
2002 IEEE International Frequency Control Symposium and PDA Exhibition

EFFICIENT TIME TRANSFER USING THE INTERNET

Judah Levine
Time and Frequency Division and JILA

National Institute of Standards and Technology
Boulder, Colorado 80305

USA

Abstract - The National Institute of Standards and Technology
operates an ensemble of Internet time servers. The ensemble of
servers receives about 450 million timestamp requests per day
(as of May, 2002). This demand is increasing at a compound
rate of almost 9% per month, so that improving the efficiency
of the time synchronization process is very important. In
addition, these requests are not distributed uniformly among
the servers, and the busiest servers are nearly saturated during
peak periods. Therefore, the capacity of the system as a whole
could be increased if the load were distributed more evenly,
and we have investigated methods for achieving this active load
balancing. We have also developed a number of algorithms
based on tbc Network Time Protocol that try to make the best
use OF the time stamps and the available network bandwidth.
In particular, tbe algorithms can be configured to trade off
accuracy for cost (defined as the network bandwidth and
computer cycles needed to realize a specific performance level),
so that the many users who do not need the full accuracy of the
system can receive satisfactory service at much lower mt.
Keywords: Internet time, Network Time Protocol, NTP

INTRODUCTION

The National Institute of Standards and Technology
(NIST) currently operates a network of 14 Internet time
servers in the continental United States. In addition to these
servers, NIST has collaborated with groups in Singapore
and in Japan to install 7 additional identical time servers in
these two countries. These servers respond to requests for
time in a number of different formats. Most of the requests
(currently about 90% of the requests to the US systems) are
in the Network Time Protocol (NTP) format. The NTP
format is based on the User Datagram Protocol (UDP) and
therefore does not involve a large amount of network
overhead. In addition, the NTP format and signaling
protocol include explicit algorithms for estimating the
network delay between the server and the client. Although
we continue to support other time formats (such as the
“daytime” and “time” protocols), we are strongly
encouraging the use of this protocol for these reasons.

The servers in the continental US currently (as of May,
2002) receive about 450 million requests per day for time,
and that number is increasing at a compounded rate of about
9% per month. In addition, these requests are not
distributed uniformly among the servers, and the busiest
servers are nearly saturated at times. In this paper we
describe two methods for dealing with this problem. The
first involves techniques for actively balancing the load
among the servers. This would increase the effective overall

capacity of the system by making better use of the hardware
we already have installed. The second involves a study of
possible changes to the NTP algorithm that might be useful
in reducing the number of requests that were needed for a
client system to realize a given synchronization accuracy. In
addition, the accuracy that is provided by the current
implementation of NTP is significantly better than many
users require. Therefore, a significant reduction in the
number of requests could be realized if the NTP algorithm
had a parameter that supported an explicit tradeoff between
the accuracy of the clock on the client system and the cost
that was needed to realize that accuracy, where cost is
measured in terms of network bandwidth and computer
cycles.

THE CURRENT DISTRIBUTION OF REQUESTS TO THE NIST
SERVERS

The current (as of May, 2002) distribution of the
requests to the NIST servers is shown in the following
figure. The servers in the Mountain Time zone receive about
45% of all requests, and one of the servers in that zone
receives almost half of these, which is 21% of the requests
to the entire network. The average load on this one server is
about 1 100 requests per second, and this part of the load is
growing faster than many of the others. The peak load on
this server is about a factor of 2 . 5 ~ larger than the average
load, and this server is nearly saturated by these peaks.

TECHNIQUES FOR LOAD BALANCING

In the current configuration, each server has a unique
name and ip address. A crude method of balancing the load
would be to have several servers share the Same name but
have different ip addresses. Each time a client requested the
ip address that corresponded to this generic name, the name
server for the mountain time zone would return a different
ip address (either in random or in round-robin order). The
main problem with this method is that most
implementations of NTP are configured either to query a
server directly by its ip address or to request the ip address
once and then use it directly on subsequent requests. Thus
this method tends to send most of the load to the oldest
servers. A second problem is that this method is not
dynamic and cannot adjust to a failure of any of the servers
in its zone by shifting the load to a nearby system.

A more sophisticated algorithm would use a
combination of hardware and software to redirect requests

U.S. Government work not protected by U.S. copyright

522

DIstrlbution 0fReqUeets by Location

38

Fig. 1. The distribution of the time requests as a function of the. geographical location of the servers. The left pie chart shows the distribution of the load for
all ofthe servers operated by NIST in the US, and the right panel shows the distribution among the sewers in the Mountain Time Zone. The percentages in
the nght chart are the. hct ion of the total number of requests handled by each server.

even if the client used the actual ip address of the server. In
addition, this type of load balancing could automatically and
transparently compensate for the failure of any one server
by directing the request to another server in the same region.
From the point of view of a user, all of the servers in the
region would share a common ip address, and a user would
not know (or need to know) which physical server actually
responded.

The realization of this idea is complicated by the hct
that the servers in each of the time zones shown in fig. 1 are
not located in one place within that zone. This has the
advantage that there is no single point of failure in any
region, but it complicates the load-balancing algorithm since
the different servers are on different local networks that are
independently managed. A conceptual solution to this
problem is shown in the following figure. All of the servers
share a common name, which might be "mountain-
tirne.nist.gov,' and a single ip address that points to one of
the hubs. The hubs exchange status and load information in
real time, and redirect a request to one of the physical
servers, which might be at one of the &a sites. In addition
to balancing the load dynamically, the system improves the
overall reliability of the service by redirecting requests away

from a component that has failed. An important aspect of
the design is that the number of physical-server computer
cycles needed to support the overhead of the load-balancing
process must always be less than what would be required for
the server to simply reply to the user directly. This
requirement is realized by implementing the load balancing
algorithm in separate hardware.

This system can be extended in a natural way to include
servers in other time zones. In each case, the load balancing
would be done in two steps - a system at each site to
balance the load among the physical servers there and a
zone system to balance the load among the sites in the zone.
The global balance would be achieved with a meta-system
that exchanged status and load information with the zone
controllers. This global load balancing requires additional
overhead, and would be justified only if the imbalance
among the time zones becomes larger than is currently the
case.

We have designed and tested this idea on a small test
network in Boulder, and we are awaiting the delivery of
additional hardware to complete a full-scale test using all of
the servers in the Mountain Time Zone.

523

Physical Servers

mountain-time.nist.gov Physical Servers

Zone has 5 servers
at 3 sites

Physical Servers

Fig. 2. The design for balancing the load on the time mers in the Mountain time mne. The servers are distributed among three sites, each one ofwhich has
a system to balance the load among the physical servers at that site. A global load balancer, implemented in parallel in all of the hubs, is used to balance the
load among the sites. Both the hub at each site and the algorithm used to distribute requests among the sites will automatically cope with a failure of an
entire site orofa physical m e r a t a site by redireding the requests to another system.

MOD~FYING THE NTP ALGORITHM

The NTP standard defines the format of the messages
that are exchanged between a client and a server, and all
clients and servers must m f m to these specifications if
the protocol is to be generally useful. However, other
aspects of the client side of the protocol, such as how to
choose a server, how to set the interval between queries, and
how to use the messages to discipline the local clock are not
fhndamental to the defmition of the protocol, and can be
modified without affecting the overall operation of the
System.

If we assume that the clock on the NTP server is
synchronized to a national time reference such as
UTCOJIST) with a negligible time offset, then the accuracy
of the overall synchronization process will be limited by
three effects: (1) errors in the measurement of the
transmission delay between the client and the server, (2)
frequency instability of the clock oscillator in the client
system and (3) jitter in the measurement of the time
difference between the client clock and the server due to
intermpt latency, processing delays, and similar effects. It
is not too difficult to realize a system in which the standard
deviation of the measurement process due to all of these
effects is on the order of 10-20 ms, and it is quite common
to find systems where the uncertainty is significantly less
than these values. This performance is substantially better
than many users need, and it is therefore useful to design
algorithms that can explicitly tradsoff time accuracy
(defined as the RMS time difference between the client and
the server) and the cost of realizing it (defined in terms of
network bandwidth and computer cycles at both ends).

STABILITY OF COMPUTER TIME MEASUREMENTS

Computer clocks generally use quartz-crystal oscillators
as a ffequency reference. The oscillator generates periodic
hardware interrupts, and the computer responds to these
interrupts by incrementing a register or memory location.
The value added on each intermpt is usually the nominal
period of the clock oscillator in microseconds, so that the
time register contains the time of day as the number of
microseconds since some epoch.

Since the speed of the processor clock is much faster
than the fkcpency of the clock interrupts, the computer
typically will perform thousands of operations between each
clock interrupt, and there is usually little or no correlation
between the micro-state of the system when an interrupt
occurs and the micrestate at the time of the previous
interrupt. The latency in processing any interrupt is
therefore essentially independent of the latency in
processing the previous one, so that the time jitter associated
with the processing of the interrupts can be modeled as
white phase noise. The root-mean-square amplitude is
usually on the order of ten microseconds or less.

Using the same sort of reasoning, the process of
comparing the time of the clock with the time received over
the network from a server can also be characterized as white
phase noise with a comparable Rh4S amplitude. (Even a
“s~ow’’ Ethernet cable can transmit about 60,000 packets per
second, so that the latency in processing a network message
cannot be greater than about 15 p if the system is to work
at all.)

The optimum strategy for dealing with white phase
noise is to make repetitive measurements and average the
results, because the underlying mean time difference is well-
defined in this situation. However, this strategy is oRen not
of much use in practical applications. Most applications that

524

use the time of the computer clock associate its value with
the occurrence of m e external event, such as the reading
of a voltage, the pressing of a keyboard character, the
clicking of a mouse button or the arrival of an message from
some external device. This external event happens once, and
averaging the clock data is obviously not possible in these
situations. The jitter in these time tags is therefore going to
be determined by the typical system latency for a single
measurement without averaging. The conclusion is that
there is usually not much point in synchronizing a computer
clock with an uncertainty of less than a few tens of
microseconds, since, even if it could be done, most
applications could nut make use of that increased accuracy
anyway. (Reliable microsecond-level accuracy generally
requires special-purpose hardware, which generally includes
an explicit connection between the hardware that generates
the event and the clock that is going to provide the time-tag
that will be associated with it.)

Since hardware jitter in the client is usually not the
problem, the real limits to synchronizing computer clocks
are usually the fiequency stability of the local clock
oscillator (which sets the maximum interval between
calibration queries) and the uncertainties in measuring the
network delay between the client that is to be synchronized

and the server that provides the information to do this
(which sets the accuracy that can be realized with any single
query). The design of the optimum algorithm would
balance these two problems - the data received fi-om the
remote servers over the network would be used to adjust the
local clock if and only if its estimated jitter was less than the
6ee running stability of the local clock oscillator itself. For
most widsarea network (including the Internet), the
stability of the remote server itself doesn’t matter, since the
client can see it only through the noisier network.

STABILITY OF COMPUTER CLOCK OSCILLATORS

Figure 3 shows the fteerunning stability of a typical
computer clock oscillator. (The general shape of the curve is
typical of most systems. The actual values shown here are
fi-om one of the systems that is used as a NIST time server
and are better than average.) To perform this analysis, the
time of the clock was compared to UTC(NIST) using two
different methods. The first method, whose Allan deviation
is identified in the figure using “*” characters, was
performed using a special-purpose device on the system bus,
which received 1 pps signals on a coaxial cable from the
NIST clock ensemble.

gpshub. Free-Running Clock. + via ACTS, * via Bus
I

Fig. 3. Allan deviation of clock in computer gpshub measured using two methods as described in the text.

The cable delay was about 0.5 ps and its variation was
negligible on the scale of interest here. The second method,
whose Allan deviation is identified in the figure using “+”
characters, used the NIST ACTS dial-up telephone service
to perform the time comparison. The ACTS software on the
client system calls the server at NIST using a standard
modem connected to the system using one of the serial
ports. The delay through the telephone connection is
measured by the ACTS server at NIST in real time, and the
server adjusts the advance of each message so that it will

arrive on-time at the client system. The adjustment
algorithm depends on the assumption that the inbound and
outbound delays are equal, and this assumption is usually
quite accurate for the dial-up telephone system. Even when
the inbound and outbound delays through the modems are
not quite equal, the asymmetry for a given modem is usually
very stable in time, and the reproducibility of the ACTS
system itself (using the same hardware fiom one connection
to the next) is usually of order 0.3 ms. (The asymmetry in

525

the inbound and outbound delays may vary by several
milliseconds from one brand of modem to another.)

At short times, the noise in either method is well
characterized as white phase noise, with the only difference
between the two being the level: the bus device has a
measurement noise of about 30 p, while the noise in the
ACTS system (including the jitter in processing the
characters fiom the serial port) is about 0.5 ms. Since the
overhead in using the ACTS system is dominated by the
work needed to establish the telephone connection, it is
relatively inexpensive to improve the performance of the
ACTS link by averaging several consecutive measurements.
However, it is clearly not practical to reduce the noise below
about 0.1 ms for a single telephone connection, since the
maximum connection time supported by the ACTS system
is about 30 s, and the jitter in the mean time difference only
improves as the square root of the number of measurements
used to compute it.

The shape of the Allan deviation shown in fig. 3 is
consistent with what we would expect from a quartz crystal
oscillator. At short times, the deviation is characterized by a
slope of -1 due to the white phase noise of each
measurement method that is used to evaluate the clock. The
accuracy is limited by the capabilities of the measurement
process, and varying the interval between measurements
clearly has no effect on the time accuracy of the
synchronization procedure.

The slope of the Allan deviation changes to -0.5 at
longer measurement intervals. The break point in the slope
occurs when the Allan deviation due to the white phase
noise of the measurement process becomes equal to the
white fi-equency noise of the clock oscillator itself At still
longer averaging times (on the order of 1 day) the flicker of
6equency floor is reached. The minimum value of the Allan
deviation is about 5 ~ 1 0 ~ at an averaging time of about 1
day.

The stability of this clock is considerably better than the
clocks found in cheap PCs and many larger work stations,
and this particular hardware is used in the NTST time sewers
for this reason. Although the general shape of the fimction
and the break-points in its slope are essentially the same for
most other systems, the magnitude of the Allan deviation
can vary by as much as an order of magnitude between
systems from different manufacturers. However, based on
our experience with a rather small sample, there is not much
variation from system to system of the same type fiom the
same supplier.

STABILITY OF THE NETWORK DELAY

The other contribution to the uncertainty budget for the
synchronization process is the jitter in the network delay. In
order to estimate this, we used three systems that were

independently synchronized to UTC(NIST). The test system
was located in our laboratory in Boulder, Colorado, and we
measured the delays between this system and two other
systems located in Seattle, Washington and Gaithersburg,
Maryland. Time packets traveling fi-om Boulder to either of
these systems pass through a number of routers and
gateways along the way, and the overall path delay is
usually dominated by the delays in these network elements.

Fig. 4 below shows the results of these measurements
for three different configurations. The data near the bottom
of the figure (shown with “+” characters) shows the Allan
deviation in a “loopback” configuration. The requests fi-om
the client system are returned to the client in this
configuration, so that the clock is effectively synchronized
to itself. These data estimate the fluctuations in the
processing delays within the client system itself. (The data
are insensitive to the average value of this processing delay,
which is automatically removed in all cases by the
measurement algorithm.) As can be seen fi-om the figure,
these data are well characterized as white phase noise at all
measurement intervals. The amplitude is about 5 ps, which
is about 2% of the total processing delay, which was about
240 p. This level of white phase noise can be realized
between two separate systems, but only if the client and
server are on a short, dedicated network segment with no
other traffic. (Although both the processing delay and its
jitter can be reduced to some extent by using faster
hardware, much of the recent increase in the hardware speed
of general-purpose computers has been balanced by an
increase in the complexity of the operating system s o h a r e
that controls them, especially when the operating system is
based on a graphicaI user interhce.)

The upper plots show the Allan deviation of the
measurements between a client and a server on the same
local network (shown by “ X) and between a client and a
server that is about 1200 km away (shown by “*”). We
have superimposed a line with a slope of -0 .5 on the upper
two plots. This line is copied from fig. 3, and is the estimate
of the statistical performance of the clock oscillator in the
client system that we deduced fi-om the first set of
experiments.

The goal of the synchronization procedure is to improve
the stability and accuracy of the local clock. Therefore,
adjustments of its time or frequency should be limited to
those measurement intervals where the calibration data add
information, that is, where the noise of the received data is
less than that of the fresrunning local oscillator. Although
the detailed results of fig. 4 are a h c t i o n of the particular
systems and network that we used, the general
characteristics are essentially the same for all systems. In
particular, at short intervals, the time dispersion due to the
frequency noise of the local clock oscillator is almost
always less than the noise of the time server as seen through
the noisy channel, so that some sort of averaging of the

526

calibration messages is usually required to realize an
optimum design.

to the same local area network, then the variance of the
calibration signals received over the network will fall below
the variance due to the frequency noise of the clock for

Using the results shown in the figure, if we plan to
synchronize the system using a time server that is connected

-5

-6

7

R

-9

10

-11

Network delay +=loopback, x=LAN. *=Internet
*

X

X I

Logarithm of Meas. Interval (5)

Fig. 4. The Allan deviation ofthe network delay measured in three d i m 1 configurations. The deviation shown using (+) shows a "loopback"
measurement, the plot using (X) shows measurements on a local network, and the plot using (*) shows measurements to a remote system on the Internet.

averaging times longer than about 150 s. This is the
minimum measurement interval that we should use in this
situation. If we use a shorter interval then the noise in the
network delay will degrade the inherent stability of the local
clock oscillator.

If, on the other hand, we plan to use the remote server
to synchronize the clock of the client system, then it is
important to note that the larger variance in the data from
the remote server imply that the free-running stability of the
local clock is better than the stability of the server seen
through the network out to an averaging time of about 5.3
hours, and that using the shorter averaging time found in the
previous paragraph degrades the stability of the local clock
by introducing network noise. This conclusion may be
counter-intuitive; when the data are noisy there is a
temptation to shorten the interval between measurements
and increase the number of them, whereas this analysis
shows that exactly the opposite should be done because the
local clock has a smaller time dispersion than the remote
server seen through the network. The best thing that we
could do at short intervals is to leave the clock alone. (This
understanding comes 6om the fact that we have
independently evaluated the 6ee-running stability of the
oscillator in the client computer, so that we can distinguish

between the contribution to the measured time dispersion
due to its frequency noise and the component due to the
jitter in the network delay. This ability to separate the
variance is an important prerequisite for implementing the
techniques in this paper.)

This optimum interval of several hours between
calibration cycles is much longer than the longest interval
that is used by standard NTP clients, because the NTP client
is generally implemented using a phaselock loop rather
than the fiequency-based algorithm that is implied by these
analyses. As we can see from this analysis, the phase lock
loop is unlikely to be optimum in this situation, because of
the large variance in the network noise at short periods.
Furthermore, many implementations of the NTP algorithm
do not make explicit use of the stability of the local clock
oscillator. (There is often no simple way for an average
user to remedy this deficiency, since evaluating the stability
of the local clock oscillator requires a connection to a server
using a channel whose delay fluctuations are small
compared to the time jitter due to the frequency dispersion
of the clodc under test.)

Even though the network is quite noisy, the
performance of this loop using an interval of 5.3 hours

527

between measurements would be of order
d20~19000)19000 E 0.002 s, and this level of performance
would be realized with only about 4 or 5 measurements per
day. This is a significant improvement in performance over
what can be realized with standard NTP, and this
performance is realized with far fewer measurements that
are required by the standard "I?' software. The main
reason for this improvement is the use of a frequency loop
and the recognition that the free-running stability of the
local clock Oscillator at short averaging times is much better
than the stability of the remote server as seen through the
network.

PRWESSlNG COST

In addition to providing an estimate of the uncertainty
that will be realized using a given averaging interval, it is
also possible to use these results to estimate the minimum
averaging interval that would be necessary to realize a given
level of performance. This is a uselid feature, since many
applications do not need millisecond-level accuracy, and it
would be very usefbl to increase the interval between
calibrations to the point where the resulting performance
just satisfied the requirements. In order to evaluate this
trade-off, we must examine how the synchronization
amracy and cost of the process vary with the time between
calibration cycles between the client and the server.

Given the interval between calibration cycles, z, the
cost of a synchronization procedure is inversely proportional
to this interval, assuming that each calibration cycle requires
the Same amount of network bandwidth and the same
number of computer cycles in the client and the server. On
the other hand, the synchronization uncertainty using a time
interval between calibrations of T will be proportional to T x
o,,(z). Therefore, whenever the slope of the Allan deviation
as a function of averaging time is negative, increasing the
interval between calibration cycles reduces the cost of the
procedure faster than it degrades the uncertainty, so that this
is a fkvorable choice as long as the resulting uncertainty
meets the requirements of the application. Conversely,
decreasing the interval between calibration cycles increases
the cost faster than it improves the performance over most
of the range of averaging times shown in the figure. Even
when the slope of the Allan deviation as a function of
averaging time increases to 0, the uncertainty increases only
at the same rate as the cost decreases. Although this is not
as favorable as the preceding case, the resulting uncertainty
is often adequate anyway. Using the results of fig. 2, for
example, a client could be synchronized to a server with an
RMS uncertainty of only a few milliseconds using just one
calibration per day. This level of performance would satisfy
almost all of our current users, using only a tiny fraction of
the number of calibrations that are currently used by most
NTP clients.

A similar argument suggests that routinely contacting
more than one server is not optimum. Using the most
optimistic assumption that the difference between the two
servers can be characterized as white phase noise,
contacting two servers increases the cost of the process by a
factor of 2 but decreases the uncertainty by only 42.
Although contading a seumd server may have some
advantages in outlier detection, outliers are relatively rare
events, and the second server should only be contacted
when a preliminary analyses of the measurement from the
first server suggests that the results are not consistent with
the modeled stability of the local clock and the network.

Although the Allan deviation of the clock oscillator
itself is based on its hardware design and is therefore a
constant, the statistical performance of the network is a
dynamic quantity that must be continuously re-evaluated.
Our prototype software does this every day, and re-
computes the appropriate measurement interval based on
these revised estimates of the Allan deviation. The detailed
design of this software is described in [11.

Since the jitter in measuring the time difference can be
characterized approximately as white phase noise, it is also
possible to improve the performance of the synchronization
algorithm by replacing each time difference measurement
with a group of many measurements made rapidly enough
so that the clock and the network do not change. Even if the
assumption that b t h the delay through the network and the
parameters of the clock oscillator do not change during the
group of measurements, the cost of doing this increases
linearly with the number of measurements in the group,
while the standard deviation of the mean improves only as
the square root of this number (at best). Thus the
c o s h e f i t ratio is always unfavorable, and a given
incremental improvement becomes very expensive very
quickly once the number of measurements in the group
increases beyond 4 or 5. Nevertheless, for a fixed number
of measurements, grouping them in this way is usually a
better strategy than spreading them out uniformly in time,
since the fluctuations in the 6equency of the clock oscillator
have little e f f i over a short time interval so that dispersion
in a group is more likely to be characterized as white phase
noise. The mean of the measured time differences is a robust
estimate in this situation.

CONCLUSIONS

The load on the MST Internet time servers is increasing
by 9% per month, and we have investigated methods that
can be used to address this increasing demand without a
corresponding increase in the number of servers. We have
described two methods that show promise for achieving this
goal. The first would use active load balancing hardware to
improve the reliability of the system and to equalize the
number of requests processed by each server. The second
would increase the effective capacity of the service by

528

improvements to the "IF algorithm that would pennit users
to decrease the number of requests from any client system.
These improvements should allow NIST to continue to
satis@ the exponentially increasing demand for Internet
time service without a significant increase in the operating
costs for the foreseeable future.

REFERENCES

[l] Judah Levine, "Time synchronization over the Internet
using an adaptive 6equency-locked loop," IEEE Trans.
UFFC, Vol. 46, pp. 888-896, 1999.

529

