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Abstract - The National Institute of Standards and Technology 
operates an ensemble of Internet time servers. The ensemble of 
servers receives about 450 million timestamp requests per day 
(as of May, 2002). This demand is increasing at a compound 
rate of almost 9% per month, so that improving the efficiency 
of the time synchronization process is very important. In 
addition, these requests are not distributed uniformly among 
the servers, and the busiest servers are nearly saturated during 
peak periods. Therefore, the capacity of the system as a whole 
could be increased if the load were distributed more evenly, 
and we have investigated methods for achieving this active load 
balancing. We have also developed a number of algorithms 
based on tbc Network Time Protocol that try to make the best 
use OF the time stamps and the available network bandwidth. 
In particular, tbe algorithms can be configured to trade off 
accuracy for cost (defined as the network bandwidth and 
computer cycles needed to realize a specific performance level), 
so that the many users who do not need the full accuracy of the 
system can receive satisfactory service at much lower mt. 
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INTRODUCTION 

The National Institute of Standards and Technology 
(NIST) currently operates a network of 14 Internet time 
servers in the continental United States. In addition to these 
servers, NIST has collaborated with groups in Singapore 
and in Japan to install 7 additional identical time servers in 
these two countries. These servers respond to requests for 
time in a number of different formats. Most of the requests 
(currently about 90% of the requests to the US systems) are 
in the Network Time Protocol (NTP) format. The NTP 
format is based on the User Datagram Protocol (UDP) and 
therefore does not involve a large amount of network 
overhead. In addition, the NTP format and signaling 
protocol include explicit algorithms for estimating the 
network delay between the server and the client. Although 
we continue to support other time formats (such as the 
“daytime” and “time” protocols), we are strongly 
encouraging the use of this protocol for these reasons. 

The servers in the continental US currently (as of May, 
2002) receive about 450 million requests per day for time, 
and that number is increasing at a compounded rate of about 
9% per month. In addition, these requests are not 
distributed uniformly among the servers, and the busiest 
servers are nearly saturated at times. In this paper we 
describe two methods for dealing with this problem. The 
first involves techniques for actively balancing the load 
among the servers. This would increase the effective overall 

capacity of the system by making better use of the hardware 
we already have installed. The second involves a study of 
possible changes to the NTP algorithm that might be useful 
in reducing the number of requests that were needed for a 
client system to realize a given synchronization accuracy. In 
addition, the accuracy that is provided by the current 
implementation of NTP is significantly better than many 
users require. Therefore, a significant reduction in the 
number of requests could be realized if the NTP algorithm 
had a parameter that supported an explicit tradeoff between 
the accuracy of the clock on the client system and the cost 
that was needed to realize that accuracy, where cost is 
measured in terms of network bandwidth and computer 
cycles. 

THE CURRENT DISTRIBUTION OF REQUESTS TO THE NIST 
SERVERS 

The current (as of May, 2002) distribution of the 
requests to the NIST servers is shown in the following 
figure. The servers in the Mountain Time zone receive about 
45% of all requests, and one of the servers in that zone 
receives almost half of these, which is 21% of the requests 
to the entire network. The average load on this one server is 
about 1 100 requests per second, and this part of the load is 
growing faster than many of the others. The peak load on 
this server is about a factor of 2 . 5 ~  larger than the average 
load, and this server is nearly saturated by these peaks. 

TECHNIQUES FOR LOAD BALANCING 

In the current configuration, each server has a unique 
name and ip address. A crude method of balancing the load 
would be to have several servers share the Same name but 
have different ip addresses. Each time a client requested the 
ip address that corresponded to this generic name, the name 
server for the mountain time zone would return a different 
ip address (either in random or in round-robin order). The 
main problem with this method is that most 
implementations of NTP are configured either to query a 
server directly by its ip address or to request the ip address 
once and then use it directly on subsequent requests. Thus 
this method tends to send most of the load to the oldest 
servers. A second problem is that this method is not 
dynamic and cannot adjust to a failure of any of the servers 
in its zone by shifting the load to a nearby system. 

A more sophisticated algorithm would use a 
combination of hardware and software to redirect requests 

U.S. Government work not protected by U.S. copyright 

522 



DIstrlbution 0fReqUeets by Location 

38 

Fig. 1. The distribution of the time requests as a function of the. geographical location of the servers. The left pie chart shows the distribution of the load for 
all ofthe servers operated by NIST in the US, and the right panel shows the distribution among the sewers in the Mountain Time Zone. The percentages in 
the nght chart are the. hct ion  of the total number of requests handled by each server. 

even if the client used the actual ip address of the server. In 
addition, this type of load balancing could automatically and 
transparently compensate for the failure of any one server 
by directing the request to another server in the same region. 
From the point of view of a user, all of the servers in the 
region would share a common ip address, and a user would 
not know (or need to know) which physical server actually 
responded. 

The realization of this idea is complicated by the hct 
that the servers in each of the time zones shown in fig. 1 are 
not located in one place within that zone. This has the 
advantage that there is no single point of failure in any 
region, but it complicates the load-balancing algorithm since 
the different servers are on different local networks that are 
independently managed. A conceptual solution to this 
problem is shown in the following figure. All of the servers 
share a common name, which might be "mountain- 
tirne.nist.gov,' and a single ip address that points to one of 
the hubs. The hubs exchange status and load information in 
real time, and redirect a request to one of the physical 
servers, which might be at one of the &a sites. In addition 
to balancing the load dynamically, the system improves the 
overall reliability of the service by redirecting requests away 

from a component that has failed. An important aspect of 
the design is that the number of physical-server computer 
cycles needed to support the overhead of the load-balancing 
process must always be less than what would be required for 
the server to simply reply to the user directly. This 
requirement is realized by implementing the load balancing 
algorithm in separate hardware. 

This system can be extended in a natural way to include 
servers in other time zones. In each case, the load balancing 
would be done in two steps - a system at each site to 
balance the load among the physical servers there and a 
zone system to balance the load among the sites in the zone. 
The global balance would be achieved with a meta-system 
that exchanged status and load information with the zone 
controllers. This global load balancing requires additional 
overhead, and would be justified only if the imbalance 
among the time zones becomes larger than is currently the 
case. 

We have designed and tested this idea on a small test 
network in Boulder, and we are awaiting the delivery of 
additional hardware to complete a full-scale test using all of 
the servers in the Mountain Time Zone. 
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Fig. 2. The design for balancing the load on the time mers  in the Mountain time mne. The servers are distributed among three sites, each one ofwhich has 
a system to balance the load among the physical servers at that site. A global load balancer, implemented in parallel in all of the hubs, is used to balance the 
load among the sites. Both the hub at each site and the algorithm used to distribute requests among the sites will automatically cope with a failure of an 
entire site orofa physical m e r a t  a site by redireding the requests to another system. 

MOD~FYING THE NTP ALGORITHM 

The NTP standard defines the format of the messages 
that are exchanged between a client and a server, and all 
clients and servers must m f m  to these specifications if 
the protocol is to be generally useful. However, other 
aspects of the client side of the protocol, such as how to 
choose a server, how to set the interval between queries, and 
how to use the messages to discipline the local clock are not 
fhndamental to the defmition of the protocol, and can be 
modified without affecting the overall operation of the 
System.  

If we assume that the clock on the NTP server is 
synchronized to a national time reference such as 
UTCOJIST) with a negligible time offset, then the accuracy 
of the overall synchronization process will be limited by 
three effects: (1) errors in the measurement of the 
transmission delay between the client and the server, (2) 
frequency instability of the clock oscillator in the client 
system and (3) jitter in the measurement of the time 
difference between the client clock and the server due to 
intermpt latency, processing delays, and similar effects. It 
is not too difficult to realize a system in which the standard 
deviation of the measurement process due to all of these 
effects is on the order of 10-20 ms, and it is quite common 
to find systems where the uncertainty is significantly less 
than these values. This performance is substantially better 
than many users need, and it is therefore useful to design 
algorithms that can explicitly tradsoff time accuracy 
(defined as the RMS time difference between the client and 
the server) and the cost of realizing it (defined in terms of 
network bandwidth and computer cycles at both ends). 

STABILITY OF COMPUTER TIME MEASUREMENTS 

Computer clocks generally use quartz-crystal oscillators 
as a ffequency reference. The oscillator generates periodic 
hardware interrupts, and the computer responds to these 
interrupts by incrementing a register or memory location. 
The value added on each intermpt is usually the nominal 
period of the clock oscillator in microseconds, so that the 
time register contains the time of day as the number of 
microseconds since some epoch. 

Since the speed of the processor clock is much faster 
than the fkcpency of the clock interrupts, the computer 
typically will perform thousands of operations between each 
clock interrupt, and there is usually little or no correlation 
between the micro-state of the system when an interrupt 
occurs and the micrestate at the time of the previous 
interrupt. The latency in processing any interrupt is 
therefore essentially independent of the latency in 
processing the previous one, so that the time jitter associated 
with the processing of the interrupts can be modeled as 
white phase noise. The root-mean-square amplitude is 
usually on the order of ten microseconds or less. 

Using the same sort of reasoning, the process of 
comparing the time of the clock with the time received over 
the network from a server can also be characterized as white 
phase noise with a comparable Rh4S amplitude. (Even a 
“s~ow’’ Ethernet cable can transmit about 60,000 packets per 
second, so that the latency in processing a network message 
cannot be greater than about 15 p if the system is to work 
at all.) 

The optimum strategy for dealing with white phase 
noise is to make repetitive measurements and average the 
results, because the underlying mean time difference is well- 
defined in this situation. However, this strategy is oRen not 
of much use in practical applications. Most applications that 
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use the time of the computer clock associate its value with 
the occurrence of m e  external event, such as the reading 
of a voltage, the pressing of a keyboard character, the 
clicking of a mouse button or the arrival of an message from 
some external device. This external event happens once, and 
averaging the clock data is obviously not possible in these 
situations. The jitter in these time tags is therefore going to 
be determined by the typical system latency for a single 
measurement without averaging. The conclusion is that 
there is usually not much point in synchronizing a computer 
clock with an uncertainty of less than a few tens of 
microseconds, since, even if it could be done, most 
applications could nut make use of that increased accuracy 
anyway. (Reliable microsecond-level accuracy generally 
requires special-purpose hardware, which generally includes 
an explicit connection between the hardware that generates 
the event and the clock that is going to provide the time-tag 
that will be associated with it.) 

Since hardware jitter in the client is usually not the 
problem, the real limits to synchronizing computer clocks 
are usually the fiequency stability of the local clock 
oscillator (which sets the maximum interval between 
calibration queries) and the uncertainties in measuring the 
network delay between the client that is to be synchronized 

and the server that provides the information to do this 
(which sets the accuracy that can be realized with any single 
query). The design of the optimum algorithm would 
balance these two problems - the data received fi-om the 
remote servers over the network would be used to adjust the 
local clock if and only if its estimated jitter was less than the 
6ee running stability of the local clock oscillator itself. For 
most widsarea network (including the Internet), the 
stability of the remote server itself doesn’t matter, since the 
client can see it only through the noisier network. 

STABILITY OF COMPUTER CLOCK OSCILLATORS 

Figure 3 shows the fteerunning stability of a typical 
computer clock oscillator. (The general shape of the curve is 
typical of most systems. The actual values shown here are 
fi-om one of the systems that is used as a NIST time server 
and are better than average.) To perform this analysis, the 
time of the clock was compared to UTC(NIST) using two 
different methods. The first method, whose Allan deviation 
is identified in the figure using “*” characters, was 
performed using a special-purpose device on the system bus, 
which received 1 pps signals on a coaxial cable from the 
NIST clock ensemble. 

gpshub. Free-Running Clock. + via ACTS, * via Bus 
I 

Fig. 3. Allan deviation of clock in computer gpshub measured using two methods as described in the text. 

The cable delay was about 0.5 ps and its variation was 
negligible on the scale of interest here. The second method, 
whose Allan deviation is identified in the figure using “+” 
characters, used the NIST ACTS dial-up telephone service 
to perform the time comparison. The ACTS software on the 
client system calls the server at NIST using a standard 
modem connected to the system using one of the serial 
ports. The delay through the telephone connection is 
measured by the ACTS server at NIST in real time, and the 
server adjusts the advance of each message so that it will 

arrive on-time at the client system. The adjustment 
algorithm depends on the assumption that the inbound and 
outbound delays are equal, and this assumption is usually 
quite accurate for the dial-up telephone system. Even when 
the inbound and outbound delays through the modems are 
not quite equal, the asymmetry for a given modem is usually 
very stable in time, and the reproducibility of the ACTS 
system itself (using the same hardware fiom one connection 
to the next) is usually of order 0.3 ms. (The asymmetry in 
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the inbound and outbound delays may vary by several 
milliseconds from one brand of modem to another.) 

At short times, the noise in either method is well 
characterized as white phase noise, with the only difference 
between the two being the level: the bus device has a 
measurement noise of about 30 p, while the noise in the 
ACTS system (including the jitter in processing the 
characters fiom the serial port) is about 0.5 ms. Since the 
overhead in using the ACTS system is dominated by the 
work needed to establish the telephone connection, it is 
relatively inexpensive to improve the performance of the 
ACTS link by averaging several consecutive measurements. 
However, it is clearly not practical to reduce the noise below 
about 0.1 ms for a single telephone connection, since the 
maximum connection time supported by the ACTS system 
is about 30 s, and the jitter in the mean time difference only 
improves as the square root of the number of measurements 
used to compute it. 

The shape of the Allan deviation shown in fig. 3 is 
consistent with what we would expect from a quartz crystal 
oscillator. At short times, the deviation is characterized by a 
slope of -1 due to the white phase noise of each 
measurement method that is used to evaluate the clock. The 
accuracy is limited by the capabilities of the measurement 
process, and varying the interval between measurements 
clearly has no effect on the time accuracy of the 
synchronization procedure. 

The slope of the Allan deviation changes to -0.5 at 
longer measurement intervals. The break point in the slope 
occurs when the Allan deviation due to the white phase 
noise of the measurement process becomes equal to the 
white fi-equency noise of the clock oscillator itself At still 
longer averaging times (on the order of 1 day) the flicker of 
6equency floor is reached. The minimum value of the Allan 
deviation is about 5 ~ 1 0 ~  at an averaging time of about 1 
day. 

The stability of this clock is considerably better than the 
clocks found in cheap PCs and many larger work stations, 
and this particular hardware is used in the NTST time sewers 
for this reason. Although the general shape of the fimction 
and the break-points in its slope are essentially the same for 
most other systems, the magnitude of the Allan deviation 
can vary by as much as an order of magnitude between 
systems from different manufacturers. However, based on 
our experience with a rather small sample, there is not much 
variation from system to system of the same type fiom the 
same supplier. 

STABILITY OF THE NETWORK DELAY 

The other contribution to the uncertainty budget for the 
synchronization process is the jitter in the network delay. In 
order to estimate this, we used three systems that were 

independently synchronized to UTC(NIST). The test system 
was located in our laboratory in Boulder, Colorado, and we 
measured the delays between this system and two other 
systems located in Seattle, Washington and Gaithersburg, 
Maryland. Time packets traveling fi-om Boulder to either of 
these systems pass through a number of routers and 
gateways along the way, and the overall path delay is 
usually dominated by the delays in these network elements. 

Fig. 4 below shows the results of these measurements 
for three different configurations. The data near the bottom 
of the figure (shown with “+” characters) shows the Allan 
deviation in a “loopback” configuration. The requests fi-om 
the client system are returned to the client in this 
configuration, so that the clock is effectively synchronized 
to itself. These data estimate the fluctuations in the 
processing delays within the client system itself. (The data 
are insensitive to the average value of this processing delay, 
which is automatically removed in all cases by the 
measurement algorithm.) As can be seen fi-om the figure, 
these data are well characterized as white phase noise at all 
measurement intervals. The amplitude is about 5 ps, which 
is about 2% of the total processing delay, which was about 
240 p. This level of white phase noise can be realized 
between two separate systems, but only if the client and 
server are on a short, dedicated network segment with no 
other traffic. (Although both the processing delay and its 
jitter can be reduced to some extent by using faster 
hardware, much of the recent increase in the hardware speed 
of general-purpose computers has been balanced by an 
increase in the complexity of the operating system s o h a r e  
that controls them, especially when the operating system is 
based on a graphicaI user interhce.) 

The upper plots show the Allan deviation of the 
measurements between a client and a server on the same 
local network (shown by “ X )  and between a client and a 
server that is about 1200 km away (shown by “*” ). We 
have superimposed a line with a slope of -0 .5  on the upper 
two plots. This line is copied from fig. 3, and is the estimate 
of the statistical performance of the clock oscillator in the 
client system that we deduced fi-om the first set of 
experiments. 

The goal of the synchronization procedure is to improve 
the stability and accuracy of the local clock. Therefore, 
adjustments of its time or frequency should be limited to 
those measurement intervals where the calibration data add 
information, that is, where the noise of the received data is 
less than that of the fresrunning local oscillator. Although 
the detailed results of fig. 4 are a h c t i o n  of the particular 
systems and network that we used, the general 
characteristics are essentially the same for all systems. In 
particular, at short intervals, the time dispersion due to the 
frequency noise of the local clock oscillator is almost 
always less than the noise of the time server as seen through 
the noisy channel, so that some sort of averaging of the 
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calibration messages is usually required to realize an 
optimum design. 

to the same local area network, then the variance of the 
calibration signals received over the network will fall below 
the variance due to the frequency noise of the clock for 

Using the results shown in the figure, if we plan to 
synchronize the system using a time server that is connected 
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Fig. 4. The Allan deviation ofthe network delay measured in three d i m 1  configurations. The deviation shown using (+) shows a "loopback" 
measurement, the plot using (X) shows measurements on a local network, and the plot using (*) shows measurements to a remote system on the Internet. 

averaging times longer than about 150 s. This is the 
minimum measurement interval that we should use in this 
situation. If we use a shorter interval then the noise in the 
network delay will degrade the inherent stability of the local 
clock oscillator. 

If, on the other hand, we plan to use the remote server 
to synchronize the clock of the client system, then it is 
important to note that the larger variance in the data from 
the remote server imply that the free-running stability of the 
local clock is better than the stability of the server seen 
through the network out to an averaging time of about 5.3 
hours, and that using the shorter averaging time found in the 
previous paragraph degrades the stability of the local clock 
by introducing network noise. This conclusion may be 
counter-intuitive; when the data are noisy there is a 
temptation to shorten the interval between measurements 
and increase the number of them, whereas this analysis 
shows that exactly the opposite should be done because the 
local clock has a smaller time dispersion than the remote 
server seen through the network. The best thing that we 
could do at short intervals is to leave the clock alone. (This 
understanding comes 6om the fact that we have 
independently evaluated the 6ee-running stability of the 
oscillator in the client computer, so that we can distinguish 

between the contribution to the measured time dispersion 
due to its frequency noise and the component due to the 
jitter in the network delay. This ability to separate the 
variance is an important prerequisite for implementing the 
techniques in this paper.) 

This optimum interval of several hours between 
calibration cycles is much longer than the longest interval 
that is used by standard NTP clients, because the NTP client 
is generally implemented using a phaselock loop rather 
than the fiequency-based algorithm that is implied by these 
analyses. As we can see from this analysis, the phase lock 
loop is unlikely to be optimum in this situation, because of 
the large variance in the network noise at short periods. 
Furthermore, many implementations of the NTP algorithm 
do not make explicit use of the stability of the local clock 
oscillator. (There is often no simple way for an average 
user to remedy this deficiency, since evaluating the stability 
of the local clock oscillator requires a connection to a server 
using a channel whose delay fluctuations are small 
compared to the time jitter due to the frequency dispersion 
of the clodc under test.) 

Even though the network is quite noisy, the 
performance of this loop using an interval of 5.3 hours 
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between measurements would be of order 
d20~19000)19000 E 0.002 s, and this level of performance 
would be realized with only about 4 or 5 measurements per 
day. This is a significant improvement in performance over 
what can be realized with standard NTP, and this 
performance is realized with far fewer measurements that 
are required by the standard "I?' software. The main 
reason for this improvement is the use of a frequency loop 
and the recognition that the free-running stability of the 
local clock Oscillator at short averaging times is much better 
than the stability of the remote server as seen through the 
network. 

PRWESSlNG COST 

In addition to providing an estimate of the uncertainty 
that will be realized using a given averaging interval, it is 
also possible to use these results to estimate the minimum 
averaging interval that would be necessary to realize a given 
level of performance. This is a uselid feature, since many 
applications do not need millisecond-level accuracy, and it 
would be very usefbl to increase the interval between 
calibrations to the point where the resulting performance 
just satisfied the requirements. In order to evaluate this 
trade-off, we must examine how the synchronization 
amracy  and cost of the process vary with the time between 
calibration cycles between the client and the server. 

Given the interval between calibration cycles, z, the 
cost of a synchronization procedure is inversely proportional 
to this interval, assuming that each calibration cycle requires 
the Same amount of network bandwidth and the same 
number of computer cycles in the client and the server. On 
the other hand, the synchronization uncertainty using a time 
interval between calibrations of T will be proportional to T x 
o,,(z). Therefore, whenever the slope of the Allan deviation 
as a function of averaging time is negative, increasing the 
interval between calibration cycles reduces the cost of the 
procedure faster than it degrades the uncertainty, so that this 
is a fkvorable choice as long as the resulting uncertainty 
meets the requirements of the application. Conversely, 
decreasing the interval between calibration cycles increases 
the cost faster than it improves the performance over most 
of the range of averaging times shown in the figure. Even 
when the slope of the Allan deviation as a function of 
averaging time increases to 0, the uncertainty increases only 
at the same rate as the cost decreases. Although this is not 
as favorable as the preceding case, the resulting uncertainty 
is often adequate anyway. Using the results of fig. 2, for 
example, a client could be synchronized to a server with an 
RMS uncertainty of only a few milliseconds using just one 
calibration per day. This level of performance would satisfy 
almost all of our current users, using only a tiny fraction of 
the number of calibrations that are currently used by most 
NTP clients. 

A similar argument suggests that routinely contacting 
more than one server is not optimum. Using the most 
optimistic assumption that the difference between the two 
servers can be characterized as white phase noise, 
contacting two servers increases the cost of the process by a 
factor of 2 but decreases the uncertainty by only 42. 
Although contading a seumd server may have some 
advantages in outlier detection, outliers are relatively rare 
events, and the second server should only be contacted 
when a preliminary analyses of the measurement from the 
first server suggests that the results are not consistent with 
the modeled stability of the local clock and the network. 

Although the Allan deviation of the clock oscillator 
itself is based on its hardware design and is therefore a 
constant, the statistical performance of the network is a 
dynamic quantity that must be continuously re-evaluated. 
Our prototype software does this every day, and re- 
computes the appropriate measurement interval based on 
these revised estimates of the Allan deviation. The detailed 
design of this software is described in [ 11. 

Since the jitter in measuring the time difference can be 
characterized approximately as white phase noise, it is also 
possible to improve the performance of the synchronization 
algorithm by replacing each time difference measurement 
with a group of many measurements made rapidly enough 
so that the clock and the network do not change. Even if the 
assumption that b t h  the delay through the network and the 
parameters of the clock oscillator do not change during the 
group of measurements, the cost of doing this increases 
linearly with the number of measurements in the group, 
while the standard deviation of the mean improves only as 
the square root of this number (at best). Thus the 
c o s h e f i t  ratio is always unfavorable, and a given 
incremental improvement becomes very expensive very 
quickly once the number of measurements in the group 
increases beyond 4 or 5.  Nevertheless, for a fixed number 
of measurements, grouping them in this way is usually a 
better strategy than spreading them out uniformly in time, 
since the fluctuations in the 6equency of the clock oscillator 
have little e f f i  over a short time interval so that dispersion 
in a group is more likely to be characterized as white phase 
noise. The mean of the measured time differences is a robust 
estimate in this situation. 

CONCLUSIONS 

The load on the MST Internet time servers is increasing 
by 9% per month, and we have investigated methods that 
can be used to address this increasing demand without a 
corresponding increase in the number of servers. We have 
described two methods that show promise for achieving this 
goal. The first would use active load balancing hardware to 
improve the reliability of the system and to equalize the 
number of requests processed by each server. The second 
would increase the effective capacity of the service by 
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improvements to the "IF algorithm that would pennit users 
to decrease the number of requests from any client system. 
These improvements should allow NIST to continue to 
satis@ the exponentially increasing demand for Internet 
time service without a significant increase in the operating 
costs for the foreseeable future. 
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