21 day data set.

One important point to note is that for real

experimental data there may be a large frequency

offset between the clocks being compared. For evenly

spaced data this offset is not relevant and can be

ignored. However, for unevenly spaced data this is not

true and the mean frequency offset must be removed

before is calculated. A fractional frequency offset

of 1,1 10±14 was removed before using the hybrid

method in Figure 9.

5. Conclusions

We have used two TWSTFT time series data sets

to investigate the impact of unevenly spaced data on

the calculation of . We have analysed simulated

data sets that have had points removed to match

the typical Monday-Wednesday-Friday TWSTFT data

patterns. was calculated from these sparse data

sets using two techniques. One technique involves

analysing the sparse data as if they were evenly spaced

with an average time interval, and the second uses

interpolated data to recreate an evenly spaced data

set. Correction factors for both approaches have been

calculated for noise processes ranging from WHPM to

RWFM. For all of the noise processes except WHPM,

the values of calculated with either of the two

approaches converge on the correct values at large

. However, signi® cant errors may be introduced for

small . Finally, we suggest techniques for estimating

correct values of in situations where the type of

noise is unknown or where more than one noise type

is present, and apply these techniques to a set of real

TWSTFT data.
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