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Dedication

This handbook is dedicated to the memory of Dr. James A. Barnes (1933—2002), a pioneer in the statistics of
frequency standards.

James A. Barnes was born in 1933 in Denver, Colorado. He received a Bachelor’s degree in engineering physics from
the University of Colorado, a Masters degree from Stanford University, and in 1966 a Ph.D. in physics from the
University of Colorado. Jim also received an MBA from the University of Denver.

After graduating from Stanford, Jim joined the National Institute of Standards, now the National Institute of Standards
and Technology (NIST). Jim was the first Chief of the Time and Frequency Division when it was created in 1967 and
set the direction for this division in his 15 years of leadership. During his tenure at NIST Jim made many significant
contributions to the development of statistical tools for clocks and frequency standards. Also, three primary frequency
standards (NBS 4, 5, and 6) were developed under his leadership. While he was division chief, closed-captioning was
developed (which received an Emmy award) and the speed of light was measured. Jim received the NBS Silver Medal
in 1965 and the Gold Medal in 1975. In 1992, Jim received the I.I. Rabi Award from the IEEE Frequency Control
Symposium “for contributions and leadership in the development of the statistical theory, simulation and practical
understanding of clock noise, and the application of this understanding to the characterization of precision oscillators
and atomic clocks.” In 1995, he received the Distinguished PTTI Service Award. Jim was a Fellow of the IEEE. After
retiring from NIST in 1982, Jim worked for Austron.

Jim Barnes died Sunday, January 13, 2002, in Boulder, Colorado after a long struggle with Parkinson’s disease. He
was survived by a brother, three children, and two grandchildren.

Note: This biography is published with permission and taken from his memoriam on the UFFC web site at:
http://www.ieee-uffc.org/fcmain.asp?page=barnes.
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Preface

I have had the great privilege of working in the time and frequency field over the span of my career. I have seen
atomic frequency standards shrink from racks of equipment to chip scale, and be manufactured by the tens of
thousands, while primary standards and the time dissemination networks that support them have improved by several
orders of magnitude. During the same period, significant advances have been made in our ability to measure and
analyze the performance of those devices. This Handbook summarizes the techniques of frequency stability analysis,
bringing together material that I hope will be useful to the scientists and engineers working in this field.

I acknowledge the contributions of many colleagues in the Time and Frequency community who have contributed the
analytical tools that are so vital to this field. In particular, I wish to recognize the seminal work of J.A. Barnes and
D.W. Allan in establishing the fundamentals at NBS, and D.A. Howe in carrying on that tradition today at NIST.
Together with such people as M.A. Weiss and C.A. Greenhall, the techniques of frequency stability analysis have
advanced greatly during the last 45 years, supporting the orders-of-magnitude progress made on frequency standards
and time dissemination.

I especially thank David Howe and the other members of the NIST Time and Frequency Division for their support,
encouragement, and review of this Handbook.
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1 Introduction

This handbook describes practical techniques for frequency stability analysis. It covers the definitions of frequency
stability, measuring systems and data formats, pre-processing steps, analysis tools and methods, post-processing steps,
and reporting suggestions. Examples are included for many of these techniques. Some of the examples use the
Stable32 program [1], which is a tool for studying and performing frequency stability analyses. Two general
references [2,3] for this subject are also given.

This handbook can be used both as a tutorial and as a reference. If this is your first exposure to this field, you may
find it helpful to scan the sections to gain some perspective regarding frequency stability analysis. I strongly
recommend consulting the references as part of your study of this subject matter. The emphasis is on time domain
stability analysis, where specialized statistical variances have been developed to characterize clock noise as a function
of averaging time. I present methods to perform those calculations, identify noise types, and determine confidence
limits. It is often important to separate deterministic factors such as aging and environmental sensitivity from the
stochastic noise processes. One must always be aware of the possibility of outliers and other measurement problems
that can contaminate the data.

Suggested analysis procedures are recommended to gather data, preprocess it, analyze stability, and report results.
Throughout these analyses, it is worthwhile to remember R.W. Hamming’s axiom that “the purpose of computing is
insight, not numbers.” Analysts should feel free to use their intuition and experiment with different methods that can
provide a deeper understanding.

References for Introduction

1. The Stable32 Program for Frequency Stability Analysis, Hamilton Technical Services, Beaufort, SC
29907, http://www.wriley.com.
2. D.B Sullivan, D.W Allan, D.A Howe, and F.L Walls, eds., “Characterization of clocks and oscillators,”

Natl. Inst. Stand. Technol. Technical Note 1337,
http://tf.nist.gov/timefrea/general/pdf/868.pdf (March 1990).
3. D.A. Howe, D.W. Allan, and J.A. Barnes, “Properties of signal sources and measurement methods,” Proc.
35th Freq. Cont. Symp., pp. 1-47,
http://tf.nist.gov/timefreq/general/pdf/554.pdf (May 1981).




2  Frequency Stability Analysis

The time domain stability analysis of a frequency source is concerned with characterizing the variables x(t) and y(t),

the phase (expressed in units of time error) and the fractional frequency, respectively. It
is accomplished with an array of phase arrays x; and frequency data arrays y;, where the
index i refers to data points equally spaced in time. The x; values have units of time in
seconds, and the y; values are (dimensionless) fractional frequency, Af/f. The x(t) time
fluctuations are related to the phase fluctuations by ¢ (t) = x(t):2mvo, where vy is the
nominal carrier frequency in hertz. Both are commonly called “phase” to distinguish
them from the independent time variable, t. The data sampling or measurement

The objective of a
frequency stability analysis
is to characterize the phase
and frequency fluctuations
of a frequency source in
the time and frequency
domains.

interval, t,, has units of seconds. The analysis interval or period, loosely called
“averaging time”, T, may be a multiple of 7, (t = mt,, where m is the averaging factor).

The goal of a time domain stability analysis is a concise, yet complete, quantitative and standardized description of
the phase and frequency of the source, including their nominal values, the fluctuations of those values, and their
dependence on time and environmental conditions.

A frequency stability analysis is normally performed on a single device, not on a population of devices. The output of
the device is generally assumed to exist indefinitely before and after the particular data set was measured, which is the
(finite) population under analysis. A stability analysis may be concerned with both the stochastic (noise) and
deterministic (systematic) properties of the device under test. It is also generally assumed that the stochastic
characteristics of the device are constant (both stationary over time and ergodic over their population). The analysis
may show that this is not true, in which case the data record may have to be partitioned to obtain meaningful results. It
is often best to characterize and remove deterministic factors (e.g., frequency drift and temperature sensitivity) before
analyzing the noise. Environmental effects are often best handled by eliminating them from the test conditions. It is
also assumed that the frequency reference instability and instrumental effects are either negligible or removed from
the data. A common problem for time domain frequency stability analysis is to produce results at the longest possible
analysis interval in order to minimize test time and cost. Computation time is generally not as much a factor.

2.1 Background

The field of modern frequency stability analysis began in the mid 1960’s with the emergence of improved analytical
and measurement techniques. In particular, new statistics became available that were better suited for common clock
noises than the classic N-sample variance, and better methods were developed for high resolution measurements (e.g.,
heterodyne period measurements with electronic counters, and low noise phase noise measurements with double-
balanced diode mixers). A seminal conference on short-term stability in 1964 [1], and the introduction of the two-
sample (Allan) variance in 1966 [2] marked the beginning of this new era, which was summarized in a special issue of
the Proceedings of the IEEE in 1966 [3]. This period also marked the introduction of commercial atomic frequency
standards, increased emphasis on low phase noise, and the use of the LORAN radio navigation system for global
precise time and frequency transfer. The subsequent advances in the performance of frequency sources depended
largely on the improved ability to measure and analyze their stability. These advances also mean that the field of
frequency stability analysis has become more complex. It is the goal of this handbook to help the analyst deal with
this complexity.

An example of the progress that has been made in frequency stability analysis from the original Allan variance in
1966 through Théol in 2003 is shown in the plots below. The error bars show the improvement in statistical
confidence for the same data set, while the extension to longer averaging time provides better long-term clock
characterization without the time and expense of a longer data record.
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This handbook includes detailed information about these (and other) stability measures.

References for Frequency Stability Analysis

1. Proc. of the IEEE-NASA Symposium on the Definition and Measurement of Short-Term Frequency
Stability, NASA SP-80, (Nov. 1964).

2. D.W. Allan, "The Statistics of Atomic Frequency Standards,” Proc. IEEE, 54(2): 221-230(Feb. 1966).

3. Special Issue on Frequency Stability, Proc. IEEE, 54(2)(Feb. 1966).




3  Definitions and Terminology

The field of frequency stability analysis, like most others, has its own specialized | Specialized definitions and
definitions and terminology. The basis of a time domain stability analysis is an array | terminology are used for
of equally spaced phase (really time error) or fractional frequency deviation data | frequency stability

arrays, x; and y;, respectively, where the index i refers to data points in time. These | analysis.

data are equivalent, and conversions between them are possible. The x values have

units of time in seconds, and the y values are (dimensionless) fractional frequency, Af/f. The x(?) time fluctuations are
related to the phase fluctuations by ¢) = x(?) - 2zv,, where v,is the carrier frequency in hertz. Both are commonly
called “phase” to distinguish them from the independent time variable, z. The data sampling or measurement interval,
7y, has units of seconds. The analysis or averaging time, 7, may be a multiple of 7, (7 = m1,, where m is the averaging
factor). Phase noise is fundamental to a frequency stability analysis, and the type and magnitude of the noise, along
with other factors such as aging and environmental sensitivity, determine the stability of the frequency source.

3.1. Noise Model

A frequency source has a sine wave output signal given by [1]
V(t)=[V,+e&(t)]sin[2zvt + ¢(2)], (1)

where V= nominal peak output voltage
&(t) = amplitude deviation
vy = nominal frequency
@(t) = phase deviation.

For the analysis of frequency stability, we are concerned primarily with the ¢(?) term. The instantaneous frequency is
the derivative of the total phase:

_, 4 L 49
v(t)=v, + P (2)

For precision oscillators, we define the fractional frequency as

gzv(t)—v0 _ 1 d¢ _dx

t) = = =, 3
== o ©)
where
x(t) = ¢(t)/ 2z, . (4)
3.2. Power Law Noise

It has been found that the instability of most frequency sources can be modeled by a combination of power-law noises
having a spectral density of their fractional frequency fluctuations of the form Sy(f) o f“ where f'is the Fourier or
sideband frequency in hertz, and « is the power law exponent.

Noise Type
White PM (W PM)

Flicker PM (F PM)
White FM (W FM)
Flicker FM (F FM) —
Random Walk FM (RW FM) —

N — O~ NQ



Flicker Walk FM (FW FM) -3
Random Run FM (RR FM) —4

Examples of the four most common of these noises are shown in Table 1.

Table 1. Examples of the four most common noise types.
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3.3. Stability Measures

The standard measures for frequency stability in the time and frequency domains are the overlapped Allan deviation,
oy(1), and the SSB phase noise, £(f), as described in more detail later in this handbook.

3.4. Differenced and Integrated Noise

Taking the differences between adjacent data points plays an important role in frequency stability analysis for
performing phase to frequency data conversion, calculating Allan (and related) variances, and doing noise
identification using the lag 1 autocorrelation method [2]. Phase data x(f) may be converted to fractional frequency
data y(t) by taking the first differences x;+; — x; of the phase data and dividing by the sampling interval 7. The Allan
variance is based on the first differences y;.; — y; of the fractional frequency data or, equivalently, the second
differences y;+>— 2y;+; + y; of the phase data. Similarly, the Hadamard variance is based on third differences x;+; —
3xi+2 + 3x;+;— x; of the phase data.

Taking the first differences of a data set has the effect of making it less divergent. In terms of its spectral density, the
o value is increased by 2. For example, flicker FM data (oo = —1) is changed into flicker PM data (oo = +1). That is
the reason that the Hadamard variance is able to handle more divergent noise types (o > —4) than the Allan variance
(o > -2) can. It is also the basis of the lag 1 autocorrelation noise identification method whereby first differences are
taken until o becomes >0.5. The plots below show random run noise differenced first to random walk noise and again
to white noise.
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Figure 2. (a) Random run noise, difference to (b) random walk noise
and (c) white noise.

The more divergent noise types are sometimes referred to by their color. White noise has a flat spectral density (by
analogy to white light). Flicker noise has an f' spectral density, and is called pink or red (more energy toward lower
frequencies). Continuing the analogy, £ (random walk) noise is called brown, and f> (flicker walk) noise is called
black, although that terminology is seldom used in the field of frequency stability analysis.

Integration is the inverse operation of differencing. Numerically integrating frequency data converts it into phase data
(with an arbitrary initial value). Such integration subtracts 2 from the original o value. For example, the random run
data in Figure 2(a) was generated by simulating random walk FM data and converting it to phase data by numerical
integration.

3.5. Glossary

See the Glossary chapter at the end of this handbook for brief definitions of many of the important terms used in the
field of frequency stability analysis.

References for Definitions and Terminology

1. “IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time
Metrology—Random instabilities,” IEEE Std. 1139 (July 1999).
2. W.J. Riley and C.A. Greenhall, “Power law noise identification using the lag 1 autocorrelation,” Proc. 18th

European Frequency and Time Forum, University of Surrey, Guildford, U.K. (April 5-7, 2004).




4 Standards

Standards have been adopted for the measurement and characterization of frequency stability, | Several standards
as shown in the references below [1-5]. These standards define terminology, measurement | apply to the field of
methods, means for characterization and specification, etc. In particular, IEEE-Std-1139 | frequency stability
contains definitions, recommendations, and examples for the characterization of frequency | analysis.
stability.
References for Standards
1. “Characterization of frequency and phase noise, Intl. Consult. Comm. (C.C.I.R.), Report 580,” pp. 142-150
(1986).
2. MIL-PRF-55310, “Oscillator, crystal controlled, general specification for (2006).”
3. R.L. Sydnor, ed., “The selection and use of precise frequency systems,” ITU-R Handbook (1995).
4. “Guide to the expression of uncertainty in measurement,” Intl. Stand. Org. (ISO), ISBN 92-67-10188-9
(1995).
5. “IEEE standard definitions of physical quantities for fundamental frequency and time metrology—Random

instabilities,” IEEE Std. 1139 (July 1999).




5 Time Domain Stability

The stability of a frequency source in the time domain is based on the statistics of its
phase or frequency fluctuations as a function of time, a form of time series analysis [1].
This analysis generally uses some type of variance, a second moment measure of the
fluctuations. For many divergent noise types commonly associated with frequency
sources, the standard variance, which is based on the variations around the average
value, is not convergent, and other variances have been developed that provide a better

Time domain stability
measures are based on
the statistics of the phase
or frequency fluctuations
as a function of time.

characterization of such devices. A key aspect of such a characterization is the dependence of the variance on the
averaging time used to make the measurement, which dependence shows the properties of the noise.

5.1. Sigma-Tau Plots

The most common way to express the time domain stability of a frequency source is by means of a sigma-tau plot that
shows some measure of frequency stability versus the time over which the frequency is averaged. Log sigma versus
log tau plots show the dependence of stability on averaging time, and show both the stability value and the type of
noise. The power law noises have particular slopes, L, as shown on the following log s versus log t plots, and o and p

are related as shown in the table below:

Noise a u
W PM 2 -2
F PM I ~=22
W FM 0 -1
F FM -1 0
RW FM -2 1

The log & versus log T slopes are the same for the two PM noise types, but are different on a Mod sigma plot, which is

often used to distinguish between them.




Sigma Tau Diagram

2
o | Wiite o oyt~
ar o
Elicker. PM Sy(f) ~f
1 N\ hzo
|Og \\ F"ra
o \ LI
ot
WNERRN 4
N WHite " Flicker i " RW /1
N EM L EM M. AT
N ) /
-15 172 T +172
T T
log t
Mod Sigma Tau Diagram
: 7
. White Mod o(1) ~ "
v
\ Sy(f) ~f*
= '(X‘l
|og -1 Flick L Fre
Mod | e | e o
T \ F VI LI
csy(r)_13 \‘h WHite ™ Flickér  RW //
\ 1
NG ML BN EM AT
N . /
-15 Vi T +1/2
- T
0 2 4 6 8
log t

Figure 3. (a) Sigma tau diagram. (b) Mod sigma tau diagram.

5.2 Variances

Variances are used to characterize the fluctuations of a frequency source [2-3]. These are second-moment measures
of scatter, much as the standard variance is used to quantify the variations in, say, the length of rods around a nominal
value. The variations from the mean are squared, summed, and divided by one less than the number of measurements;
this number is called the “degrees of freedom.”

Several statistical variances are available to the frequency stability analyst, and this section provides an overview of
them, with more details to follow. The Allan variance is the most common time domain measure of frequency
stability, and there are several versions of it that provide better statistical confidence, can distinguish between white
and flicker phase noise, and can describe time stability. The Hadamard variance can better handle frequency drift and
more divergence noise types, and several versions of it are also available. The newer Total and Théol variances can
provide better confidence at longer averaging factors.

There are two categories of stability variances: unmodified variances, which use d™ differences of phase samples, and
modified variances, which use d" differences of averaged phase samples. The Allan variances correspond to d = 2,
and the Hadamard variances to d = 3. The corresponding variances are defined as a scaling factor times the expected
value of the differences squared. One obtains unbiased estimates of this variance from available phase data by
computing time averages of the differences squared. The usual choices for the increment between estimates (the time
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step) are the sample period 1y and the analysis period 1, a multiple of to. These give respectively the overlapped
estimator and non-overlapped estimators of the stability.

Variance Type Characteristics

Standard Non-convergent for some clock noises — don’t use

Allan Classic — use only if required — relatively poor confidence
Overlapping Allan General purpose - most widely used — first choice
Modified Allan Used to distinguish W and F PM

Time Based on modified Allan variance

Hadamard Rejects frequency drift, and handles divergent noise
Overlapping Hadamard Better confidence than normal Hadamard

Total

Better confidence at long averages for Allan

Modified Total Better confidence at long averages for modified Allan
Time Total Better confidence at long averages for time
Hadamard Total Better confidence at long averages for Hadamard

Théol
ThéoH

Provides information over nearly full record length
Hybrid of Allan and ThéoBR (bias-removed Théol) variances

All are second moment measures of dispersion — scatter or instability of frequency from central value.

All are usually expressed as deviations.

All are normalized to standard variance for white FM noise.

All except standard variance converge for common clock noises.

Modified types have additional phase averaging that can distinguish W and F PM noises.

Time variances based on modified types.

Hadamard types also converge for FW and RR FM noise.

Overlapping types provide better confidence than classic Allan variance.

Total types provide better confidence than corresponding overlapping types.

ThéoH (hybrid-ThéoBR) and Théol (Theoretical Variance #1) provide stability data out to 75 % of record
length.

Some are quite computationally intensive, especially if results are wanted at all (or many) analysis intervals
(averaging times), =. Use octave or decade t intervals.

The modified Allan deviation (MDEV) can be used to distinguish between white and flicker PM noise. For example,
the W and F PM noise slopes are both = —1.0 on the Allan Deviation (ADEV) plots in Figure 4, but they can be
distinguished as —1.5 and —1.0, respectively, on the MDEV plots.
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Figure 4. (a) Slope of W PM using Adev, (b) slope of F PM using ADEV, (c) slope of W PM using MDEV, and (d) slope of
F PM using MDEV.

The Hadamard deviation may be used to reject linear frequency drift when a stability analysis is performed. For
example, the simulated frequency data for a rubidium frequency standard in Figure 5(a) shows significant drift. Allan
deviation plots for these data are shown in Figure 5(c) and (d) for the original and drift-removed data. Notice that,
without drift removal, the Allan deviation plot has a +t dependence at long 1, a sign of linear frequency drift.
However, as seen in Figure 5(b), the Hadamard deviation for the original data is nearly the same as the Allan
deviation after drift removal, but it has lower confidence for a given .
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Figure 5. (a) Simulated frequency data for a rubidium frequency standard, (b) overlapping Hadamard with drift, (c)
overlapping sigma with drift, and (d) overlapping sigma without drift.

References for Time Domain Stability

1. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco
(1970).
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5.2.1. Standard Variance
The classic N-sample or standard variance is defined as The standard variance should
) 1 & _\2 not be used for the analysis of
N1 (vi=7), ®) frequency stability.
i=1

, S . .

where the y; are the N fractional frequency values, and y = —Z », is the average frequency. The standard variance is
=1

usually expressed as its square root, the standard deviation, s. It is not recommended as a measure of frequency

stability because it is non- convergent for some types of noise commonly found in frequency sources, as shown in the
figure below.
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Figure 6. Convergence of standard and Allan deviation for FM noise.

The standard deviation (upper curve) increases with the number of samples of flicker FM noise used to determine it,
while the Allan deviation (lower curve and discussed below) is essentially constant.

The problem with the standard variance stems from its use of the deviations from the average, which is not stationary
for the more divergence noise types. That problem can be solved by instead using the first differences of the
fractional frequency values (the second differences of the phase), as described for the Allan variance in Section 5.2.2.

In the context of frequency stability analysis, the standard variance is used primarily in the calculation of the B1 ratio
for noise recognition.

Reference for Standard Variance

1. D.W. Allan, “Should the Classical Variance be used as a Basic Measure in Standards Metrology?” IEEE Trans.
Instrum. Meas., IM-36: 646-654 (1987)

5.2.2. Allan Variance

The Allan variance is the most common time domain measure of frequency stability. Similar to the standard variance,
it is a measure of the fractional frequency fluctuations, but has the advantage of being convergent for most types of
clock noise. There are several versions of the Allan variance that provide better statistical confidence, can distinguish
between white and flicker phase noise, and can describe time stability.

The original non-overlapped Allan, or two-sample variance, AVAR, is the standard | The original Allan variance
time domain measure of frequency stability [1, 2]. It is defined as has been largely superseded
It is defined as by its overlapping version.

2
o i+ i > (6)

*(7) 2(M b2 Z[y =T

where y; is the ith of M fractional frequency values averaged over the measurement (sampling) interval, . Note that
these y symbols are sometimes shown with a bar over them to denote the averaging.
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In terms of phase data, the Allan variance may be calculated as

1 N-2 5
2 Z [xi+2 _2xi+1 +x[] > (7)

=N e &

where x;is the ith of the N = M+ phase values spaced by the measurement interval r.
The result is usually expressed as the square root, (1), the Allan deviation, ADEV. The Allan variance is the same
as the ordinary variance for white FM noise, but has the advantage, for more divergent noise types such as flicker

noise, of converging to a value that is independent on the number of samples. The confidence interval of an Allan
deviation estimate is also dependent on the noise type, but is often estimated as +oy(t)/VN.

5.2.2. Overlapping Samples

Some stability calculations can utilize (fully) overlapping samples, whereby the | Overlapping samples are used
calculation is performed by utilizing all possible combinations of the data set, as | to improve the confidence of
shown in the diagram and formulae below. The use of overlapping samples | a stability estimate.

improves the confidence of the resulting stability estimate, but at the expense of

greater computational time. The overlapping samples are not completely independent, but do increase the effective
number of degrees of freedom. The choice of overlapping samples applies to the Allan and Hadamard variances.
Other variances (e.g., total) always use them.

Overlapping samples don’t apply at the basic measurement interval, which should be as short as practical to support a
large number of overlaps at longer averaging times.

Averaging Factor, m =3 Non-Overlapping Samples
1 2 3 4

e * % o

1 i< > e
2 > ) e o e o
3 = > e o ®
4 |= > |
5 = >| Overlapping Samples

1 M-1

2 _ ~ _ 2
Non-Overlapped Allan Ty (7)= AM-1)5 (e = 2) @)
Variance: Stride =1 =
averaging period = . [P
m-T 2 B e —— ‘ N P ?
0 o, (T) ZmZ(M— ot 1) < ; (y1+m J’z) o)
Overlapped Allan

Variance: Stride = 15 =
sample period

Figure 7. Comparison of non-overlapping and overlapping sampling.

The following plots show the significant reduction in variability, hence increased statistical confidence, obtained by
using overlapping samples in the calculation of the Hadamard deviation.
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Figure 8. The reduction in variability by using overlapping samples in calculating the Hadamard deviation.

5.2.4. Overlapping Allan Variance

The fully overlapping Allan variance, or AVAR, is a form of the normal Allan
variance, o”y(t), that makes maximum use of a data set by forming all possible
overlapping samples at each averaging time t. It can be estimated from a set of M
frequency measurements for averaging time t = mr,, where m is the averaging factor
and r, is the basic measurement interval, by the expression

The overlapped Allan
deviation is the most common
measure of time-domain
frequency stability. The term
AVAR has come to be used
mainly for this form of the
Allan variance, and ADEV

o) (1)=

(10)

1 M=2m+1 | j+m-1 2
2m2(M—2m+1) Z Z[ynm_yi] .

j=1 i=) for its square root.

This formula is seldom used for large data sets because of the computationally intensive inner summation. In terms of
phase data, the overlapping Allan variance can be estimated from a set of N =M + 1 time measurements as

N-2m

ol = +x]
y 2(N 2m)T lzl [ t+2m +m l]

(11

Fractional frequency data, y;, can be first integrated to use this faster formula. The result is usually expressed as the
square root, (), the Allan deviation, ADEV. The confidence interval of an overlapping Allan deviation estimate is
better than that of a normal Allan variance estimation because, even though the additional overlapping differences are
not all statistically independent, they nevertheless increase the number of degrees of freedom and thus improve the
confidence in the estimation. Analytical methods are available for calculating the number of degrees of freedom for
an estimation of overlapping Allan variance, and using that to establish single- or double-sided confidence intervals
for the estimate with a certain confidence factor, based on Chi-squared statistics.

Sample variances are distributed according to the expression
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df -s*
ol
o

(12)

where #? is the Chi-square, s? is the sample variance, o2 is the true variance, and df is the number of degrees of
freedom (not necessarily an integer). For a particular statistic, df is determined by the number of data points and the
noise type.
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5.25 Modified Allan Variance

The modified Allan variance, Mod o%(1), MVAR, is another common time | Use the modified Allan deviation
domain measure of frequency stability [1]. It is estimated from a set of M | to distinguish between white and
frequency measurements for averaging time = mr,, where m is the averaging | flicker PM noise.

factor and 1, is the basic measurement interval, by the expression

1 M=3m+2 | j+m=1[i+m-1 2
Modao’(r) = - :
040} ()= T T3 eD) ]Z:, {Zj) (;[yk+m yk]j} (13)

In terms of phase data, the modified Allan variance is estimated from a set of N =M + 1 time measurements as

, 1 N=3m+l [ j+m-1 2
Modo ()= (X5, = 2%, +x]¢ . (14)
(@) 2m’t*(N —3m+1) ,Z; Z} . :

The result is usually expressed as the square root, Mod G,(t), the modified Allan deviation. The modified Allan
variance is the same as the normal Allan variance for m = 1. It includes an additional phase averaging operation, and
has the advantage of being able to distinguish between white and flicker PM noise. The confidence interval of a
modified Allan deviation determination is also dependent on the noise type, but is often estimated as icsy(r)/\/N.
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5.2.6. Time Variance

The time Allan variance, TVAR, with square root TDEV, is a measure of time | Use the time deviation to
stability based on the modified Allan variance [1]. It is defined as characterize the time error of
a time source (clock) or
distribution system.

ol(r)= {%j-Modo-i(r). (15)

In simple terms, TDEV is MDEV whose slope on a log-log plot is transposed by +1 and normalized by V3. The time
Allan variance is equal to the standard variance of the time deviations for white PM noise. It is particularly useful for
measuring the stability of a time distribution network.

It can be convenient to include TDEV information on a MDEV plot by adding lines of constant TDEV, as shown in
Figure 9:
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Figure 9. Plot of MDEV with lines of constant TDEV.
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5.2.7. Time Error Prediction

The time error of a clock driven by a frequency source is a relatively simple function | The time error of a clock can
of the initial time offset, the frequency offset, and the subsequent frequency drift, | be predicted from its time and
plus the effect of noise, as shown in the following expression: frequency offsets, frequency
drift, and noise.

AT =T, + (Af/f) - t+ % D - £ + oy(t), (16)

where AT is the total time error, T, is the initial synchronization error, Af/f is the sum of the initial and average
environmentally induced frequency offsets, D is the frequency drift (aging rate), and o.(t) is the root-mean-square
(rms) noise-induced time deviation. For consistency, units of dimensionless fractional frequency and seconds should
be used throughout.

Because of the many factors, conditions, and assumptions involved, and their variability, clock error prediction is
seldom easy or exact, and it is usually necessary to generate a timing error budget.

e Initial Synchronization

The effect of an initial time (synchronization) error, T,, is a constant time offset due to the time reference, the finite
measurement resolution, and measurement noise. The measurement resolution and noise depends on the averaging
time.

o Initial Syntonization

The effect of an initial frequency (syntonization) error, Af/f , is a linear time error. Without occasional
resyntonization (frequency recalibration), frequency aging can cause this to be the biggest contributor toward clock
error for many frequency sources (e.g., quartz crystal oscillators and rubidium gas cell standards). Therefore, it can be
important to have a means for periodic clock syntonization (e.g., GPS or cesium beam standard). In that case, the
syntonization error is subject to uncertainty due to the frequency reference, the measurement and tuning resolution,
and noise considerations. The measurement noise can be estimated by the square root of the sum of the Allan
variances of the clock and reference over the measurement interval. The initial syntonization should be performed, to
the greatest extent possible, under the same environmental conditions (e.g., temperature) as expected during
subsequent operation.

e Environmental Sensitivity

After initial syntonization, environmental sensitivity is likely to be the largest contributor to time error.
Environmental frequency sensitivity obviously depends on the properties of the device and its operating conditions.
When performing a frequency stability analysis, it is important to separate the deterministic environmental
sensitivities from the stochastic noise. This requires a good understanding of both the device and its environment.
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and Application”, Proceedings of the Position Location and Navigation Symposium (PLANS), 29-36, 1978.

5.2.8. Hadamard Variance

The Hadamard [1] variance is based on the Hadamard transform [2], which was | Use the Hadamard variance to
adapted by Baugh as the basis of a time-domain measure of frequency stability [3]. | characterize frequency

As a spectral estimator, the Hadamard transform has higher resolution than the Allan | sources with divergent noise
variance, since the equivalent noise bandwidth of the Hadamard and Allan spectral | and/or frequency drift.

windows are 1.2337N"'t" and 0.4761", respectively [4]. For the purposes of time-

domain frequency stability characterization, the most important advantage of the Hadamard variance is its
insensitivity to linear frequency drift, making it particularly useful for the analysis of rubidium atomic clocks [5,6]. It
has also been used as one of the components of a time-domain multivariance analysis [7], and is related to the third
structure function of phase noise [8].

Because the Hadamard variance examines the second difference of the fractional frequencies (the third difference of
the phase variations), it converges for the Flicker Walk FM (a = —3) and Random Run FM (o, = —4) power-law noise

types. It is also unaffected by linear frequency drift.

For frequency data, the Hadamard variance is defined as:

M-=2
Hol(r)= -2y, +».T, 17
y() 6(M 2); y1+2 y1+l yl] ( )

where yi; is the ith of M fractional frequency values at averaging time .

For phase data, the Hadamard variance is defined as:

N-3

Ho’(r)= -3x,,,+3x,,, —x o 18
,V() 67 (N 3m ); i+3 i+2 z] ( )

where X; is the ith of N = M + 1 phase values at averaging time .

Like the Allan variance, the Hadamard variance is usually expressed as its square-root, the Hadamard deviation,
HDEV or Hoy(x).

5.2.9. Overlapping Hadamard Variance

In the same way that the overlapping Allan variance makes maximum use of a data | The overlapping Hadamard
set by forming all possible fully overlapping 2-sample pairs at each averaging time ¢ | variance provides better
the overlapping Hadamard variance uses all 3-sample combinations [9]. It can be | confidence than the non-
estimated from a set of M frequency measurements for averaging time t = mr, where | overlapping version.

m is the averaging factor and 1, is the basic measurement interval, by the expression:
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2
1 M-3m+1 | j+m-1
Ho’(r) = 2y 4 yp]b 19

,V( ) 6m2(M_3m+1)T2 ; {;[yw&m yHm yl]} ( )

where y; is the ith of M fractional frequency values at each measurement time.

In terms of phase data, the overlapping Hadamard variance can be estimated from a set of N = M + 1 time
measurements as:

1 N-3m

= X, =3x., +3x. —x], 20
6(N—3m)z'2 ; [ i+3m i+2m i+m z] ( )

where X; is the ith of N =M + 1 phase values at each measurement time.

H 0}2, (7)

Computation of the overlapping Hadamard variance is more efficient for phase data, where the averaging is
accomplished by simply choosing the appropriate interval. For frequency data, an inner averaging loop over m
frequency values is necessary. The result is usually expressed as the square root, Hoy(1), the Hadamard deviation,
HDEV. The expected value of the overlapping statistic is the same as the normal one described above, but the
confidence interval of the estimation is better. Even though not all the additional overlapping differences are
statistically independent, they nevertheless increase the number of degrees of freedom and thus improve the
confidence in the estimation. Analytical methods are available for calculating the number of degrees of freedom for
an overlapping Allan variance estimation, and that same theory can be used to establish reasonable single- or double-
sided confidence intervals for an overlapping Hadamard variance estimate with a certain confidence factor, based on
Chi-squared statistics.

Sample variances are distributed according to the expression:

2 d'z
zmw=i5, @)

where y? is the Chi-square value for probability p and degrees of freedom df, s? is the sample variance, c? is the true
variance, and df is the number of degrees of freedom (not necessarily an integer). The df is determined by the number
of data points and the noise type. Given the df, the confidence limits around the measured sample variance are given
by:

ol = (Sz'df) 2 (Sz'df)

min = 5 and o (22)
1 (p.df)

" A= pdf)

5.2.10. Modified Hadamard Variance

By similarity to the modified Allan variance, a modified version of the Hadamard variance can be defined [15] that

employs averaging of the phase data over the m adjacent samples that define the analysis = m-z. In terms of phase
data, the three-sample modified Hadamard variance is defined as:

N—4m+1 | j+m—1 2
Z Z [xi - 3xi-%—m + 3xi+2m - xi+3m]

2, ) &
Modar () =— j6mzrz[N—4m+1]

; (23)
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where N is the number of phase data points x; at the sampling interval z, and m is the averaging factor, which can
extend from 1 to [ N/4]. This is an unbiased estimator of the modified Hadamard variance, MHVAR. Expressions for
the equivalent number of > degrees of freedom (edf) required to set MHVAR confidence limits are available in [2].

Clock noise (and other noise processes) can be described in terms of power spectral density, which can be modeled as
a power law function S oc /*, where fis Fourier frequency and « is the power law exponent. When a variance such as
MHVAR is plotted on log-log axes versus averaging time, the various power law noises correspond to particular
slopes . MHVAR was developed in Reference [15] for determining the power law noise type of Internet traffic
statistics, where it was found to be slightly better for that purpose than the modified Allan variance, MVAR, when
there were a sufficient number of data points. MHVAR could also be useful for frequency stability analysis, perhaps
in cases where it was necessary to distinguish between short-term white and flicker PM noise in the presence of more
divergent (o= —3 and —4) flicker walk and random run FM noises. The Mod (1) log-log slope xis related to the
power law noise exponent by x=-3 — a.

The modified Hadamard variance concept can be generalized to subsume AVAR, HVAR, MVAR, MHVAR, and
MHV ARs using higher-order differences:

N=(d+D)m+1 | j+m-1 d d 2
) Dobo (S

Modo? _ A =) k=0
0o (T = N — (d + Dm 1]

: 24

where d = phase differencing order; d = 2 corresponds to MAVAR, d = 3 to MHV AR; higher-order differencing is not
commonly used in the field of frequency stability analysis. The unmodified, nonoverlapped AVAR and HVAR
variances are given by setting m = 1. The allowable power law exponent for convergence of the variance is equal to «
> 1 — 2d, so the second difference Allan variances can be used for & > —3 and the third difference Hadamard
variances for a > —5.

Confidence intervals for the modified Hadamard variance can be determined by use of the edf values of reference
[16].
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5.2.11. Total Variance

The total variance, TOTVAR, is similar to the two-sample or Allan variance and has | The total variance offers

the same expected value, but offers improved confidence at long averaging times [1- | improved confidence at large
5]. The work on total variance began with the realization that the Allan variance can | averaging factor by extending
“collapse” at long averaging factors because of symmetry in the data. An early idea | the data set by reflection at
was to shift the data by 1/4 of the record length and average the two resulting Allan | both ends.

variances. The next step was to wrap the data in a circular fashion and calculate the

average of all the Allan variances at every basic measurement interval, t,. This technique is very effective in
improving the confidence at long averaging factors but requires end matching of the data. A further improvement of
the total variance concept was to extend the data by reflection, first at one end of the record and then at both ends.
This latest technique, called TOTVAR, gives a very significant confidence advantage at long averaging times, exactly
decomposes the classical standard variance [6], and is an important new general statistical tool. TOTVAR is defined
for phase data as:

N-1

Tot var(r) = ;z |:x*[—m -2x +x,,, ]2 , (25)

20'(N-2)5
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where 7 =m7t,, and the N phase values x measured at 7 = 7, are extended by reflection about both endpoints to form a
virtual sequence x* from i = 3—N to i = 2N-2 of length 3N—4. The original data are in the center of x* with i =1 to N
and x*=x. The reflected portions added at each end extend from j = 1 to N-2 where x*, ;= 2x,—X;4j and x*\:j = 2xXx—
XN-j-

Totvar can also be defined for frequency data as:

2

1 M71 * *
Totvar(t)=——— o=y, 26
( ) 2(M_1);|:yl+]+l yH—]:' ( )

where the M = N-I fractional frequency values, y, measured at T = 1, (N phase values) are extended by reflection at
both ends to form a virtual array y*. The original data are in the center, where y*;=y; for i =1 to M, and the extended
data for j = 1 to M—1 are equal to y*, ;= y; and y*y+1 = ym+1.

The result is usually expressed as the square root, oywmi(T), the total deviation, TOTDEV. When calculated by use of
the doubly reflected method described above, the expected value of TOTVAR is the same as AVAR for white and
flicker PM or white FM noise. Bias corrections of the form 1/[1-a(t/T)], where T is the record length, need to be
applied for flicker and random walk FM noise, where a = 0.481 and 0.750, respectively.

The number of equivalent y? degrees of freedom for TOTVAR can be estimated for white FM, flicker FM and
random walk FM noise by the expression b(T/t)—c, where b = 1.500, 1.168 and 0.927, and ¢ = 0, 0.222 and 0.358,
respectively. For white and flicker PM noise, the edf for a total deviation estimate is the same as that for the
overlapping ADEV with the number of %2 degrees of freedom increased by 2.
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IEEE Intl. Freq. Cont. Symp. 127-132 (June 2001).
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5.2.12. Modified Total Variance

The modified total variance, MTOT, is another new statistic for the analysis of | The modified total variance
frequency stability. It is similar to the modified Allan variance, MVAR, and has the | combines the features of the
same expected value, but offers improved confidence at long averaging times. It | modified Allan and total
uses the same phase averaging technique as MVAR to distinguish between white | variances.

and flicker PM noise processes.

A calculation of MTOT begins with an array of N phase data points (time deviates, x;) with sampling period 7, that
are to be analyzed at averaging time t = mto. MTOT is computed from a set of N — 3m + 1 subsequences of 3m
points. First, a linear trend (frequency offset) is removed from the subsequence by averaging the first and last halves
of the subsequence and dividing by half the interval. Then the offset-removed subsequence is extended at both ends
by uninverted, even reflection. Next the modified Allan variance is computed for these 9m points. Finally, these
steps are repeated for each of the N — 3m + 1 subsequences, calculating MTOT as their overall average. These steps,
similar to those for MTOT, but acting on fractional frequency data, are shown in Figure 10.

Phase Data x;,i=1to N

- 3m —>

N-3m+1 Subsequences: [ N ) o000 i=n to n+3m-1
Linear Trend Removed: X =X - C; -, ¢, = freq offset

9Im
o # 0,

0 #_0 #
’ ot = Xnua X Xneamel =

Uninverted, Even Reflection: eeoe T A ‘ ’ LA T PP

Extended Subsequence: Oxn+3m-\ 1< 1<3m

omeommersges: | | | | [ | [ ]]]

6m 2nd Differences: (NN}

s mod o, °(z) = 1/27° - { z, °(m) ), where
Calculate Mod o, “(t) for Subsequence: _ _ _
Zn(m) = Xn(m) - 2Xn+m(m) + Xn+2m(m)

Figure 10. Steps similar to calculation of MTOT on fractional frequency data.

Computationally, the MTOT process requires three nested loops:

e An outer summation over the N — 3m + 1 subsequences. The 3m-point subsequence is formed, its linear trend is
removed, and it is extended at both ends by uninverted, even reflection to 9m points.

e An inner summation over the 6m unique groups of m-point averages from which all possible fully overlapping
second differences are used to calculate MVAR.

e A loop within the inner summation to sum the phase averages for three sets of m points.

The final step is to scale the result according to the sampling period, t,, averaging factor, m, and number of points, N.
Overall, this can be expressed as:

1 N-3m—-1 1 n+3m—1 2
Mod Tot var(t) = — 2% (m , 27
O = S e (N —3m+1) Z‘ {6mz;‘m[ z( )]} @7
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where the “z"(m) terms are the phase averages from the triply extended subsequence, and the prefix ° denotes that the
linear trend has been removed. At the largest possible averaging factor, m = N/3, the outer summation consists of
only one term, but the inner summation has 6m terms, thus providing a sizable number of estimates for the variance.

Reference for Modified Total Variance

D.A. Howe and F. Vernotte, “Generalization of the Total Variance Approach to the Modified Allan Variance,” Proc.

31" PTTI Meeting, pp. 267-276, Dec. 1999.

5.2.13. Time Total Variance

The time total variance, TTOT, is a similar measure of time stability, based on the
modified total variance. It is defined as

3

o’ () = %-Mod i (28)
5.2.14. Hadamard Total Variance

The Hadamard total variance, HTOT, is a total version of the Hadamard variance.
As such, it rejects linear frequency drift while offering improved confidence at large
averaging factors.

An HTOT calculation begins with an array of N fractional frequency data points, y;
with sampling period 7, that are to be analyzed at averaging time T =m t,. HTOT is
computed from a set of N — 3m + 1 subsequences of 3m points. First, a linear trend
(frequency drift) is removed from the subsequence by averaging the first and last
halves of the subsequence and dividing by half the interval. Then the drift-removed

The time total variance is a
measure of time stability
based on the modified total
variance.

The Hadamard total variance
combines the features of the
Hadamard and total variances
by rejecting linear frequency
drift, handling more divergent
noise types, and providing
better confidence at large
averaging factors.

subsequence is extended at both ends by uninverted, even reflection. Next the Hadamard variance is computed for
these 9m points. Finally, these steps are repeated for each of the N — 3m + 1 subsequences, calculating HTOT as their

overall average. These steps are shown in Figurell.
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Fractional Frequency Datay, i=1to N

- 3m —>

N-3m+1 Subsequences: [ N N ®®e® i=nton+3m-1

Linear Freq Drift Removed: Oyi Y, =Y, - ¢ i, ¢ = freq drift

9m

o #_o0 o # 0 +_|o
Yod = Ynua Yi Yoeamer = | Yneama 1< 1<3m

Uninverted, Even Reflection: o o o ? A ‘ ’ A T ce o

Extended Subsequence:

9 m-Point Averages: ’ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

6m 2nd Differences: T—T—T 00 T—T—T

) Had o, %(x) = 1/6 - { z, (m) ), where
Calculate Hado, “(r) for Subsequence: _ _ _
Z,(M) = Y, (M) - 2y,,(M) + Ypom(M)

Then Find HTOT as Average of Subestimates

Figure 11. Steps to calculate Hadamard Total Variance.

Computationally, the HTOT process requires three nested loops:

e An outer summation over the N — 3m + 1 subsequences. The 3m-point subsequence is formed, its linear trend is
removed, and it is extended at both ends by uninverted, even reflection to 9m points.

e An inner summation over the 6m unique groups of m-point averages from which all possible fully overlapping
second differences are used to calculate HVAR.

e A loop within the inner summation to sum the frequency averages for three sets of m points.

The final step is to scale the result according to the sampling period, t,, averaging factor, m, and number of points, N.
Overall, this can be expressed as:

1 N-3m+1 1 n+3m-1
TotalHo> (m,7,,N)=——— — H.(m)) |, 29
> (m,7,,N) P T— Zl (6m23( i ))j (29)

where the Hj(m) terms are the z,(m) Hadamard second differences from the triply extended, drift-removed
subsequences. At the largest possible averaging factor, m = N/3, the outer summation consists of only one term, but
the inner summation has 6m terms, thus providing a sizable number of estimates for the variance. The Hadamard
total variance is a biased estimator of the Hadamard variance, so a bias correction is required that is dependent on the
power law noise type and number of samples.

The following plots shown the improvement in the consistency of the overlapping Hadamard deviation results
compared with the normal Hadamard deviation, and the extended averaging factor range provided by the Hadamard
total deviation [10].
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Figure 13. (a) Hadamard Total Deviation, (b) Overlapping & Total Hadamard Deviations

A comparison of the overlapping and total Hadamard deviations shows the tighter error bars of the latter, allowing an

additional point to be shown at the longest averaging factor.

The Hadamard variance may also be used to perform a frequency domain (spectral) analysis because it has a transfer
function that is a close approximation to a narrow rectangle of spectral width 1/(2-N-1¢), where N is the number of
This leads to a simple expression for the spectral density of the
fractional frequency fluctuations S,(f) = 0.73 -1, -HGZy(‘E) /' N, where f =1/ (2-1¢), which can be particularly useful at

samples, and T, is the measurement time [3].

low Fourier frequencies.

The Picinbono variance is a similar three-sample statistic. It is identical to the Hadamard variance except for a factor
of 2/3 [4]. Sigma-z is another statistic that is similar to the Hadamard variance that has been applied to the study of

pulsars [5].
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It is necessary to identify the dominant power law noise type as the first step in determining the estimated number of
chi-squared degrees of freedom for the Hadamard statistics so their confidence limits can be properly set [6]. Because
the Hadamard variances can handle the divergent flicker walk FM and random run FM power law noises, techniques
for those noise types must be included. Noise identification is particularly important for applying the bias correction
to the Hadamard total variance.

References for Hadamard Total Variance

1. D.A.Howe, R. Beard, C.A. Greenhall, F. Vernotte, and W.J. Riley, “A total estimator of the Hadamard function
used for GPS operations,” Proc. 32" PTTI Mtg., pp. 255-267, Nov. 2000.

2. D.A.Howe, R. Beard, C.A. Greenhall, F. Vernotte, and W.J. Riley, “Total Hadamard variance: Application to
clock steering by Kalman filtering,” Proc. 2001 European Freq. and Time Forum, pp. 423-427 (Mar. 2001).

3. Chronos Group, Frequency measurement and control, Section 3.3.3, Chapman & Hall, London, ISBN 0-412-
48270-3 (1994).

4. B. Picinbono, « Processus a accroissements stationnaires » Ann. des telecom, 30(7-8): 211-212 (July-Aug.
1975).

5. D.N. Matsakis and F.J. Josties, “Pulsar-appropriate clock statistics,” Proc. 28" PTTI Mtg., pp. 225-236 (Dec.
1996).

6. D.A.Howe, R.L. Beard, C.A. Greenhall, F. Vernotte, W.J. Riley, and T.K. Peppler, “Enhancements to GPS
operations and clock evaluations using a total Hadamard deviation,” IEEE Trans. Ultrason. Ferroelect. Freq.
Cont., 52: 1253-1261 (Aug. 2005).

5.2.15. Théol

Théol is a new class of statistics which mimic the properties of the Allan variance | Théol is a two-sample variance
(AVAR) while covering a larger range of averaging times, 10 to N—2 for Théol vs. | with improved confidence and
1 to (N—1)/2 for AVAR [1]. It provides improved confidence and the ability to | extended averaging factor
obtain a result for a maximum averaging time equal to 75 % of the record length. range.

Théol [1] is defined as follows:

1 N-—mm/2-1

Theol(m,,, N} = ————
collm 2. N) = e )E & Z::;m/Z 5L

2
X, =X sim2) T (X = Xiosimi )] 5 (30)

where m = averaging factor, 1o = measurement interval, and N = number of phase data points, for m even, and 10 < m
< N-—1. It consists of N - m outer sums over the number of phase data points —1, and m/2 inner sums. Théol is the
rms of frequency differences averaged over an averaging time t = 0.75 (m — 1)z,.

A schematic for a Théol calculation is shown in Figure 14. This example is for eleven phase samples (N = 11) at the
largest possible averaging factor (m = 10).
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Theol Schematic for n=11, m=10
i=lton-m=1,8=0tom/2-1=4
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Figure 14. A schematic for Théol calculation.

The single outer summation (i = 1 to 1) at the largest possible averaging factor consists of m/2 = 5 terms, each with
two phase differences. These terms are scaled by their spans m/2 — 6 =5 thru 1 so that they all have equal weighting.
A total of 10 terms contribute to the Theol statistic at this largest-possible averaging factor. The averaging time, t,
associated with a Théol value is = 0.75-m-7y, where 1, is the measurement interval. Théol has the same expected
value as the Allan variance for white FM noise, but provides many more samples that provide improved confidence
and the ability to obtain a result for a maximum < equal to three-fourths of the record length, T. Théol is a biased
estimator of the Allan variance, AVAR, for all noise types except white FM noise, and it therefore requires the
application of a bias correction. Reference [2] contains the preferred expression for determining the Théol bias as a
function of noise type and averaging factor:

Théol Bias= Avar =at b
héol m

- 31)

where m is the averaging factor and the constants a, b and c are given in Table 2. Note that the effective tau for a
Théol estimation is t = 0.75-m-t,, where 1 is the measurement interval.

Table 2. Théol bias parameters.

Noise Alpha a b c
RWFM | 2 2.70 | —1.53 ]0.85

FFM -1 1.87 | —-1.05 | 0.79
W FM 0 1.00 | 0.00 |0.00
F PM 1 0.14 | 0.82 ]0.30
W PM 2 0.09 | 0.74 |0.40

Empirical formulaec have been developed [1] for the number of equivalent y* degrees of freedom for the Théol
statistic, as shown in Table 3:
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Table 3. Théol EDF Formulae

Noise EDF
RWEM | yan - 2) (44N —1)* ~8.6r(44N —1)+1147?)
29r (44N -3)
FFM ON?—13Nr=-35r\
Nr P +23

WEM | F4IN+08 31N+ 6.5} r?

7 N 452
FPM 4798N? — 6374Nr +12387r ( r )

(r+36.6)"(N —r) r+03
W PM 086(N +1)(N—4r/3)Y r
N-r r+114

where r = 0.75m, and with the condition 1y < T/10.

5.2.16. ThéoH

Théol has the same expected value as the Allan variance if bias is removed [2]. Itis | NewThéol, ThéoBR , and
useful to combine a bias-removed version of Théol, called ThéoBR, with AVAR to | ThéoH are versions of Théol
produce a composite stability plot. The composite is called “ThéoH” which is short | that provide bias removal and
for “hybrid-ThéoBR” [3]. ThéoH is the best statistic available for estimating the | combination with the Allan
stability level and type of noise of a frequency source, particularly at large averaging | variance.

times and with a mixture of noise types [4].

The NewThéol algorithm of Reference [2] provides a method of automatic bias correction for a Théol estimation
based on the average ratio of the Allan and Théol variances over a range of averaging factors:

1 i Avar(m=9+31,7,,N)

Théol(m,z,,N), (32)
nt+1‘5 Théol(m=12+4i,7,,N)

NewThéol(m,z,, N)= {

N
where n = {% — 3J , and L J denotes the floor function.

NewThéol was used in Reference [2] to form a composite AVAR/ NewThéol result called LONG, which has been
superseded by ThéoH (see below).

ThéoBR [3] is an improved bias-removed version of Théol given by

1 Z”: Avar(m=9+31,7,,N)

ThéoBR(m,z,, N)=
nt15 Théol(m =12+4i,7,,N)

}Théol(m,ro,N), (33)

N
where n = LE — 3J , and |_ J denotes the floor function.
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ThéoBR can determine an unbiased estimate of the Allan variance over the widest possible range of averaging times
without explicit knowledge of the noise type. ThéoBR in the equation above is computationally intensive for large
data sets, but computation time is significantly reduced by phase averaging with negligible effect on bias removal [5].

ThéoH is a hybrid statistic that combines ThéoBR and AVAR on one plot:

Avar (m,7,,N) for 1<m S£

A _ T
ThéoH(m,7,,N)= O , (34)
ThéoBR (m,z,,N) for 075 <m<N-1,m even
V157,

where k is the largest available 1 <20% T

An example of a ThéoH plot is shown in Figure 15:
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Figure 15. An example plot of ThéoH.

ThéoH is a composite of AVAR and bias-corrected ThéoBR analysis points at a number of averaging times
sufficiently large to form a quasi-continuous curve. The data are a set of 1001 simulated phase values measured at
15-minute intervals taken over a period of about 10 days. The AVAR results are able to characterize the stability to
an averaging time of about two days, while Théol is able to extend the analysis out to nearly a week, thus providing
significantly more information from the same data set. An example of analysis using ThéoH with data from a Cs
standard is shown in Section 11.
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EFTF.

3. D.A. Howe, “ThéoH: A Hybrid, High-Confidence Statistic that Improves on the Allan Deviation,” Metrologia 43
(2006), S322-S331.

4. J. McGee and D.A. Howe, “ThéoH and Allan Deviation as Power-Law Noise Estimators,” IEEE Trans.
Ultrasonics, Ferroelectrics and Freq. Contrl., Feb. 2007.

5. J. McGee and D.A. Howe, “Fast TheoBR: A method for long data set stability analysis,” IEEE Trans.
Ultrasonics, Ferroelectrics and Freq. Contrl., to be published, 2008.

5.2.17 MTIE

The maximum time interval error, MTIE, is a measure of the maximum time error of | MTIE is a measure of clock
a clock over a particular time interval. This statistic is commonly used in the | error commonly used in the
telecommunications industry. It is calculated by moving an n-point (n = 1/1,) window | tele-communications
through the phase (time error) data and finding the difference between the maximum | industry.

and minimum values (range) at each window position. MTIE is the overall
maximum of this time interval error over the entire data set:

MTIE(7) = MaxlsksN—n {Maxksl'gkm (xi) - Minkéiskm (xi )} (35)

where n = 1,2,..., N—1 and N = number of phase data points.

MTIE is a measure of the peak time deviation of a clock and is therefore very sensitive to a single extreme value,
transient or outlier. The time required for an MTIE calculation increases geometrically with the averaging factor, n,
and can become very long for large data sets (although faster algorithms are available — see [1] below).

The relationship between MTIE and Allan variance statistics is not completely defined, but has been the subject of
recent theoretical work [2,3]. Because of the peak nature of the MTIE statistic, it is necessary to express it in terms of
a probability level, B, that a certain value is not exceeded.

For the case of white FM noise (important for passive atomic clocks such as the most common rubidium and cesium
frequency standards), MTIE can be approximated by the relationship

MTIE(z, Bk, \h, 7 =k, V2 0,(7) 7, (36)

where kg is a constant determined by the probability level, B, as given in Table 4, and h, is the white FM power-law
noise coefficient.

Table 4. Constants B and Kp.

B, % kB
95 1.77
90 1.59
80 1.39

The maximum time interval error (MTIE) and rms time interval error (TIE rms) are clock stability measures
commonly used in the telecom industry [4, 5]. MTIE is determined by the extreme time deviations within a sliding
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window of span 1, and is not as easily related to such clock noise processes as TDEV [2]. MTIE is computationally
intensive for large data sets [6].

References for MTIE

1. S. Bregni, “Measurement of maximum time interval error for telecommunications clock stability
characterization,” IEEE Trans. Instrum. Meas., 45(5): 900-906 (Oct. 1996).

2. P. Travella and D. Meo, “The range covered by a clock error in the case of white FM,” Proc. 30th PTTI Mtg.,
pp- 49-60 (Dec. 1998).

3. P. Travella, A. Dodone, and S. Leschiutta, “The range covered by a random process and the new definition of
MTIE,” Proc. 28th PTTI Mtg., pp. 119-123 (Dec. 1996).

4. S. Bregni, “Clock Stability Characterization and Measurement in Telecommunications,” I[EEE Trans. Instrum.
Meas., 46(6): 1284-1294 (Dec. 1997).

5. G. Zampetti, “Synopsis of timing measurement techniques used in telecommunications,” Proc. 24th PTTI Mtg.,
pp- 313-326 (Dec. 1992).

6. S. Bregni and S. Maccabruni, “Fast computation of maximum time interval error by binary decomposition,”
IEEFE Trans. Instrum. Meas., 49(6): 1240-1244 (Dec. 2000).

7. M.J. Ivens, “Simulating the Wander accumulation in a SDH synchronisation network,” Master's Thesis,
University College, London, U.K. (Nov. 1997).

5.2.18. TIE rms

The rms time interval error, TIE rms, is another clock statistic commonly used by the telecommunications industry.
TIE rms is defined by the expression

N-n
TIE,, = \/ Nl PE -x), (37)

o
where n = 1,2,..., N—1 and N = # phase data points.
For no frequency offset, TIE rms is approximately equal to the standard deviation of the fractional frequency

fluctuations multiplied by the averaging time. It is therefore similar in behavior to TDEV, although the latter properly
identifies divergent noise types.

Reference for TIE rms

S. Bregni, “Clock Stability Characterization and Measurement in Telecommunications,” [EEE Trans. Instrum.
Meas., Vol. 46, No. 6, pp. 1284-1294, Dec. 1997.

5.2.19. Integrated Phase Jitter and Residual FM
Integrated phase jitter and residual FM are other ways of expressing the net phase or frequency jitter by integrating it
over a certain bandwidth. These can be calculated from the amplitudes of the various power law terms.

The power law model for phase noise spectral density (see section 6.1) can be written as

S(f)=K-f", (38)
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where S, is the spectral density of the phase fluctuations in rad’/Hz, f'is the modulation frequency, K is amplitude in
rad’, and x is the power law exponent. It can be represented as a straight line segment on a plot of Sy(f) in dB relative
to 1 rad’/Hz versus log fin hertz. Given two points on the plot (fi, dB;) and f;, dB,), the values of x and K may be
determined by

. dB-dp,
10-(log f; —log f,)

(39)

and

ﬁ —xlog/i)

K= 10( 10 (40)

The integrated phase jitter can then be found over this frequency interval by
) [ R A
AF =[S, () df =[ K-S df
2 _ K x+1 x+1
Ap"=——(f," - f;7") forx = -1 (41)
x+1
Ag* =K -(log f, —log f,) forx =1.

It is usually expressed as A¢ in rms radians.
Similarly, the spectral density of the frequency fluctuations in Hz*/Hz is given by

S(f)=vy -S,()=f2Sy(f)=K- [, (42)

where 1 is the carrier frequency in hertz, and S,(f) is the spectral density of the fractional frequency fluctuations (see
Section 6.1).

The integrated frequency jitter or residual FM is therefore
, b S LA
A =[S (N df =[ K- df
2 _ K x+3 x+3
AN =——(f;" - f;7") forx#3 (43)
x+3
Af* =K -(log f, —log f;) for x = 3.

It is usually expressed as Af in rms hertz.

The value of Sy(f) in dB can be found from the more commonly used £(f) measure of SSB phase noise to carrier power
ratio in dB¢/Hz by adding 3 dB. The total integrated phase noise is obtained by summing the A¢® contributions from
the straight-line approximations for each power law noise type. The ratio of total phase noise to signal power in the
given integration bandwidth is equal to 10 log A¢°.
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IEEE Intl. Freq. Cont. Symp. and EFTF Conf., pp. 541-546, May 2003.

5.2.20. Dynamic Stability

A dynamic stability analysis uses a sequence of sliding time windows to perform a dynamic Allan (DAVAR) or
Hadamard (DHVAR) analysis, thereby showing changes (nonstationarity) in clock behavior versus time. It is able to
detect variations in clock stability (noise bursts, changes in noise level or type, etc.) that would be difficult to see in an
ordinary overall stability analysis. The results of a dynamic stability analysis are presented as a three-dimensional
surface plot of log sigma versus log tau or averaging factor as a function of time or window number.

An example of a DAVAR plot is shown below. This example is similar to the one of Figure 2 in Reference [1],
showing a source with white PM noise that changes by a factor of 2 at the middle of the record.

Date: 11/26/05 Time: 10:43:24 Data Points 1 thru 9000 of 9000 Tau=1.0000000e+00 File: DAVAR.DAT

DYNAMIC AVAR STABILITY

Example similar to Fig. 2
of Galleani and Tavella
"Tracking Nonstationarities
in Clock Noises Using the
Dynamic Allan Variance"

Sigma Range:
2.218e-02
to
2.495e+00

N Q% 98

Lo Sgma

Analysis Windows:

987 Windows

of Size 120 Tau Range:
& Step Size 9 1.000e+00
Time Span: to
9.870e+02 sec 3.000e+01

DAVAR.DAT

Stable32

Figure 16. Example of a DAVAR plot.
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2. L. Galleani and P. Tavella, “The Characterization of Clock Behavior with the Dynamic Allan Variance,” Proc.
2003 Joint FCS/EFTF Meeting, pp. 239-244.

5.3. Confidence Intervals

It is wise to include error bars (confidence intervals) on a stability plot to indicate the degree of statistical confidence
in the numerical results. The confidence limits of a variance estimate depend on the variance type, the number of data
points and averaging factor, the statistical confidence factor desired, and the type of noise. This section describes the
use of y2 statistics for setting the confidence intervals and error bars of a stability analysis.

It is generally insufficient to simply calculate a stability statistic such as the Allan deviation, thereby finding an
estimate of its expected value. That determination should be accompanied by an indication of the confidence in its
value as expressed by the upper and (possibly) lower limits of the statistic with a certain confidence factor. For
example, if the estimated value of the Allan deviation is 1.0 x 10™"!, depending on the noise type and size of the data
set, we could state with 95 % confidence that the actual value does not exceed (say) 1.2 x10™". It is always a good
idea to include such a confidence limit in reporting a statistical result, which can be shown as an upper numeric limit,
upper and lower numeric bounds, or (equivalently) error bars on a plot. Even though those confidence limits or error
bars are themselves inexact, they should be included to indicate the validity of the reported result.

If you are unfamiliar with the basics of confidence limits, it is recommended that an introductory statistics book be
consulted for an introduction to this subject. For frequency stability analysis, the emphasis is on various variances,
whose confidence limits (variances of variances) are treated with chi-squared (y?) statistics. Strictly speaking, y2
statistics apply to the classical standard variance, but they have been found applicable to all of the other variances
(Allan, Hadamard, total, Théol1, etc.) used for frequency stability analysis. A good introduction to confidence limits
and error bars for the Allan variance may be found in Reference [1]. The basic idea is to (1) choose an single or
double-sided confidence limits (upper or upper and lower bounds), (2) choose an appropriate confidence factor (e.g.,
95 %), (3) determine the number of equivalent y2 degrees of freedom (edf), (4) use the inverse y2 distribution to find
the normalized confidence limit(s), and (5) multiply those by the nominal deviation value to find the error bar(s).

5.3.1. Simple Confidence Intervals

The simplest confidence interval approximation, with no consideration of the noise type, sets the +1c (68 %) error
bars at +o,(1)NN, where N is the number of frequency data points used to calculate the Allan deviation.

A more accurate determination of this confidence interval can be made by considering the noise type, which can be
estimated by the B1 bias function (the ratio of the standard variance to the Allan variance). That noise type is then be
used to determine a multiplicative factor, Kn, to apply to the confidence interval:

Noise Type Kn

Random Walk FM 0.75
Flicker FM 0.77
White FM 0.87
Flicker PM 0.99
White PM 0.99
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5.3.2 Chi-Squared Confidence Intervals

Chi-squared statistics can be applied to calculate single and double-sided confidence intervals at any desired
confidence factor. These calculations are based on a determination of the number of degrees of freedom for the
estimated noise type. Most stability plots show +1c error bars for its overlapping Allan deviation plot.

The error bars for the modified Allan and time variances are also determined by Chi-squared statistics, using the
number of MVAR degrees of freedom for the particular noise type, averaging factor, and number of data points.
During the Run function, noise type estimates are made at each averaging factor (except the last, where the noise type
of the previous averaging factor is used).

Sample variances are distributed according to the expression

pE edf -s°

2 B
o

(44)

where 42 is the Chi-square, s2 is the sample variance, o2 is the true variance, and edf is the equivalent number of
degrees of freedom (not necessarily an integer). The edf is determined by the number of analysis points and the noise
type. Procedures exist for establishing single- or double-sided confidence intervals with a selectable confidence
factor, based on 2 statistics, for many of its variance functions. The general procedure is to choose a single- or
double-limited confidence factor, p, calculate the corresponding y2? value, determine the edf from the variance type,
noise type and number of analysis points, and thereby set the statistical limit(s) on the variance. For double-sided
limits,

, o edf do? = edf (45)

Jmin =5 - 2 an O-max T .
2" (p.edf) 2" (1= p,edf)

5.4. Degrees of Freedom

The equivalent number of 2 degrees of freedom (edf) associated with a statistical variance (or deviation) estimate
depends on the variance type, the number of data points, and the type of noise involved. In general, the progression
from the original two-sample (Allan) variance to the overlapping, total, and Théol variances has provided larger edfs
and better confidence. The noise type matters because it determines the extent that the points are correlated. Highly
correlated data have a smaller edf than does the same number of points of uncorrelated (white) noise. An edf
determination therefore involves (1) choosing the appropriate algorithm for the particular variance type, (2)
determining the dominant power law noise type of the data, and (3) using the number of data points to calculate the
corresponding edf.

5.4.1. AVAR, MVAR, TVAR, and HVAR EDF

The equivalent number of 2 degrees of freedom (edf) for the Allan variance (AVAR), the modified Allan variance
(MVAR) and the related time variance (TVAR), and the Hadamard variance (HVAR) is found by a combined
algorithm developed by C.A. Greenhall, based on its generalized autocovariance function [2].
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This method for estimating the edf for the Allan, modified Allan, and Hadamard variances supersedes the following
somewhat simpler empirical approximations (which may still be used).

The equivalent number of x> degrees of freedom (edf) for the fully overlapping Allan variance (AVAR) can be
estimated by the following approximation formulae for each power law noise type:

Table 5. AVAR approximation formulae for each power law noise type.

Power law AVAR edf, where
; N = # phase data points, m = averaging factor
noise type =
(N +1) (N —2m)
W PM 2(N - m)
1/2
FPM exp[ln((i\’ - I)JIH((Zm +1)(N - 1))}
2m 4
— _ 2
W FM [3(1\7 ) _2N 2)} 4m
2m N 4m” +5
2(N -2)°
PSSV For m=1
23N -49
FFM .
EC 1
4M(N+3m) For m >
N=2) | (N=1) =3m(N-1)+4n’
RW FM (V-2) | (V-1) m(2)+m
" (V-3)
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The edf for the modified Allan variance (MVAR) can be estimated by the same expression as the overlapping
Hadamard variance (see below) with the arguments changed as follows (valid for =2 < a <2): MVAR and TVAR edf
for N, m and oo = MVAR edf for N+ 1, m and o — 2.

The edf for the fully overlapping Hadamard variance (HVAR) can be found by an earlier algorithm also developed by
C.A. Greenhall based on its generalized autocovariance function. The HVAR edf is found either as a summation (for
small m cases with a small number of terms) or from a limiting form for large m, where 1/edf = (1/p)(a0—al/p), with
the coefficients as follows:

Table 6. HVAR edf coefficients.

HVAR edf
Power law .
noise tvpe coefficients
p a0 al
W FM 7/9 1/2
F FM 1.00 0.62

RW FM 31/30 17/28
FW FM 1.06 0.53
RR FM 1.30 0.54

5.4.2. TOTVAR EDF

The edf for the total variance (TOTVAR) is given by the formula b(T/z) — ¢, where T is the length of the data record, «
is the averaging time, and b and c are coefficients that depend on the noise type, as shown in Table 7:

Table 7. TOTVAR edf coefficients

TOTVAR edf
Power law .
. Coefficients
noise type b c
White FM 1.50 0

Flicker FM 1.17 0.22
Random walk 0.93 0.36
FM

5.4.3. MTOT EDF

The edf for the modified total variance (MTOT) is given by the same formula b(T/z) — ¢, where T is the length of the
data record, = is the averaging time, and b and ¢ are coefficients that depend on the noise type as shown in Table 8:

Table 8. MTOT edf coefficients.

p 1 MTOT edf
ower law Coefficients
noise type b c

White PM 1.90 2.10
Flicker PM 1.20 1.40
White FM 1.10 1.20
Flicker FM 0.85 0.50
Random walk 0.75 0.31
FM
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5.4.4. Théol/ ThéoH EDF

The equivalent number of 2 degrees of freedom (edf) for the Théol, hence, ThéoBR and ThéoH wvariances, is
determined by the following approximation formulae for each power low noise type.

Table 9. ThéoBR and ThéoH approximation formulae for each power law noise type.

Power law Théol edf, where
noise type N = # phase data points, 1= (0.75m, m = averaging factor = 1/
0.86(N_+1)(N_—4%-7
White PM edf = (VAN =57 | 7
N, -7 t+1.14
_ 4.798N} —6.374N r +12.387¢ T
Flicker PM edf = =
(t+36.6) “(N,—-1) 7+0.3
. 41N _+08 3.IN_+6.5 '
White FM edf = - 3/2
N, 77°4+5.2
2N -13N 7-35 }
Flicker FM edf = * L 4 3 L
Nt 77423
Random walk edf = 44N -2\ (44N, - 1) - 8.67(44N —-1)+1 1.477
FM 297 (44N_-3)
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5.5. Noise Identification

Identification of the dominant power law noise type is often necessary for setting confidence intervals and making
bias corrections during a frequency stability analysis. The most effective means for power noise identification are
based on the B, and R(n) functions and the lag 1 autocorrelation.

5.5.1. Power Law Noise Identification

It is often necessary to identify the dominant power law noise process (WPM, FPM, WFM, FFM, RWFM, FWFM or
RRFM) of the spectral density of the fractional frequency fluctuations, Sy(f) = A * (o= 2 to —4), to perform a
frequency stability analysis. For example, knowledge of the noise type is necessary to determine the equivalent
number of chi-squared degrees of freedom (edf) for setting confidence intervals and error bars, and it is essential to
know the dominant noise type to correct for bias in the newer Total and Théol variances. While the noise type may
be known a priori or estimated manually, it is desirable to have an analytic method for power law noise identification
that can be used automatically as part of a stability analysis algorithm.
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There is little literature on the subject of power-law noise identification. The most common method for power law
noise identification is simply to observe the slope of a log-log plot of the Allan or modified Allan deviation versus
averaging time, either manually or by fitting a line to it. This obviously requires at least two stability points. During
a stability calculation, it is desirable (or necessary) to automatically identify the power law noise type at each point,
particularly if bias corrections and/or error bars must be applied.

5.5.2. Noise Identification Using B; and R(n)

A noise identification algorithm that has been found effective in actual practice, and that works for a single « point
over the full range of -4 < o < 2 is based on the Barnes B; function, which is the ratio of the N-sample (standard)
variance to the two-sample (Allan) variance, and the R(n) function [1], which is the ratio of the modified Allan to the
normal Allan variances. The B; function has as arguments the number of frequency data points, N, the dead time
ratio, r (which is set to 1), and the power law t-domain exponent, . The B; dependence on p is used to determine the
power law noise type for —2 < u <2 (W and F PM to FW FM). For a B, corresponding to u=-2,the a =1 or 2 (F PM
or W PM noise) ambiguity can be resolved with the R(n) ratio using the modified Allan variance. For the Hadamard
variance, for which RR FM noise can apply, (m =3, a = —4), the B, ratio can be applied to frequency (rather than
phase) data, and adding 2 to the resulting p.

The overall noise B;/R(n) noise identification process is therefore:

1. Calculate the standard and Allan variances for the applicable t averaging factor.
N(1-N")

AN -D(1-2")

Determine the expected B ratios for a =—3 through 1 or 2.

Set boundaries between them and find the best power law noise match.

Resolve an o = 1 or 2 ambiguity with the modified Allan variance and R(n).
Resolve an o = —3 or —4 ambiguity by applying B, to frequency data.

N

Calculate Bi(N, r=1, ) =

NNk w

The boundaries between the noise types are generally set as the geometric means of their expected values. This
method cannot distinguish between W and F PM at unity averaging factor.

5.5.3. The Autocorrelation Function

The autocorrelation function (ACF) is a fundamental way to describe a time series by multiplying it by a delayed
version of itself, thereby showing the degree by which its value at one time is similar to its value at a certain later
time. More specifically, the autocorrelation at lag k is defined as

_ El(z, — 1)z — )] (46)
(o) g ’

z

k

where z; is the time series, p is its mean value, o, is its variance, and E denotes the expected value. The
autocorrelation is usually estimated by the expression

}VZ( E)(z,., - F)

1 N
z,(zz_f)z
N3

r, = , 47

where Zz is the mean value of the time series and o is the number of data points [2].
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5.5.4. The Lag 1 Autocorrelation

The lag 1 autocorrelation is simply the value of »; as given by the expression above. For frequency data, the lag 1
autocorrelation is able to easily identify white and flicker PM noise, and white (uncorrelated) FM noise, for which the
expected values are —1/2, —1/3 and zero, respectively. The more divergent noises have positive 7, values that depend
on the number of samples, and tend to be larger (approaching 1). For those more divergent noises, the data are
differenced until they become stationary, and the same criteria as for WPM, FPM and WFM are then used, corrected
for the differencing. The results can be rounded to determine the dominant noise type or used directly to estimate the
noise mixture.

5.5.5. Noise Identification Using ry

An effective method for identifying power law noises using the lag 1 autocorrelation [3] is based on the properties of
discrete-time fractionally integrated noises having spectral densities of the form (2 sin 7t f)™. For &< %, the process
is stationary and has a lag 1 autocorrelation equal to p; = 8/ (1-8) [4], and the noise type can therefore be estimated
from 6 =1, / (1+1;). For frequency data, white PM noise has p; =—1/2, flicker PM noise has p; = —1/3, and white FM
noise has p; = 0. For the more divergent noises, first differences of the data are taken until a stationary process is
obtained as determined by the criterion 6 < 0.25. The noise identification method therefore uses p = —round (28) —2d,
where round (28) is 20 rounded to the nearest integer and d is the number of times that the data is differenced to bring
5 down to < 0.25. If z is a t-average of frequency data y(t), then a = p; if z is a t-sample of phase data x(t), then o =p
+ 2, where o is the usual power law exponent f *, thereby determining the noise type at that averaging time. The
properties of this power law noise identification method are summarized in Table 10. It has excellent discrimination
for all common power law noises for both phase and frequency data, including difficult cases with mixed noises.

Noise a Phase Data* d=0 ACF of
Type x(t) Phase Data
et s
F PM 1 % =
I
" i Uih‘h
W FM 0 AT
A P~
llj"u
FEM | -1 | s
v [~
a
RWFM | 2 P
e —
* The differencing operation changes the appearance
of the phase data to that shown 2 rows higher.

Figure 20. Lag 1 Autocorrelation for Various Power Law Noises
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Table 10. Lag 1 Autocorrelation for Various Power Law Noises and Differences

Noise Lag 1 Autocorrelation, rlT

Type d=0 d=1 d=2
a X(t) y(® X(t) y(t) X(t) y(®
2 0 —1/2 | -12 -2/3 -2/3 —3/4
1 ~0.7 —1/3 —1/3 —3/5 —3/5 —5/7
0 ~1 0 0 -1/2 -1/2 —2/3
-1 ~1 ~0.7 =~0.7 —1/3 —1/3 —3/5
-2 ~1 ~1 ~1 0 0 -1/2

" Shaded values are those used for noise ID for the particular
noise and data type.

5.5.6. Noise ID Algorithm

The basic lag 1 autocorrelation power law noise identification algorithm is quite simple. The inputs are a vector zi,...,
zy of phase or frequency data, the minimum order of differencing dmin (default = 0), and the maximum order of
differencing dmax. The output is p, an estimate of the o of the dominant power law noise type, and (optionally) the
value of d.

Done = False, d =0
While Not Done

I
Z:N;zi

N-1
Z(Zi o Z)(Zi+l o Z)
’,.1 — =l -

Z(Zi _2)2

i=1

5=
1+7
If d >= dmin And (6 < 0.25 Or d >= dmax)
p=-2+d)
Done = True
Else
Zy =2y = Zjyees 2y = Zy — Zn_
N=N-1
d=d+1
End If
End While

Note: May round p to nearest integer

Figure 21. The basic lag 1 autocorrelation power law noise identification algorithm.
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The input data should be for the particular averaging time, t, of interest, and it may therefore be necessary to decimate
the phase data or average the frequency by the appropriate averaging factor before applying the noise identification
algorithm. The dmax parameter should be set to two or three for an Allan or Hadamard (two or three-sample)
variance analysis, respectively. The alpha result is equal to p+2 or p for phase or frequency data, respectively, and
may be rounded to an integer (although the fractional part is useful for estimated mixed noises). The algorithm is fast,
requiring only the calculation of one autocorrelation value and first differences for several times. It is independent of
any particular variance. The lag 1 autocorrelation method yields good results, consistently identifying pure power
noise for o= 2 to —4 for sample sizes of about 30 or more, and generally identifying the dominant type of mixed
noises when it is at least 10 % larger than the others. For a mixture of adjacent noises, the fractional result provides
an indication of their ratio. It can handle all averaging factors.

Before analysis, the data should be preprocessed to remove outliers, discontinuities, and deterministic components.
Acceptable results can be obtained from the lag 1 autocorrelation noise identification method for N > 32, where N is
the number of data points. The algorithm tends to produce jumps in the estimated alpha for mixed noises when the
differencing factor, d, changes (although the alpha value when rounded to an integer is still consistent). This can be
avoided by using the same d for the entire range of averaging times, at the expense of higher variability when a lower
d would have been sufficient. The lag 1 autocorrelation method for power law noise identification is a fast and
effective way to support the setting of confidence intervals and to apply bias corrections during a frequency stability
analysis, as shown Figure 22:

SAO VLG11B H-Maser S/N SAO26 vs SAO18
Noise Type

2 10'11 WPM
Linear Frequency Drift Removed

12 Noise Typé

1110 FPM

010" \\]'w»gv
-1t10"

Stability
2 -15 \
2110

Lag 1 ACF Noise ID Extends \ﬁ
3

WFM

FFM

Overlapping Allan Deviation, cy(T)

RWFM
to # Analysis Points > 10
-3 10'16 : : FWFM
10° 100 10° 10 10 10°

Averaging Time,t, Seconds

Figure 22. Frequency Stability and Noise Analysis of Two Hydrogen Masers
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5.6. Bias Functions

Several bias functions are defined and used in the analysis of frequency stability, as defined below. In particular, B,
the ratio of the standard variance to the Allan variance, and R(n), the ratio of the modified Allan variance to the
normal Allan variance, are used for the identification of power law noise types (see section 5.2.2), and the B, and B;
bias functions are used to correct for dead time in a frequency stability measurement.

5.7. B;Bias Function

The B, bias function is the ratio of the N-sample (standard) variance to the two-sample (Allan) variance with dead
time ratio r = T/r, where T = time between measurements, t = averaging time, and u= exponent of t in Allan variance
for a certain power law noise process:

o’(N,T,7)

B, (N,r,u)= .
1( /J) O_Q(Z,T,z_)

(43)

The B, bias function is useful for performing power law noise identification by comparing its actual value to those
expected for the various noise types (see section 5.2.2).

5.8. B, Bias Function

The B, bias function is the ratio of the two-sample (Allan) variance with dead time ratio r = T/t to the two-sample
(Allan) variance without dead time (r = 1):
_o'(2T.7)

Bz(hﬂ)—m- (49)
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5.9. BjBias Function
The Bj; bias function is the ratio of the N-sample (standard) variance with dead time ratio r = T/t at multiples M = 1/,
of the basic averaging time t, to the N-sample variance with the same dead time ratio at averaging time t:

o’ (N,M,T,7)

B.(N.M,r,u)=
I T

(50)

The product of the B, and B; bias functions is used for dead time correction, as discussed in section 5.7.
5.10. R(n) Bias Function

The R(n) function is the ratio of the modified Allan variance to the normal Allan variance for n = number of phase
data points. Note: R(n) is also a function of a, the exponent of the power law noise type:

R(n)=—2~. (51)

The R(n) bias function is useful for performing power law noise identification by comparing its actual value to those
expected for the various noise types (see Section 5.2.2).

5.11. TOTVAR Bias Function

The TOTVAR statistic is an unbiased estimator of the Allan variance for white and flicker PM noise, and for white
FM noise. For flicker and random walk FM noise, TOTVAR is biased low as t becomes significant compared with
the record length. The ratio of the expected value of TOTVAR to AVAR is given by the expression

T
B(TOTAL)=l-a-| = |, 0<z<—, (52)
T 2
where a = 1/3.In2 = 0.481 for flicker FM noise, a = 3/4 = 0.750 for random walk FM noise, and T is the record length.

At the maximum allowable value of T =T/2, TOTVAR is biased low by about 24 % for RW FM noise. This bias
function should be used to correct all reported TOTVAR results.

5.12. MTOT Bias Function

The MTOT statistic is a biased estimator of the modified Allan variance. The MTOT bias factor (the ratio of the
expected value of Mod Totvar to MVAR), as shown in Table 11, depends on the noise type but is essentially
independent of the averaging factor and number of data points.

Table 11. MTOT bias factors for each noise type.

Noise Bias Factor
W PM 1.06

F PM 1.17

W FM 1.27

F FM 1.30
RW FM 1.31
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This bias factor should be used to correct all reported MTOT results.

5.13. Théol Bias

The Théol statistic is a biased estimator of the Allan variance. The Théol bias factor (the ratio of the expected value
of Théol to AVAR) depends on both noise type and averaging factor:

AVAR b
=qa+
Théol m°

Théol Bias = , (53)

where m is the averaging factor and the constants a, b and ¢ are given in Table 12. Note that the effective tau for a
Théol estimation is t = 0.75-m-ty, where t, is the measurement interval.

Table 12. Constants a, b, and ¢ for Théo1l bias.

Noise Alpha a b c
RW FM -2 2.70 —1.53 0.85

F FM -1 1.87 -1.05 0.79
W FM 0 1.00 0.00 0.00
F PM 1 0.14 0.82 0.30
W PM 2 0.09 0.74 0.40

5.14. ThéoH Bias

ThéoH statistic is a bias-removed estimator of the Allan variance. ThéoH is the best statistic for estimating the
frequency stability and type of noise over the widest possible range of averaging times without explicit knowledge of
the noise type.
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5.15. Dead Time

Dead time can occur in frequency measurements because of | Dead time can occur in frequency
instrumentation delay between successive measurements, or because of a | measurements and can significantly
deliberate wait between measurements. It can have a significant effect on | affect a subsequent stability analysis.

the results of a stability analysis, especially for the case of large dead time | Methods are available to correct for dead
(e.g., frequency data taken for 100 seconds, once per hour). time and thus obtain unbiased results.
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Figure 23. Illustration of dead time between successive measurements.

Dead time corrections can be applied by dividing the calculated Allan deviation by the square root of the product of
the Barnes B, and B; bias ratios. These corrections are particularly important for non-white FM noise with a large
dead time ratio. Restricting the dead time corrections to Allan deviations is a conservative approach based on the B,
and B; definitions. Those bias functions depend critically on the power law noise type. Requiring manual noise
selection avoids the problem of noise identification for biased data having the wrong sigma-tau slope. Dead time
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correction is problematic for data having multiple noise types. In addition to introducing bias, measurement dead
time reduces the confidence in the results, lowers the maximum allowable averaging factor, and prevents proper
conversion of frequency to phase. Moreover, no information is available about the behavior of the device under test
during the dead time. It is recommended that these issues be avoided by making measurements with zero dead time.

Dead time that occurs at the end of a measurement can be adjusted for in an Allan deviation determination by using
the Barnes B, bias function [1], the ratio of the two-sample variance with dead time ratio r = T/t to the two-sample
variance without dead time. Otherwise, without this correction, one can determine only the average frequency and its
drift. When such data are used to form frequency averages at longer tau, it is necessary to also use the B; bias
function [2], the ratio of the variance with distributed dead time to the variance with all the dead time at the end.
Those bias corrections are made by use of the product of B, and B;. The power law noise type must be known in
order to calculate these bias functions. Simulated periodically sampled frequency data with distributed dead time for
various power law noise processes shows good agreement with the B, and B; bias function corrections, as shown in
Figure 24.
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Figure 24. Frequency stability plots for common power law noises with large measurement dead time (r = T/t = 36).
Simulated data sampled for t = 100 seconds once per hour for 10 days. Nominal 1x10™ stability at T = 100 seconds shown
by lines. Plots show stability of simulated data sets for continuous, sampled and dead time-corrected data. (a) White PM
(u=-2) VB,=0.82 at AF = 1, (b) Flicker PM (u = -2), VB, = 0.82 at AF = 1, (c) White FM (p = -1), VB, = 1.00 at AF = 1, (d)

Flicker FM (u=0)VB,=1.92at AF =1, (¢) RW FM (un=1) VB, = 7.31 at AF = 1.
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These simulations show that the B, and B; bias corrections are able to support reasonably accurate results for sampled
frequency stability data having a large dead time, when the power law noise type is known. The slope of the raw
sampled stability plot does not readily identify the noise type, however, and mixed noise types would make correction
difficult. The relatively small number of data points reduces the confidence of the results, and limits the allowable
averaging factor. Moreover, the infrequent measurements provide no information about the behavior of the clock
during the dead time, and prevent a proper conversion of frequency to phase. Sparsely sampled data are therefore not
recommended for the purpose of stability analysis.

References for Dead Time

1. J.A. Barnes, “Tables of Bias Functions, B1 and B2, for Variances Based on Finite Samples of Processes with
Power Law Spectral Densities,” NBS Technical Note 375, January 1969.

2. J.A. Barnes and D.W. Allan, “Variances Based on Data with Dead Time Between the Measurements,” NIST
Technical Note 1318, 1990.

5.16. Unevenly Spaced Data

Unevenly spaced phase data can be handled if they have associated timetags by using the individual timetag spacing
when converting them to frequency data. Then, if the tau differences are reasonably small, the data may be analyzed
by use of the average timetag spacing as the analysis tau, in effect placing the frequency data on an average uniform
grid. While completely random data spacing is not amenable to this process, tau variations of £10 % will yield
reasonable results as long as the exact interval is used for phase to frequency conversion.

An example of unevenly spaced data is two-way satellite time and frequency transfer (TWSTFT) measurements made
on Monday, Wednesday, and Friday of each week, where the data spacing is either one or two days.

Dote: 0%/29 /02 Time: 0415845 File: hwatflsig

FREQUENCY STABILITY

Composde TDEV Plot

10-‘1

\mulo ed qmpled F\Hed Adjus ed ata -
S f S & t D t
. B Dan . .

1o F 4

= S\m!..uoled . PM Noise i

= Sompled MW.F, TWSTFT, Doto s

C = Filled Doto with. Interpalated Pomis

D = Adjusted iData Using Timetogs Fof Tow

.Y
B

2

Time Deviation, ¢_(T), Seconds

e Gren bine: = Simitation - Namigati -+ 4o o

-13
= 10
E)

15z 10t 15z 107
Averaging Time, 1, Days

Figure 25. TDEV results for simulated TWSTFT data.

The TWSTFT data are simulated as 256 points of white PM noise with an Allan deviation (ADEV) level of 6y(t) = 1

x10"" at 1-day. A composite plot of the TWSTFT TDEYV results is shown above. The corresponding TDEV is 5.77

x107% sec at t = 1 day (TDEV = MDEV divided by \3), as shown in curve A. Note that these time-stability plots
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include points at all possible tau values. The green line shows that the —0.5 slope of the TDEV plot for W PM noise.
The TWSTFT data are sampled once on Monday, Wednesday, and Friday of each week. These sampled data
therefore have an average tau of 7/3 = 2.33 days, and their TDEV is shown in curve B. If the missing points are
replaced by linearly interpolated phase values, the TDEV becomes highly distorted, as shown in curve C. If the
sampled phase data are converted to frequency data using their timetag differences to determine the individual
measurement intervals, the average tau, Tay, is close to 2.33 days (depending on the final fractional week that is
included), and the resulting TDEV is shown in curve D. It is essentially identical to that for the sampled phase data
shown in curve B. It is interesting that, although the converted frequency results are different depending on whether
the average or individual (more correct) taus are used, the (integrated) TDEV results are not (at least for a white PM
noise process).

None of the results is in good agreement with the nominal simulation. The result with the linearly interpolated phase
points is particularly bad for t1<t,,, and is similar to that of Tavella and Leonardi, as shown in Figure 1 of Reference
[1]. As they point out in that paper, because the true sampling interval is T,y,, it is not possible to estimate the noise at
shorter times, especially for an uncorrelated white noise process. They further suggest that the higher level of the
estimated noise is related to the ratio of the true and interpolated sampling times (=2.33) and the Yt dependence of
TDEV. By applying a correction factor of ¥2.33 ~ 1.5, the longer-tau TDEV estimates are lowered to the correct
level. These factors are smaller for other non-white PM and FM noise processes. The adjusted method of using
frequency data converted from phase data by using individual tau values adjusted for the timetag spacing is
recommended because it does not use interpolation, does not present results at unrealistically low tau, and uses the
best frequency estimates.

Another situation is data that are taken in bursts. In that case, the best approach is probably to analyze the segments
separately, perhaps averaging those results to obtain better statistical confidence. One could obtain reasonable results
for the shorter averaging times, but cannot apply standard techniques to analyze the complete data set.

References for Unevenly Spaced Data

1. P. Tavella and M. Leonardi, “Noise Characterization of Irregularly Spaced Data,” Proceedings of the 12"
European Frequency and Time Forum, pp. 209-214, March 1998.

2. C. Hackman and T.E. Parker, “Noise Analysis of Unevenly Spaced Time Series Data,” Metrologia, Vol. 33, pp.
457-466, 1996.

5.17. Histograms

A histogram shows the amplitude distribution of the phase or frequency fluctuations, and can provide insight
regarding them. We can expect a normal (Gaussian) distribution for a reasonably sized data set, and a different (e.g.,
bimodal) distribution can be a sign of a problem.

For a normal distribution, the standard deviation is approximately equal to the half-width at half-height (HWHA =
1.177s) .
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Figure 26. Half-width at half-height for the standard deviation.
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Figure 27. An example of a histogram for a set of white FM noise.

5.18. Frequency Offset

It is often necessary to estimate the frequency offset from either phase or frequency data.
Frequency offset is usually calculated from phase data by either of three methods:
1. A least squares linear fit to the phase data (optimum for white PM noise):
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x(t) = a + bt, where slope = y(t) =b.
2. The average of the first differences of the phase data (optimum for white FM noise):

y(t) = slope = [x(t+1) - x(t)]/x.

3. The difference between the first and last points of the phase data:
y(t) = slope = [ x(end) — x(start) | / (M—1), where M = # phase data points.

This method is used mainly to match the two endpoints.
5.19. Frequency Drift

Most frequency sources have frequency drift, and it is often necessary (and usually advisable) to characterize and
remove this systematic drift before analyzing the stochastic noise of the source. The term drift refers to the systematic
change in frequency due to all effects, while aging includes only those effects internal to the device. Frequency drift
is generally analyzed by fitting the trend of the frequency record to an appropriate mathematical model (e.g., linear,
log, etc.), often by the method of least squares. The model may be based on some physical basis or simply a
convenient equation, using either phase or frequency data, and its suitability may be judged by the degree to which it
produces white (i.e., uncorrelated) residuals.

Frequency drift is the systematic change in frequency due to all effects, while frequency aging is the change in
frequency due to effects within the device. Thus, for a quartz crystal oscillator, aging refers to a change in the
resonant frequency of its quartz crystal resonator, while drift would also include the effects of its external
environment. Therefore, drift is the quantity that is usually measured, but it is generally done under constant
environmental conditions to the greatest extent possible so as to approximate the aging of the device.

5.20. Drift Analysis Methods

Several drift methods are useful for phase or frequency data as described below. The best method depends on the
quality of the fit, which can be judged by the randomness of the residuals.

Table 13. Drift analysis methods for phase or frequency data.

Data Method Noise Model
Phase Quadratic Fit W PM
Phase Avg of 2nd Diffs RW FM
Phase 3-Point Fit W & RW FM
Phase Linear Fit Frequency Offset
Phase Avg of 1st Diffs Frequency Offset
Phase Endpoints Frequency Offset
Freq Linear Fit W FM

Freq Bisection Fit W & RW FM
Freq Log Fit Stabilization
Freq Diffusion Fit Diffusion

5.21. Phase Drift Analysis

Three methods are commonly used to analyze frequency drift in phase data:
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1. A least squares quadratic fit to the phase data:
x(t) =a + bt + ctz, where y(t) = x'(t) = b + 2ct, slope = y'(t) = 2c.

This continuous model can be expressed as x, = a + nbn + p’cn? for n =1, 2, 3..., N, and ¢ is the sampling
interval for discrete data, where the a, b and ¢ coefficients have units of sec, sec/sec and sec/sec?, respectively,
and the frequency drift slope and intercept are 2¢ and b, respectively . The fit coefficients can be estimated by
the following expressions [1]:

N N N
a= AZ X, + rOBz nx, + r(sz n’x, J /G
n=1 n=1 n=1
n N N N
b= BZ X, + TODZ nx, + TgEZ n’x, J / Gz, , (54)
n=1 n=1 n=1
N N N
c= Can +TOEann +r§FZn2xn]/Gr§
n=l1 n=1 n=1

where the 4-F terms are as follows:

A=33N(N +1)+2]

B=-18(2N +1)

C=30

D=12(2N +1)(8N +11)/[(N +1)(N +2)]

E=-180/(N +2)

F=180/[(N+1)(N +2)|

G=N(N-1)(N-2)

A quadratic fit to the phase data is the optimum model for white PM noise.

2. The average of the second differences of the phase data:
y(t) = [x(t+1)-x(t)]/x, slope = [y(t+1)-y(t) ]/x = [x(t+21)-2x(t+7)+x(t)]/72
This method is optimum for random walk FM noise.
3. A three-point fit at the start, middle, and end of the phase data:
slope = 4[x(end)-2x(mid)+x(start)]/(Mr)2, where M = the number of data points.

It is the equivalent of the bisection method for frequency data.

5.22. Frequency Drift Analysis

Four methods are commonly used to analyze frequency drift in frequency data:
1. A least squares linear regression to the frequency data:

y(t) = a + bt, where a = intercept, b = slope = y'(t).
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Linear frequency drift can be estimated by a linear least squares fit to the frequency data, y(?) = a + bt. That
continuous model can be expressed as y, = a + bn for n =1, 2, 3..., M where M is the number of frequency
data points, 7, is the sampling interval for the discrete data. The frequency drift intercept and slope are a and
b, and have units of sec and sec/sec, respectively. The fit coefficients can be estimated by equations 55 and
56:

M M M
MZ ny, —ZnZyn

[;: n=1 n=1__ n=1 (55)

and
M M
2V 2
&:":]1\/[ —b-";[ . (56)

A linear fit to the frequency data is the optimum model for white FM noise.
2. The frequency averages over the first and last halves of the data:
slope = 2 [ y(2nd half) - y(1st half) ] / (Nt), where N = number of points.
This bisection method is optimum for white and random walk FM noise.
3. A log model of the form (see MIL-O-55310B) that applies to frequency stabilization:
y(t) = a‘In(bt+1), where slope = y'(t) = ab/(bt+1).
4. A diffusion (vt) model of the form

y(t) = a+b(t+c)"?, where slope = y'(t) = %-b(t+c) "%

References for Frequency Drift

1. J.A. Barnes, “The Measurement of Linear Frequency Drift in Oscillators,” Proc. 15th Annu. PTTI Meeting, pp.
551-582, Dec. 1983.

2. J.A. Barnes, “The Analysis of Frequency and Time Data,” Austron, Inc., Dec. 1991.

3. M.A. Weiss and C. Hackman, “Confidence on the Three-Point Estimator of Frequency Drift,” Proc. 24th Annu.
PTTI Meeting, pp. 451-460, Dec. 1992.

5.23. All Tau

Stability calculations made at all possible tau values can provide an excellent indication of the variations in the
results, and are a simple form of spectral analysis. In particular, cyclic variations are often the result of interference
between the sampling rate and some periodic instability (such as environmental sensitivity). However, an all tau
analysis is computationally intensive and can therefore be slow. For most purposes, however, it is not necessary to
calculate values at every tau, but instead to do so at enough points to provide a nearly continuous curve on the display
device (screen or paper). Such a “many tau” analysis can be orders of magnitude faster and yet provide the same
information.
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Figure 28. Comparison of all tau and many tau stability.

5.25. Environmental Sensitivity

Environmental sensitivity should be treated separately from noise when one performs a stability analysis. However, it
can be very difficult to distinguish between those different mechanisms for phase or frequency variations. It is often
possible to control the environmental conditions sufficiently well during a stability run so that environmental effects
such as temperature and supply voltage are negligible. Determining how well those factors have to be controlled
requires knowledge of the device’s environmental sensitivities. Those factors should be measured individually, if
possible, over the largest reasonable excursions to minimize the effect of noise. Environmental sensitivity can best be
determined by considering the physical mechanisms that apply within the unit under test. Useful information about
the environmental sensitivity of frequency sources can be found in the references below. Some environmental factors
affect phase and frequency differently, which can cause confusion. For example, temperature affects the phase delay
through a cable. Dynamically, however, a temperature ramp produces a rate of change of phase that mimics a
frequency change in the source. Because environmental sensitivity is highly dependent on device and application, it
does not receive detailed consideration in this handbook. More information will be found in the following references.
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5.26. Parsimony

In any measurement or analysis, it is desirable to minimize the number of extraneous parameters. This is not just a
matter of elegance; the additional parameters may be implicit or arbitrary and thereby cause confusion or error if they
are ignored or misunderstood. For example, the Allan deviation has the important advantage that, because of its
convergence characteristics for all common clock noises, its expected value is independent of the number of data

points.

Many of the techniques used in the analysis of frequency stability, however, do require that certain parameters

be chosen before they can be performed. For example, drift removal requires the choice of a model to which the data
will be fit (perhaps using the criterion of white residuals). Outlier removal is an especially difficult case, where

judgment often enters into the decision as to whether or not a datum is anomalous.

A listing of some of these

nonparsimonious parameters is given in Table 14:
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Table 14. Non-Parsimonious Parameters in Frequency Stability Analysis

Type Process Parameter Criterion Remarks
Pre- Outlier Number of Apply best Use of MAD-based
processing | removal sigmas judgment robust statistics is
recommended.
Drift Remove or Is drift It is generally wise
removal not deterministic? | to remove
Is its cause deterministic drift
known? before noise
analysis
Model White Model may have
residuals are physical basis (e.g.,
sign that model | diffusion process)
is appropriate.
Convergence | For iterative Generally uncritical
limit fit. — can hide deeply in
algorithm
Remove Model Noise type Not necessarily
average simple arithmetic
frequency mean of frequency.
Phase to Tau Accuracy Is measurement
frequency interval known
conversion exactly? Is it the
same for each point?
Frequency | Tau See above
to phase Initial phase Set to zero. Generally arbitrary.
conversion Doesn’t affect
subsequent stability
analysis.
Normalize Use to See “Remove
frequency emphasize average frequency
noise rather above”
than frequency
offset
Analysis Drift Model Smallest Can be critical,
estimation residuals especially for
predictions. Known
physics can help
choose.
Convergence | For iterative fit | Generally uncritical
limit — can hide deeply in
algorithm
Frequency | Noise model | Lowest Generally uncritical
estimation residuals for
known noise
type
Gaps Skip, fill, Number, Process choice
omit, or distribu-tion, affects results
exclude noise type
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Allan Number of Time available | As many as possible
deviation | data points for
measurement.
Must remove
outliers.
Dead time Property of Avoid
measuring
system
Maximum AF | Confidence As large as
degrades confidence allows
Noise ID Noise type Generally
method to significant unambiguous
support error | affect on
bars results
Hadamard | All Allan See above
deviation | deviation
parameters
To use rather | Easier handling | Commonly used in
than Allan of clock with GPS control
deviation or drift or operations.
separate drift | divergent noise
removal
Total All Allan See above
deviation | deviation
Théol parameters
To use rather | Better Less commonly
than Allan confidence at used
deviation long tau.
Noise ID Critical for Generally
method to these biased unambiguous
support bias estimators
removal
Dynamic Window and | Resolution, Affects calc time
stability step size number of
windows
Variance type | Data AVAR or HVAR
properties:
noise, drift
Viewpoint, Visibility Personal preference
mesh, color
Spectral Type — Convention Analysis tools
analysis Parametric or available
non- Knowledge of
parametric, analyst
Windowing — | Clarity Uncritical
Bias
reduction
Smoothing — | Clarity Tradeoff vs
variance resolution
reduction
Presentation — | Insight Use both
plot or fit
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Presenta- | Form Table vs. Plot | Clarity Use both
tion Domain Time or Clarity, Use best
frequency correspondence
with
requirements
Error bars | Include or not | Clarity Error bars
recommended
Reference | Remove or If affects Only if similar to
noise not results unknown
subtraction
Nominal Cost/risk May be Usually nominal at
VS. tradeoff specified 1-sigma confidence
maximum
at some
confidence
level
Notation State outlier Judgment of Disclose choices
& drift analyst
removal,
environmental
conditions,
etc.

5.27. Transfer Functions

Variances can be related to the spectral density of the fractional frequency fluctuations by their transfer functions. For
example, for the Hadamard variance, this relationship is

oy (@) =[S, |H, (N dr (57)

where 6%y(7) is the three-sample, zero dead-time, binominally weighted Hadamard variance, Sy(f) is the spectral
density of the fractional frequency fluctuations, Hy(f) is its transfer function, and f; is the upper cutoff frequency
(determined by hardware factors). The transfer function is determined by the statistic’s time-domain sampling
pattern.

The transfer functions for the most common variances used in frequency stability analysis are shown in Table 15:

Table 15. Transfer functions for the most common variances.

Variance Magnitude Squared Transfer Function |H(f)[?
Allan . 2
sin T .
2 7 sin® z7f
T
Hadamard sin 77 2
24( j sin® 77
T
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For mtf << 1, the transfer function of the Allan variance behaves as (xtf)’, indicating that it is convergent for power
law processes Sy* down to as low as o= -2 (Random Walk FM), while the transfer function of the Hadamard variance

behaves as (nt/)*, indicating that it is convergent for power law processes as low as o= -4 (Random Run FM).

The squared magnitudes of these transfer functions are shown in the plots below:
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Figure 29. Squared magnitudes of transfer functions for (a) Allan Variance and (b) Hadamard Variance.

These responses have their peaks where the frequency is one-half the sampling rate, and nulls where it is a multiple of
the sampling rate (i.e., at f = n/t, where n is an integer). As a spectral estimator, the Hadamard variance has slightly
higher resolution than the Allan variance, since the equivalent noise bandwidths of the Hadamard and Allan spectral

windows are 0.411 t" and 0.476 1!, respectively [5].

Similar transfer functions exist for the modified, total, and Théo1 variances.
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6 Frequency Domain Stability

Frequency stability can also be characterized in the frequency domain in terms
of a power spectral density (PSD) that describes the intensity of the phase or
frequency fluctuations as a function of Fourier frequency. Spectral stability
measures are directly related to the underlying noise processes, and are
particularly appropriate when the phase noise of the source is of interest.

6.1. Noise Spectra

Frequency domain stability
measures are based on power
spectral densities that characterize
the intensity of the phase or
frequency fluctuations as a
function of Fourier frequency.

The random phase and frequency fluctuations of a frequency source can be modeled by power law spectral densities

of the form

Sy(f) = h(o)f *,

where: Sy(f) = one-sided power spectral density of y, the
fractional frequency fluctuations, 1/Hz
f = Fourier or sideband frequency, hertz,
h(a) = intensity coefficient, and
o = exponent of the power law noise process.

The most commonly encountered noise spectra are

White (f°)

Flicker (f )
Random Walk (f %)
Flicker Walk (f ) .

Examples of these noise types are shown in the figure below.

Figure 30. Examples of noise types.

Power law spectral models can be applied to both phase and frequency power spectral densities. Phase is the time

integral of frequency, so the relationship between them varies as 1/f2
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S, ()

S ()= , 59

(D 1) (59)
where S(f) = PSD of the time fluctuations, sec2/Hz. (60)
Two other quantities are also commonly used to measure phase noise:
Sy() = PSD of the phase fluctuations, rad¥Hz and its

logarithmic equivalent £(f), dBc/Hz.
The relationship between these is
2
14
S,()=Q2xv,)* S, (f)=(7°] 5,0, 61)
and
1

where v, is the carrier frequency, hertz.

The power law exponent of the phase noise power spectral densities is = a-2. These frequency-domain power law
exponents are also related to the slopes of the following time domain stability measures:

Allan variance o%y(1) p= —(o+l), a<2
Modified Allan variance Mod &%(1) p'= —(o+1, a<3
Time variance (1) n= -(a-1),a<3.

The spectral characteristics of the power law noise processes commonly used to describe the performance of
frequency sources are shown in the following table:

Table 16. Spectral characteristics of power law noise processes

Noise Type o B n o n
White PM 2 0| 21| -31 -1
Flicker PM 1| -1 2 | 2 0
White FM o -21-11-1 1
Flicker FM -1 -3 2
Random walk FM | -2 | 4 1 1 3

6.2. Power Spectral Densities

Four types of power spectral density are commonly used to describe the stability of a frequency source:

PSD of Frequency Fluctuations Sy(f)
The power spectral density of the fractional frequency fluctuations y(t) in units of 1/Hz is given by Sy(f) = h(a) - f¢,
where f = sideband frequency, Hz.

PSD of Phase Fluctuations S(f)
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The power spectral density of the phase fluctuations in units of rad?/Hz is given by Sy(f) = (2nv,)? - Sx(f), where v,=
carrier frequency, Hz.

PSD of Time Fluctuations S(f)

The power spectral density of the time fluctuations x(t) in units of sec?Hz is given by Sy(f) = h(p) - £ = Sy(f)/(2xf)?,
where: = a-2. The time fluctuations are related to the phase fluctuations by x(t) = ¢(t)/2nv,. Both are commonly
called “phase” to distinguish them from the independent time variable, t.

SSB Phase Noise £(f)

The SSB phase noise in units of dBc/Hz is given by £(f) = 10 - log [% - S(f)]. This is the most common function used
to specify phase noise.

6.3. Phase Noise Plot

The following diagram shows the slope of the SSB phase noise, £(f), dBc/Hz versus log f, Fourier frequency, Hz for
various power law noise processes.

SSB Phase Noise Diagram

-60 -
RW =2 S/f)~f a=-1-u
Vi B _
a0 S¢(f) ~f B=a-2
£(f) = 1040g,, [%- S,(f)]
-40 \| Flicker | L
-100 Fiv——
-120 ﬁ\ .
dBc/Hz -30 W;l,tle =0
i Flicker PNI o =
-140 dS:D:/Odp:eCSaI ;]e ad White ;N
©eate | A0\l -0 i aiz
0
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log f, Hz

Figure 31. SSB Phase Noise Plot.

6.4. Spectral Analysis

Spectral analysis is the process of characterizing the properties of a signal in the frequency domain, either as a power
spectral density for noise, or as the amplitude and phase at discrete frequencies. Spectral analysis can thus be applied
to both noise and discrete components for frequency stability analysis. For the former, spectral analysis complements
statistical analysis in the time domain. For the latter, spectral analysis can aid in the identification of periodic
components such as interference and environmental sensitivity. Time domain data can be used to perform spectral
analysis via the Fast Fourier Transform (FFT), and there is much technical literature on that subject [2,3]. While, in
principle, time and frequency domain analyses provide equivalent information, in practice, one or the other is usually
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preferred, either because of measurement and/or analysis convenience, or because the results are more applicable to a
particular application. Spectral analysis is most often used to characterize the short-term (< 1 s) fluctuations of a
frequency source as a plot of phase noise power spectral density versus sideband frequency, while a time domain
analysis is most often used to provide information about the statistics of its instability over longer intervals (> 1 s).
Modern instrumentation is tending to merge these approaches by digitizing the signal waveform at high sampling
rates, thereby allowing FFT analysis at relatively high Fourier frequencies. Nevertheless, there are many pitfalls and
subtleties associated with spectral analysis that must be considered if meaningful results are to be obtained.

6.5. PSD Windowing

Data windowing is the process of applying a weighting function that falls off smoothly at the beginning and end to
avoid spectral leakage in an FFT analysis. Without windowing, bias will be introduced that can severely restrict the
dynamic range of the PSD result. The most common windowing types are Hanning, Hamming, and Multitaper. The
classic Hanning and Hamming windows can be applied more than one time.

6.6. PSD Averaging

Without filtering or averaging, the variances of the PSD results are always equal to their values regardless of the size
of the time domain data set. More data provide finer frequency resolution, not lower noise (while the data sampling
time determines the highest Fourier frequency). Without averaging, for white noise, each spectral result has only two
degrees of freedom. Some sort of filtering or averaging is usually necessary to provide less noise in the PSD results.
This can be accomplished by dividing the data into sections, performing an FFT analysis on each section separately,
and then averaging those values to obtain the final PSD result. The averaging factor improves the PSD standard
deviation by the square root of the averaging factor. The tradeoff in this averaging process is that each section of the
data is shorter, yielding a result with coarser frequency resolution that does not extend to as low a Fourier frequency.

6.7. Multitaper PSD Analysis

The multitaper PSD analysis method offers a better compromise among bias, variance and spectral resolution.
Averaging is accomplished by applying a set of orthogonal windowing (tapering) functions called discrete prolate
spheroidal sequences (DPSS) or Slepian functions to the entire data array. An example of seven of these functions for
order J=4 is shown in Figure 32.

2 - . 1\ :
| SN A

Taper Amplitude

AR

a 200 400 G500 800 1000

Data Point

Figure 32. Slepian SPSS taper functions, J=4, #=7.
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The first function resembles a classic window function, while the others sample other portions of the data. The higher
windows have larger amplitude at the ends that compensates for the denser sampling at the center. These multiple
tapering functions are defined by two parameters, the order of the function, J, which affects the resolution bandwidth,
and the number of windows, which affects the variance. A higher J permits the use of more windows without
introducing bias, which provides more averaging (lower variance) at the expense of lower spectral resolution, as
shown Table 14:

Table 17. The two parameters of the tapering function.

Order J | # Windows
2.0 1-3
2.5 1-4
3.0 1-5
3.5 1-6
4.0 1-7
4.5 1-8
5.0 1-9

The resolution BW is given by 2J/Nt, where N is the number of data points sampled at time interval z. An adaptive
algorithm can be used to weight the contributions of the individual tapers for lowest bias. The multitaper PSD has a
flat-topped response for discrete spectral components that is nevertheless narrower than an averaged periodogram
with the same variance. It is therefore particularly useful for examining discrete components along with noise.

6.8. PSD Notes

A carrier frequency parameter applies to the Sy(f) and £(f) PSD types. The number of Fourier frequency points is
always the power of 2 greater than or equal to one-half of the number of time domain data points, n. The spacing
between Fourier frequency points is 1/nt, and the highest Fourier frequency is 1/2t. If averaging is done, the value of
n is reduced by the averaging factor. The PSD fit is a least-squares power law line through octave-band PSD averages

[6].

For characterizing frequency stability, a spectral analysis is used primarily for the analysis of noise (not discrete
components), and should include the quantitative display of power law noise in common PSD units, perhaps with fits
to integer power law noise processes. Amplitude corrections need to be made for the noise response of the
windowing functions. The amplitude of discrete components should be increased by the log of the BW (Fourier
frequency spacing in hertz), which is a negative number for typical sub-hertz bandwidths.
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7 Domain Conversions

The stability of a frequency source can be specified and measured in either the
time or the frequency domain. Examples of these stability measures are the
Allan variance, o?%(r), in the time domain, and the spectral density of the
fractional frequency fluctuations, Sy(f), in the frequency domain. Conversions
between these domains may be made by numerical integration of their
fundamental relationship, or by an approximation method based on a power law
spectral model for the noise processes involved. The latter method can be
applied only when the dominant noise process decreases toward higher
sideband frequencies. Otherwise, the more fundamental method based on
numerical integration must be used. The general conversion from time to
frequency domain is not unique because white and flicker phase noise have the
same Allan variance dependence ont. When performing any of these
conversions, it is necessary to choose a reasonable range for ¢ and t in the
domain being converted to. The main lobe of the cy(r) and Mod oy(t) responses
occur at the Fourier frequency f= 1/21.

The stability of a frequency source
can be specified and measured in
either the time or the frequency
domain. One domain is often
preferred to specify the stability
because it is most closely related
to the particular application.
Similarly, stability measurements
may be easier to perform in one
domain than the other.
Conversions are possible between
these generally equivalent
measures of frequency stability.

Time domain frequency stability is related to the spectral density of the fractional frequency fluctuations by the

relationship

o’ (M,T,7)=["S,(f):|H -df ,

where |H(f)|’ is the transfer function of the time domain sampling function.

The transfer function of the Allan (two-sample) time domain stability is given by

HeAE =2 sin4(7rrf)]
=2 )

(63)

(64)

and therefore the Allan variance can be found from the frequency domain by the expression

/;,Sy(f)sin“(;zrf) i

%=1 (wef)

0

The equivalent expression for the modified Allan variance is

2 (r80) sin® (7 f)

Modo’ (1) =
() Nz?r2 0 f2sin’(nr, f)

dr .

7.1. Power Law Domain Conversions

(65)

(66)

Domain conversions may be made for power law noise models by using the following equation and conversion

formulae:

1.038+3log, 27/,

) 22% 1
o,(t)=h, o r+hﬁl2loge2+h0;+hl Py
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where the h, terms define the level of the various power law noises.

Noise Type  ©2,(1) Sy(f
RWFM  A-f” Sy ' Al o) f
F FM B-f' S/’ B! 1" o2r)- £
W FM C-f Sy " C' ' o) f°
F PM D-f'-Syf) <~ D' o) f!
W PM E-f?-Syf)-t~° E' 12 o) f°
where

A =472/6

B=21n2

C=112

D = 1.038 + 3:In(2nfyto)/dn?

E = 3f; /4n2

and fj is the upper cutoff frequency of the measuring system in hertz, and r, is the basic measurement time. This
factor applies only to white and flicker PM noise. The above conversion formulae apply to the ThéoH hybrid statistic
as well as to the Allan variance.

7.2. Example of Domain Conversions

This section shows an example of time and frequency domain conversions. First, a set of simulated power law noise
data is generated, and the time domain properties of this noise are analyzed by use of the overlapping Allan deviation.
Next, the same data are analyzed in the frequency domain with an £(f) PSD. Then, a power law domain conversion is
done, and those results are compared with those of the spectral analysis. Finally, the other power spectral density
types are examined.

For this example, we generate 4097 phase data points of simulated white FM noise with a one-second Allan deviation
value 6,(1)=1 x 10" and a sampling interval T = 1 ms. The number of points is chosen as an even power of 2 for
the frequency data. The generated set of simulated white FM noise is shown as frequency data in Figure 33a, and their
overlapping Allan deviation is shown in Figure 33b. The o ((1)white FM noise fit parameter is 1.08e-11, close to the
desired value.
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Figure 33. (a) Simulated W FM Noise Data. (b) Overlapping Allan Deviation. (c) £(f) Power Spectral Density, (d) Se(f)
Power Spectral Density. (e) Sx(f) Power Spectral Density. (f) Sy(f) Power Spectral Density

The power spectrum for the phase data is calculated by use of a 10 MHz carrier frequency and a £(f) power spectral
density type, the SSB phase noise to signal ratio in a 1 Hz BW as a function of sideband frequency, f, as shown in
Figure 33c. The fit parameters show an £(1) value of -79.2 dBc/Hz and a slope of —19.6 dB/decade, in close
agreement with the expected values of —80 dBc/Hz and —20 dB/decade.
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The expected PSD values that correspond to the time domain noise parameters used to generate the simulated power-
law noise can be determined by the power law domain conversion formulae of Section 7.1, as shown in Tablel8.

Table 18. Domain calculation results

PSD Type: L(f), dBc/Hz
SB Freq (Hz): 1.00000e+00
Carrier(MHz): 1.00000e+01

Sigma Type: Normal

Tau (Sec): 1.00000e-03
Avg Factor: 1000

Frequency Domain:

Time Domain:

Power Law Noise:

Type dB/dec PSD Type Mu
RWFM  -40 None RWFM  +1
FFM -30 None FFM 0

Sigma

0.00000e+00
0.00000e+00

WFM -20 -80.0 WFM -1 1.00000e-11
FPM -10 None FPM -2 0.00000e+00
WPM 0 None  WPM -2 0.00000e+00
All -80.0 All 1.00000e-11

The other types of PSD that are commonly used for the analysis of frequency domain stability analysis are Sy(f), the
spectral density of the phase fluctuations in rad’/Hz; S,(f), the spectral density of the time fluctuations in sec’/Hz; and
Sy(f), the spectral density of the fractional frequency fluctuations in units of 1/Hz. The expected value of all these
quantities for the simulated white FM noise parameters with o,(1) = 1.00e-11, = = 1.00e-3, and f, = 10 MHz are
shown in the following table.

Table 19. Expected value of PSD types for the simulated white FM noise parameters.

Parameter PSD Type
£(f), dBc/Hz Se(f), rad?/Hz S, (), sec’/Hz S,(f), 1/Hz

Data Type Phase Phase Phase Frequency
Simulated Value —80 2e-8 5.066e—24 2e-22
Log Value same -7.70 -233 -21.7
Slope, dB/decade -20 -20 =20 0

Fit Value -79.2 1.19¢-8 3.03e-24 1.40e-22
Fit Exponent -1.96 -1.96 -1.96 —0.04
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8 Noise Simulation

It is valuable to have a means of generating simulated power law clock noise having the desired noise type (white
phase, flicker phase, white frequency, flicker frequency, and random walk frequency noise), Allan deviation,
frequency offset, frequency drift, and perhaps a sinusoidal component. This can serve as both a simulation tool and as
a way to validate stability analysis software, particularly for checking numerical precision, noise recognition, and
modeling. A good method for power-law noise generation is described in Reference 8. The noise type and time
series of a set of simulated phase data are shown in Table 20:

Table 20. Noise type and time series for a set of simulated phase data.

Noise Type Phase Data Plot
Random walk FM
o=-2
Random run noise
e

Flicker FM .

oa=-1
Flicker walk noise

White FM
a=0
Random walk noise

Flicker PM
a=1
Flicker noise

White PM I L
a=2
White noise
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8.1. White Noise Generation

White noise generation is straightforward. One popular technique is to first generate two independent uniformly
distributed random sequences [1], and combine them using the Box-Muller transform [2,3] to produce a white
spectrum with Gaussian deviates. Another method is to generate 12 independent random sequences uniformly
distributed between 0 and 1, add them, and subtract 6 [4]. This will, via the central limit theorem, produce a Gaussian
distribution having zero mean and unit variance. White noise can be numerically integrated and differenced to
transform it by 1/f* and £, respectively, to produce simulated noise having any even power law exponent.

8.2. Flicker Noise Generation

Flicker noise is more difficult to generate because it cannot be described exactly by a rational transfer function, and
much effort has been devoted to generating it [5-9]. The most common methods involve linear filtering by RC ladder
networks [5], or by FFT transformation [7,9]. The FFT method can produce noise having any integer power law
exponent from a=-2 (RW FM) to a = +2 (W PM) [7, §].

8.3. Flicker Walk and Random Run Noise Generation

The more divergent flicker walk FM (a = —3) and random run FM (a = —4) power law noise types may be generated
by using the 1/f* spectral property of a frequency to phase conversion. For example, to generate RR FM noise, first
generate a set of RW FM phase data. Then treat this RW FM phase data as frequency data, and convert it to a new set
of RR FM phase data.

8.4. Frequency Offset, Drift, and Sinusoidal Components

Beside the generation of the desired power law noise, it is desirable to include selectable amounts of frequency offset,
frequency drift, and a sinusoidal component in the simulated clock data.
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9 Measuring Systems

Frequency measuring systems are instruments that accept two or more inputs, one | A frequency measuring system
of which may be considered to be the reference, and compare their relative phase or | with adequate resolution and a
frequencies. These systems can take many forms, from the direct use of a | low noise floor is necessary to
frequency counter to elaborate low-noise, high-resolution multichannel clock | make precision clock
measuring systems with associated archival databases. They can be custom built or | measurements.

bought from several organizations specializing in such systems. The most

important attribute of a frequency measuring system is its resolution, which, for high performance devices, requires 1
ps/s (pp10') or better resolution, and more elaborate hardware than a counter. The resolution of a digital frequency,
period, or time interval counter is determined mainly by its speed (clock rate) and the performance of its analog
interpolator (if any). That resolution generally improves linearly with the averaging time of the measurement, and it
can be enhanced by preceding it with a mixer that improves the resolution by the heterodyne factor, the ratio of the RF
input to the IF beat frequencies. Noise is another important consideration for a high-performance measuring system
whose useful resolution may be limited by its noise floor, the scatter in the data when the two inputs are driven
coherently by the same source. The performance of the measuring system also depends on the stability of its
reference source. A low noise ovenized quartz crystal oscillator may be the best choice for a reference in the short
term (1 to 100 s), while a active hydrogen maser generally provides excellent stability at averaging times out to
several days, and cesium beam tube devices at longer averaging times.

Three methods are commonly used for making precise time and frequency measurements, as described below.

9.1. Time Interval Counter Method

The time interval counter method divides the two sources being compared down to a much lower frequency (typically
1 pulse/second) and measures their time difference with a high resolution time interval counter:

e IS Y|
—|—> Time

grg';g?; 1 pps Interval > Data
Zounter

O Ty

f

ref

Figure 34. Block diagram of a time interval counter measuring system.

This measurement method is made practical by modern high-resolution interpolating time interval counters that offer
10 digit/s resolution. The resolution is not affected by the division ratio, which sets the minimum measurement time,
and determines how long data can be taken before a phase spillover occurs (which can be hard to remove from a data
set). A source having a frequency offset of 1 x 10 can, for example, be measured for only about 5.8 days before a 1
pps phase spillover occurs after being initially set at the center. Drift in the trigger point of the counter can be a
limitation to this measurement method.

9.2. Heterodyne Method

The heterodyne method mixes (subtracts) the two sources being compared, and measures the period of the resulting
audio-frequency beat note. The measurement resolution is increased by the heterodyne factor (the ratio of the carrier
to the beat frequency).
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Figure 35. Block diagram of a heterodyne measuring system.

This heterodyne technique is a classic way to obtain high resolution with an ordinary period counter. It is based on the
principle that phase information is preserved in a mixing process. For example, mixing a 10 MHz source against a
9.9999 MHz Hz offset reference will produce a 100 Hz beat signal whose period variations are enhanced by a factor
of 10 MHz/100 Hz = 10°. Thus a period counter with 100 ns resolution (10 MHz clock) can resolve clock phase
changes of 1 ps. A disadvantage of this approach is that a stable offset reference is required at exactly the right
frequency. Even worse, it can measure only frequency, requires a priori knowledge of the sense of the frequency
difference, and often has dead time between measurements.

9.3. Dual Mixer Time Difference Method

The third method, in effect, combines the best features of the first two, using a time interval counter to measure the
relative phase of the beat signals from a pair of mixers driven from a common offset reference:

Buffer
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Offset
- Time
Mixers Interval > Data
—»=  Counter
Ref %
Bufrer LPF  |— Ref
Amps

f
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Figure 36. Block diagram of a dual mixer time difference measuring system.

This dual mixer time difference (DMTD) setup is arguably the most precise way of measuring an ensemble of clocks
all having the same nominal frequency. When expanded to multiple channels by adding additional buffer amplifiers
and mixers, and time tagging the zero-crossings of the beat notes for each channel, this arrangement allows any two of
the clocks to be intercompared. The offset reference need not be coherent, nor must it have particularly low noise or
high accuracy, because its effect cancels out in the overall measurement process. For best cancellation, the zero-
crossings should be coincident or interpolated to a common epoch. Additional counters can be used to count the
whole beat note cycles to eliminate their ambiguity, or the zero-crossings can simply be time tagged. The measuring
system resolution is determined by the time interval counter or time-tagging hardware, and the mixer heterodyne
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factor. For example, if two 5 MHz sources are mixed against a common 5 MHz to 10 Hz offset oscillator (providing a
5 x 10%10 = 5 x 10° heterodyne factor), and the beat note is time tagged with a resolution of 100 ns(10 MHz clock),
the measuring overall system resolution is 107 /5 x 10° = 0.2 ps.

Multichannel DMTD clock measuring systems have been utilized by leading national and commercial metrology
laboratories for a number of years [1-5]. An early commercial version is described in Reference [3], and a newer
technique is described in Reference [8]. A direct digital synthesizer (DDS) can be used as the offset reference to
allow measurements to be made at any nominal frequency within its range. Cross-correlation methods can be used to
reduce the DDS noise. Instruments using those techniques are available that automatically make both time and
frequency domain measurements.

9.4. Measurement Problems and Pitfalls

It can be difficult to distinguish between a bad unit under test and a bad measurement. When problems occur in time-
domain frequency stability measurements, they usually cause results that are worse than expected. It is nearly
impossible for a measurement problem to give better than correct results, and there is considerable justification in
saying that the best results are the correct ones. Two possible exceptions to this are (1) misinterpretation of the scale
factor, and (2) inadvertent coherency (e.g., injection locking of one source to another due to inadequate isolation.
Lack of stationarity (changes in the source itself), while not a measurement problem per se, must also be considered.
In general, the more devices available and the more measurements being made, the easier it is to sort things out.

One common problem is hum that contaminates the measurements due to ground loops. Because the measurement
interval is usually much longer than the period of the power line frequency, and not necessarily coherent with it,
aliased “beats” occur in the frequency record. Inspection of the raw data can show this, and the best cure is often
isolation transformers in the signal leads. In fact, this is a wise precaution to take in all cases.

All sorts of other mechanisms (electrical, electromagnetic, magnetic, thermal, barometric, vibrational, acoustic, etc.)
exist that can interfere with time domain frequency measurements. Think about all the environmental sensitivities of
the unit under test, and control as many of them as possible. Be alert to day-night and weekly cycles that indicate
human interference. Stories abound about correlations between elevators moving and cars coming and going (“auto-
correlations”) that have affected clock measurements. Think about what can have changed in the overall test setup.
Slow periodic fluctuations will show up more distinctly in an all tau (rather than an octave tau) stability plot.

In high-precision measurements, where picoseconds matter (e.g. 1 x 10> = 1 ps/1000 seconds), it is important to
consider the mechanical rigidity of the test setup (e.g. 1 ps = 0.3 mm). This includes the electrical length (phase
stability) of the connecting cables. Teflon dielectric is an especially bad choice for temperature stability, while
foamed polyethylene is much better. Even a few degrees of temperature variation will cause the phase of a high-
stability source to “breathe” as it passes through 100 ft of coaxial cable.

Phase jumps are a problem that should never be ignored. Examination of the raw phase record is critical because a
phase jump (frequency impulse) appears strangely in a frequency record as a white FM noise characteristic [10].
Some large phase jumps are related to the carrier period (e.g., a malfunctioning digital frequency divider).

It is difficult to maintain the integrity of a measuring system over a long period, but, as long as the operating

conditions of the unit under test and the reference are undisturbed, gaps in the data record may be acceptable. An
uninterruptible power system is indispensable to maintain the continuity of a long run.

9.5. Measuring System Summary

A comparison of the relative advantages and disadvantages of these methods is shown in the following table:
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Table 21. Comparison of time and frequency measurement methods.

Method Advantages Disadvantages

Provides phase data

.. L . ; Modest resolution
Divider & time interval |Covers wide range of carrier

counter frequencies

Easily expandable at low cost gzt suitable for short

Resolution enhanced by
heterodyne factor

Provides direct frequency data[No frequency sense

Requires offset
reference

Single carrier
frequency

(No phase data

Mixer and period
counter Usable for short tau

Expandable at reasonable cost

High resolution, low noise Single carrier

. . Provides phase data frequency
Dual mixer time OFF R o &
difference Offset reference noise .
inaccuracy cancels Relatively complex

No fixed reference channel

It is preferable to make continuous zero-dead-time phase measurements at regular intervals, and a system using a
dual-mixer time interval measurement is recommended. An automated high-resolution multi-channel clock (phase)
measuring system with a high-performance (e.g., hydrogen maser) reference is a major investment, but one that can
pay off in better productivity. It is desirable that the measurement control, data storage, and analysis functions be
separated to provide robustness and networked access to the data. A low-noise reference not only supports better
measurement precision but also allows measurements to be made faster (with less averaging).

9.6. Data Format

A one-column vector is all that is required for a phase or frequency data array. Because the data points are equally
spaced, no time tags are necessary. Nevertheless, the use of time tags is recommended (see section 9.4 below),
particularly to identify anomalies or to compare several sources. Time tagging is generally required for archival
storage of clock measurements, but a single vector of extracted gap-filled data is sufficient for analysis. The
recommended unit for phase data is seconds, while frequency data should be in the form of dimensionless fractional
frequency. Double-precision exponential ASCII numeric format is recommended for ease of reading into most
analysis software, with comma or space-delimited fields and one data point per line. The inclusion of comments and
headers can pose problems, but most software will reject lines that start with a “#” or some other non-numeric
character.

9.7. Data Quantization

The phase or frequency data must be gathered with sufficient resolution to show the variations of interest, and it must
be represented with sufficient precision to convey those variations after removal of fixed offsets (see section 10.1
below). Nevertheless, highly quantized data can still contain useful information, especially after they are combined
into longer averaging times. An example of highly quantized frequency data is the random telegraph signal shown
below. Although these data have a non-Gaussian amplitude distribution (their histogram consists of two spikes), the
random occurrences of the two levels produce a white FM noise characteristic.
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Figure 37. Random telegraph signal as an example of highly quantized frequency data.

9.8. Time tags

Time tags are often associated with phase or frequency data, and can be usefully applied to the analysis of these data.

Time tags are highly desirable for frequency stability measurements, particularly for identifying the exact time of
some anomaly. The preferred time tag is the Modified Julian Date (MJD) expressed as a decimal fraction and
referenced to UTC. Based on the astronomical Julian Date, the number of days since noon on January 1, 4713 BC,
the MJD is the Julian Date — 2 4000 000.5. It is widely used, purely numeric, can have any required resolution, is
easily converted to other formats, is non-ambiguous over a two-century (1900 to 2099) range, and is free from
seasonal (daylight saving time) discontinuities

Analysis software can easily convert the MJD into other formats such as year, month, day, hour, minute, and second.
The MJD (including the fractional day) can be obtained from the C language time() function by dividing its return
value by 86 400 and adding 40 587.

9.9. Archiving and Access

There is no standard way to archive and access clock data. For some purposes, it is sufficient to simply save the raw
phase or frequency data to a file, identifying it only by the file name. At the other extreme, multichannel clock
measuring systems may require an elaborate database to store a large collection of data, keep track of the clock
identities and transactions, provide security and robust data integrity, and serve the archived data via a network. It
may also be necessary to integrate the clock data with other information (e.g., temperature) from a data acquisition
system.
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10

Analysis Procedure

A frequency stability analysis can proceed along several paths, as the circumstances dictate.

Nevertheless, the

following example shows a typical analysis flow. Using simulated data for a high-stability rubidium frequency
standard, the purpose of the analysis is to characterize the noise in the presence of an outlier, large frequency offset

and significant drift.

Table 22. An example of a typical analysis flow.

Step

Description

Plot

Open and examine a
phase data file. The
phase data is just a
ramp with slope
corresponding to
frequency offset.

-000000000000000e+00
.999873025741449e-07
-799890526185009e-06
-699869215098003e-06
-599873851209537e-06
.499887627663997e-06
-399836191440859e-06
-299833612216789e-06
.199836723454638e-06
.099785679257264e-06
-999774896024524e-06
-899732698242008e-06
etc.
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Convert the phase data
to frequency data and
examine it. An
obvious outlier exists
that must be removed

to continue the
analysis.
Visual inspection of

data is an important
preprocessing step!

Analyst judgment may
be needed for less
obvious outliers.

FREQUENCY DATA

RAFS Frequency Data

0'9%.0 25 50 75 100 125 150 175 200 225 250 275 300

Time, Days
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In an actual analysis,
one should try to
determine the cause of
the outlier. The
frequency spike of
1x10” corresponds to a
phase step of 900 ns
over a single 900-s
measurement interval,
nine 10 MHz carrier
cycles. Data taken at a
higher rate would help
to determine whether
the anomaly happened
instantaneously or over
some finite period.
Timetags can help to
relate the outlier to
other external events.

Phase Step of Frequency Outlier

PHASE DATA

-100

[Average Frequency Offset Removed]

-200
-3001

-500
-600
“700
-800
=900

Relative Phase, Nanoseconds

-1000 -

K e e e e = L L L L
11?‘?35.0 1436.0 1437.0 1438.0 1439.0 1440.0 1441.0 1442.0 1443.0 1444.0 1445.0)

f

/
|

ata Point

Remove the outlier.
The noise and drift are
now visible. A line
shows a linear fit to the
frequency data, which
appears to be quite
appropriate.
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Remove the frequency
offset from the phase
data.  The resulting
quadratic shape is due
to the frequency drift.
One can just begin to
see phase fluctuations
around the quadratic fit
to the phase data.
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Frequency Offset Removed
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Remove the frequency
drift, leaving the phase
residuals for noise
analysis, which is now
clearly visible.

Some experience is
needed to interpret
phase data like these.
Remember that
frequency corresponds
to the slope of the
phase, so the frequency
is lowest near the end
of the record, where the
phase slope is the most
negative.
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Convert the phase
residuals to frequency
residuals.

Alternatively, remove
the frequency drift
from the frequency
data of Step #3. There
are subtle differences
in removing the linear
frequency drift as a
quadratic fit to the
phase data compared
with removing it as a
linear fit to the
frequency data
(different noise models
apply). Other drift
models may be more
appropriate.  Analyst
judgment is needed to
make the best choices.
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Perform a stability
analysis  using the
overlapping Allan
deviation. The results
show white FM noise
at short averaging
times (<~ slope) , and
flicker FM noise at
longer tau (t° slope),
both at the simulated
levels shown in the
annotations of the first
plot.
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10.1. Data Precision

There are relatively few numerical precision issues relating to the analysis of frequency stability data. One exception,
however, is phase data for a highly stable frequency source having a relatively large frequency offset. The raw phase
data will be essentially a straight line (representing the frequency offset), and the instability information is contained
in the small deviations from the line. A large number of digits must be used unless the frequency offset is removed by
subtracting a linear term from the raw phase data. Similar considerations apply to the quadratic phase term (linear
frequency drift). Many frequency stability measures involve averages of first or second differences. Thus, while their
numerical precision obviously depends upon the variable digits of the data set, there is little error propagation in
forming the summary statistics.

10.2. Preprocessing

Preprocessing of the measurement data is often necessary before the actual analysis is performed, which may require
data averaging, or removal of outliers, frequency offset, and drift.

Phase data may be converted to frequency data, and vice versa. Phase and frequency data can be combined for a
longer averaging time. Frequency offset may be removed from phase data by subtracting a line determined by the
average of the first differences, or by a least squares linear fit. An offset may be removed from frequency data by
normalizing it to have an average value of zero. Frequency drift may be removed from phase data by a least squares
or three-point quadratic fit, or by subtracting the average of the second differences. Frequency drift may be removed
from frequency data by subtracting a least-squares linear fit, by subtracting a line determined by the first differences
or by calculating the drift from the difference between the two halves of the data. The latter, called the bisection drift,
is equivalent to the three-point fit for phase data. Other more specialized log and diffusion models may also be used.
The latter are particularly useful to describe the stabilization of a frequency source. In general, the objective is to
remove as much of the deterministic behavior as possible, obtaining random residuals for subsequent noise analysis.

10.3. Gaps, Jumps, and Outliers

It is common to have gaps and outliers in a set of raw frequency stability data. | Gaps, jumps and outliers can
Missing or erroneous data may occur due to power outages, equipment | occur in frequency
malfunctions, and interference. For long-term tests, it may not be possible or | measurements and they must
practical to repeat the run, or otherwise avoid such bad data points. Usually the | be handled before performing
reason for the gap or outlier is known, and it is particularly important to explain all | a stability analysis. Methods
phase discontinuities. Plotting the data will often show the bad points, which may | are available to fill gaps and
have to be removed before doing an analysis to obtain meaningful results. to correct for outliers in a
consistent manner.

Frequency outliers are found by comparing each data point with the median value of

the data set plus or minus some multiple of the absolute median deviation. These median statistics are more robust
because they are insensitive to the size of the outliers. Outliers can be replaced by gaps or filled with interpolated
values.

Frequency jumps can also be a problem for stability analysis. Their occurrence indicates that the statistics are not
stationary, and it may be necessary to divide the data into portions and analyze them separately.

Gaps and outliers can occur in clock data due to problems with the measuring system or the frequency source itself.
Like death and taxes, gaps and outliers can be avoided but not eliminated.
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10.4. Gap Handling

Gaps should be included to maintain the proper implied time interval between measurements, and a value of zero (0)
is often used to denote a gap. For phase data, zero should be treated as valid data if it is the first or last point. For
fractional frequency data, valid data having a value of zero can be replaced by some very small value (e.g., 1e-99).
Many analysis functions can produce meaningful results for data having gaps by simply skipping those points that
involve a gap. For example, in the calculation of the Allan variance for frequency data, if either of the two points
involved in the first difference is a gap, that Allan variance pair is skipped in the summation.

Gaps may be filled in phase or frequency data by replacing them with interpolated values, by first removing any
leading and trailing gaps, and then using the two values immediately before and after any interior gaps to determine
linearly interpolated values within the gap.

A zero value in fractional frequency data can also occur as the result of the conversion of two equal adjacent phase
data points (perhaps because of limited measurement resolution), and the value should be adjusted to, say, 1e-99 to
distinguish it from a gap.

10.5. Uneven Spacing

Unevenly spaced phase data can be handled if they have associated time tags by using the individual time tag spacing
when converting it to frequency data. Then, if the tau differences are reasonably small, the data may be analyzed by
using the average time tag spacing as the analysis tau, in effect placing the frequency data on an average uniform grid.
While completely random data spacing is not amenable to this process, tau variations of £10 % will yield reasonable
results as long as the exact intervals are used for the phase to frequency conversion.

10.6. Analysis of Data with Gaps

Care must be taken when analyzing the stability of data with missing points and/or gaps. Missing points can be found
by examining the time tags associated with the data, and gaps can then be inserted as placeholders to maintain equally
spaced data. Similarly, outliers can be replaced with gaps for the same reason. These gaps can span multiple points.
Some analysis processes can be performed with data having gaps by skipping over them, perhaps at some speed
penalty, but other calculations cannot be. It is therefore often necessary to replace the gaps with interpolated values.
Those points are not real data, however, and, if there are many of them, the results will be suspect. In these cases,
judgment is needed to assure a credible result. It may be more prudent to simply analyze a gap-free portion of the
data.

10.7. Phase-Frequency Conversions

Phase to frequency conversion is straightforward for data having gaps. Because two phase points are needed to
determine each frequency point (as the difference between the phase values divided by their tau), a single phase gap
will cause two frequency gaps, and a gap of N phase points causes N + 1 frequency gaps.

Conversion from frequency to phase is more problematic because of the need to integrate the frequency data. The
average frequency value is used to calculate the phase during the gap, which can cause a discontinuity in the phase
record. Analysis of phase data resulting from the conversion of frequency data having a large gap is not
recommended.

90



10.8. Drift Analysis

Drift analysis functions generally perform well for data having gaps, provided that missing data are represented by
gaps to maintain a regular time sequence.

10.9. Variance Analysis

Variance analysis functions can include provisions for handling gaps. Some of these functions yield satisfactory
results in all cases, while others have speed limitations, or provide unsatisfactory results for data having large gaps.
The latter is most apparent at longer averaging times where the averaging factor is comparable to the size of the gap.
The speed limitations are caused by more complex gap checking and frequency averaging algorithms, while the poor
results are associated with the total variances for which conversion to phase data is required. In all cases, the results
will depend on coding details included in addition to the basic variance algorithm. Filling gaps can often help for the
total variances. Two general rules apply for the variance analysis of data having large gaps: (1) use unconverted
phase data, and (2) check the results against the normal Allan deviation (which has the simplest, fastest gap handling
ability).

10.10. Spectral Analysis
Gap filling in spectral analysis functions can affect the low frequency portion of the spectrum.
10.11. Outlier Recognition

The median absolute deviation (MAD) is recommended as its means of outlier recognition. The MAD is a robust
statistic based on the median of the data. It is the median of the scaled absolute deviations of the data points from
their median value, defined as MAD = Median { | y(i) — m | / 0.6745 }, where m = Median { y(i) }, and the factor
0.6745 makes the MAD equal to the standard deviation for normally distributed data. Each frequency data point, y(i),
is compared with the median value of the data set, m, plus or minus the desired multiple of the MAD.

While the definition of an outlier is somewhat a matter of judgment, it is important to find and remove such points in
order to use the rest of the data, based on their deviation from the median of the data, using a deviation limit in terms
of the median absolute deviation 