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Abstract—A theoretical development is presented which results
in a relationship between the expectation value of the standard
deviation of the frequency fluctuations for any finite number of data
samples and the infinite time average value of the standard deviation,
which provides an invariant measure of an important quality factor
of a frequency standard. A practical and straightforward method of
determining the power spectral density of the frequency fluctuations
from the variance of the frequency fluctuations, the sampling time,
the number of samples taken, and the dependence on system band-
width is also developed. Additional insight is also given into some
of the problems that arise from the presence of “flicker noise”
(spectrum proportional to |w| —1) modulation of the frequency of an
oscillator.

The theory is applied in classifying the types of noise on the signals
of frequency standards made available at NBS, Boulder Laboratories,
such as: masers (both H and N*Hj;), the cesium beam frequency
standard employed as the U. S. Frequency Standard, and rubidium
gas cells.

“Flicker noise” frequency modulation was not observed on the
signals of masers for sampling times ranging from 0.1 second to
4 hours. In a comparison between the NBS hydrogen maser and
the NBS III cesium beam, uncorrelated random noise was observed
on the frequency fluctuations for sampling times extending to 4
hours; the fractional standard deviations of the frequency fluctua-
tions were as low as 5 parts in 10",

I. INTRODUCTION
§§_S ATOMIC TIMEKEEPING has come of age, it

has become increasingly important to identify

quality in an atomic frequency standard. Some
of the most important quality factors are directly re-
lated to the inherent noise of a quantum device and its
associated electronics. For example, a proper measure-
ment and statistical classification [1] of this inherent
noise makes it possible to determine the probable rate of
time divergence of two independent atomic time sys-
tems, as well as giving insight concerning the precision
and accuracy obtainable from an atomic frequency
standard.

In the realm of precise frequency measurements, the
properties of noise again play an important role. The
relative precision obtainable with atomic frequency
standards is unsurpassed in any field, and the precision
limitations in this field are largely due to inherent noise
in the atomic device and the associated electronic equip-
ment. The standard deviation of the frequency fluctua-
tions can be shown to be directly dependent on the type
of noise in the system, the number of samples taken, and
the dead-time between samples.

A very common and convenient way of making
measurements of the noise components on a signal from

Manuscript received September 17, 1965; revised December 7,
1965.
The author is with the National Bureau of Standards, Boulder,

Colo.

221

a frequency standard is to compare two such standards
by measuring the period of the beat frequency between
the two standards. It is again the intent of the author to
show a practical and easy way of classifying the statis-
tics, i.e., of determining the power spectral density of
the frequency fluctuations using this type of measuring
system.

An analysis has already been made of the noise pres-
ent in passive atomic frequency standards [1], such as
cesium beams, but a classification of the types of noise
exhibited by the maser type of quantum-mechanical
oscillator has not been made in the long term area, i.e.,
for low frequency fluctuations. Though this paper is far
from exhaustive, the intent is to give additional in-
formation on the noise characteristics of masers. Be-
cause a maser's output frequency is more critically
parameter dependent than a passive atomic device, it
has been suggested [2] that the output frequency might
appear to be “flicker noise” modulated, where “flicker
noise” is defined as a type of power spectral density
which is inversely proportional to the spectral frequency
w/2m. It has been shown that if “flicker noise” frequency
modulation is present on a signal from a standard, some
significant problems arise, such as the logarithmic di-
vergence of the standard deviation of the frequency
fluctuations as the number of samples taken increases,
and also the inability to define precisely the time aver-
age frequency. It thus becomes of special interest to
determine whether “flicker noise” is or is not present on
the signal from a maser so that one might better evalu-
ate its quality as a frequency standard.

Throughout the paper, the paramount mathematical
concern is the functional form of the equations with the
hope of maintaining simplicity and of providing better
understanding of the material to be covered.

II. METHODS EMPLOYED TO MEASURE NOISE
A. Power Spectrum and Variance Relationship

The average angular frequency .(¢) of an oscillator
(to distinguish it from spectral frequency w) over a time
interval 7 can be written

1
Q1) = ~ [6(¢t +7) — o)), (1)

where ¢ is the phase angle in radians. Now the variance
of the frequency deviations is the square of the standard
deviation o. Define the time average of a function as
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One may, therefore, write the square of the standard
deviation as follows:

ot = (2,0 — (.0 3)

One may assume with no loss of generality that the
second term in (3) can be set equal to zero by a proper
translation, since it is the square of the time average
frequency. Therefore, Q.(f) is now the frequency devia-
tion from the average value, and é(f) the integrally
related phase deviation.

Substituting (1) into (3) gives

1
7t = [+ nY = 26+ 100 + GO @)

The time average of ¢({+7) - () is the autocovariance
function of the phase—denoted R,(r). One is justified
in assuming that a time translation has no effect on the
autocovariance function [1], therefore [4],

2

2
[Rs(0) — Ro(n)]. )

ol =
7-2
It is now possible to relate the variance of the squared
frequency deviations to the power spectral density by
use of the Wiener-Khinchin Theorem, which states that
the autocovariance function of the phase is equal to the
Fourier transform (F.T.) of the power spectral density
of the phase S,(w). The power spectral density of the
frequency is related to this by the useful equation

Silw) = iS¢(w).

Most of the discussion that follows is based on the
restriction

Se(w) = k| wle. (6)

That a singular type of power spectrum predominates
over a reasonable range of w has been verified experi-
mentally. The region of interest for o is —3<a< —1,
and a=0. This covers white noise phase modulation
(Sy(w)=4h), “flicker noise” frequency modulation
(Sq;(w)=h]w|”‘), and includes, of course, white noise
frequency modulation (Sg(w)=~h). Fortunately, the
Fourier transforms of functions of the above form [3]
have been tabulated, and the following transforms can
be established:

F.T. \ w !" = d(a)- { T \"’*‘ for £ O or not an integer
F.T.| | = (r)
FT. e|l2=ad(-2) 17 (7

where a’ is an « dependent coefficient. A useful substitu-
tion is the following [1]:

Ulr) = 2[R,(0) — Ro(r)]. (8)

Because of finite system bandwidths, wg, a better rep-
resentation of U(r) is obtained by replacing R;(0) with
Ry4(1/wy) (see Appendix). If the sample time 7 is large
compared to the reciprocal system bandwidth 1/wpg,
then Rs(1/wg) is negligible compared to R,(7) in the
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region where —2<u<0(—1>a>—3). R,(1/ws) be-
comes the larger term, however, in the region of
—1<a<0, and if one assumes (wpT)*t'>>1, then R, (1)
is neglectable (see Appendix). The following equations
for U(r) may, therefore, be written:

o ‘a(a)“rf*"*l; I <a< -1
vn = {a(a) ] wyl““; -1 <aL0. ©)

The standard deviation squared may, therefore, be
written:

. {d(u)' | ]

aa) | Wz ‘a+1‘ r ‘—2;

-3<a< -1
(10)
-1 <a<0

where uy= —a—3.

A(u) has a small dependence on wg, implicit within the
previous assumptions. Considering the results of (10),
the Appendix, and that to be discussed in Section 1I-D
on “flicker noise” modulation (e¢= -1, —3), an in-
formative graph of u into a may be established as il-
lustrated below.

WHITE NOISE PHASE MODULATION 0

“FLICKER NOISE" PHASE MODULATION

WHITE NOISE FREQUENCY MODULATION
(RANDOM WALK PHASE)

“FLICKER NOISE ™ FREQUENCY MODULATION

Using (6) and (10) along with the above graph, one
may, therefore, deduce the power spectral density from
the dependence of the standard deviation of the fre-
quency fluctuations on the sampling time, with restric-
tions on the experimental parameters as will be shown
in the following.

B. Adjacent Sampling of Data

In actual practice, of course, the number of frequency
or phase samples must be finite. The case to be consid-
ered now is one for which the phase or the frequency is
monitored on a continuous basis. Two of the techniques
used by the author to accomplish this were as follows:
A device, described elsewhere [1 ], was used to monitor
the phase of the beat frequency between two oscillators
at prescribed time intervals; the second technique was
to measure the period of the beat frequency between two
oscillators with two counters so that the dead-time of
one counter corresponded to the counting time of the
other.

A very powerful and meaningful method of analysis
of data taken by a phase monitoring technique has been
developed by J. A. Barnes [1] at the National Bureau of
Standards, Boulder, Colo. The method employs the use
of finite differences and is especialy useful in analyzing
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“flicker noise” and long-term frequency fluctuations in
general. On the other hand, if one uses the period count-
ing technique for data acquisition, the following form
of analysis is useful. It also may be cast in a form where
one may use the finite difference technique.

Data are often obtained with one counter measuring
the frequency or the period of the beat note between two
oscillators with a dead-time between counts.! The con-
cern of Section Il is with the dead-time being zero, but
it is convenient to develop the general case for which
the dead-time is nonzero for use in Section III, and
specialize this to the continuous sampling case for which
the dead-time is zero, which is the case of interest in
this section.

Let 7" be the period of sampling, r the sample time,
and N the number of samples. The standard deviation,
a(N, T, 1), of the frequency fluctuations? may, therefore,
be written as:

1 (EIeT 4 ) — e
a*(i\,T,T)-N_l{gli . i|
122 (T + 7) — ¢(nT)7)?
P> SRl

Taking the expectation value of ¢?(N, T, 7) and making
the substitution given in (8) yields

: R
(62N, T, 7)) = g {L(T) —+ ﬂ_N(N .

N—-1

S (N=m)[2UnT) = UnT+1)— U(nT—T)]} - (12)

If the dead-time were zero, then T =7, and (12) becomes

(1]

1
(e¥(N, 7)) = [NU(T) T U(Nr):l. (13)

(N — 1)r2
Remembering that u= —a —3 and substituting (9) into
(13) gives

a(W)N | 7| 7

_]Vu;
N —1 |

(e*(N, 7)) = (14)

—2<u<0
which establishes the interesting result of the depen-
dence of the expectation value of the standard devia-
tion of the frequency fluctuations on the number of
samples, the sample time, and the power spectral den-
sity. It will be noted that

(@20, 7)) = a(u) | 7%

in agreement with (10).

—2<u<0 (15)

1 See L. S. Cutler and C. L. Searle, “Some aspects of the theory
and measurement of frequency fluctuations in frequency standards,”
this issue, page 136. This paper shows that the fluctuations Ar in
_tfhe period 7 are a good approximation to the frequency fluctuations
if Ar>>r.

? Note that this ¢( N, T, 7) is not the same as the ¢ in (3)-(5), and
(10). o(N, T, 7) is over a finite number of data samples N and, to
avoid confusion, the variable N will always be used with o in the
finite sampling case as in (11).
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By keeping N constant and assuming u to be constant
over several different values of 7, it may be seen that the
value of u is the slope on a log-log plot of (¢2(NV, 7)) vs.
7. This provides a means of determining the power
spectral density simply by varying the sample time over
the region of interest {4].

It is informative to look at the family of curves ob-
tained from a plot of the dependence of (¢2(N, 7)) as a
function of N for various pertinent values of u to see how
it approaches {o?(«, 7)). The family of curvesisshown in
Fig. 1. One may notice that the convergence is much
faster in the region between white noise frequency
modulation and white noise phase modulation than
between white noise frequency modulation and “flicker
noise” frequency modulation.® In fact, as p—0, the
ratio approaches zero, and one would conjecture that the

lim {(o*(¥, 7))
Now

is infinite in the presence of “flicker noise” frequency
modulation—a result proven by J. A. Barnes et al. [1].
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Fig. 1. A plot showing the dependence of the standard deviation of
the frequency fluctuation on the number of samples and the type
of noise present.

The data points plotted in Fig. 1 were extracted from
a cesium beam-cesium beam comparison analyzed else-
where [1], and exhibit in this new formulation a type of
frequency modulation proportional to ‘w’—”s, giving
confirmation to this strange type of power spectral
density.

It is possible to utilize the dependence of the standard
deviation on the number of samples to determine a
value of u by considering a function which takes into
account the extreme values of N obtainable from a
finite set of data, namely,*

3 To see that 4 =0 corresponds to “flicker noise” see Section 11-D.

4 It will be noted that the r dependence cancels in the expression
for x and hence it is N and x dependent only. In the table and
graphs, the r dependence is not shown and is, therefore, suppressed
since the u dependence is the thing emphasized.
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(0N, 7))
Nop) = ——tl
X =g

Tabulated values of this function are given in Table I,
and a plot of x(N, u) as a function of u for various values
of Nisgiven in Fig. 2. It may be noted that the tunction
is most sensitive in the region between “flicker noise”
frequency modulation u=0 and white noise frequency
modulation p= —1—one of basic interest. In practice,
the table and graph have proven very useful. x(«<, g)
is plotted for comparison and computational purposes.

Note that x(=, 0) = =. In the development thus f{ar,

(16)

TABLE 1
THE DEPENDENCE OF {¢(N, 7)) ON THE NUMBER OF SAMPLES
FOR A FINED SAMPLE TIME 7, THUS DETERMINING THE VALUL
OF u AND THE STATISTICS. THE VALUES LISTED ARE OF
(a*(N, 7))

V _——
x({ ,#) <02(2’ o

N (Number of Samples}

" ’ .
4 \ 16 ‘ 64 256 \ 1024 o

0.0 | 1.337 | 2.133 | 3.048 | 1.016 | 5.004 x

~0.1  1.288  1.928 ' 2.380 | 3.190 3.736 = 7.46%
—0.2  1.247 | 1.753 | 2.215 = 2.598  2.800 . 3.855
—0.3 | 1.208 | 1.60+ 1.928 | 2.167 . 2.332 | 2.660
—0.4 | 1171 | 1.475 | 1.700 | 1.847 | 1.937 | 2.062
~0.5 | 1.138 | 1.365 | 1.517 | 1.606 | 1.655 | 1.705
—0.6 | 1.106 | 1.270 | 1.369 | 1.422 | 1.447 | 1.467
~0.7 | 1.077 | 1.188 | 1.249 | 1.278 | 1.291 | 1.290
—0.8 | 1.040 | 1.116 | 1.150 | 1.165 | 1.171 | 1.174
—0.9 | 1.023 | 1.054 | 1.068 | 1.074 | 1.076 | 1.076
—1.0 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
—1.1 { 0,977 | 06.952 | 0.942 | 0.938 | 0.937 | 0.937
—1.2 | 0.956 | 0.910 | 0.893 | 0.887 | 0.886 | 0.886
—1.3 | 0937 | 0.873 | 0.851 | 0.844 | 0.842 | 0.842
—1.4 | 0.919 | 0.841 | 0.815 | 0.807 | 0.805 | 0.804
~1.5 | 0002 | 0.812 | 0.782¢ | 0.776 | 0.77% ' 0.773
~1.6 | 0.886 ' 0.786 | 0.736 = 0.748  0.746 = 0.745
—1.7 | 0.871  0.763 | 0.733  0.125 | 0.723 | 0.722
—1.8 0858 | 0743 0.712 | 0.704 | 0.702 | 0.701
—1.9 | 0.815 | 0.724 | 0.693 | 0.685 | 0.683 | 0.682
—2.0 [ 0.833 | 0.708 | 0.677 | 0.669 | 0.667 { 0.667

Fig. 2. A plot enabling one to experimentally extract the statistics
of an oscillator by knowing the standard deviation for ¥ samples
and for two samples using Sg({w)=h|w; *1 except at u= —2.
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no consideration has been given to the experimental
fact that there must exist a lower cutoff frequency that
keeps the functions considered from going to infinity,
corresponding to certain tvpes of noise, such as “flicker
noise.” The value of the cutoff frequency is not im-
portant other than to say that the functions considered
are valid for times up to the arder of 1/(w cutoff). This
time is apparently more than a year for quartz crystal
oscillators [5]. If “flicker noise” is present in some
atomic frequency standards, the value of 1/{w cutoff) is
probably less than for quartz crystal oscillators for rea-
sons discussed later, and if “flicker noise” is not present,
infinities do not occur in the functions considered for
most other types of pertinent noise and hence there is
no concern.

C. Non-Adjacent Sampling of Data

The next consideration is to determine the effect of
counter dead-time on one’s ability to deduce the statis-
tics of an oscillator using the techniques developed in
Section II-B. This form of data acquisition is one of the
most common, and hence merits attention.

[t was shown earlier that (12) is applicable to the
present case, and if (9) is substituted into (12), with the
assignment that »=7/r (the ratio of the period of
sampling to the sample time), then

(*(N, T, 7))

NN — n)(nr)st? ( 1 >“+2
= u 21 - 2 —11 -
2) ‘ T{ { + 7,{':1 N(N — 1) I: + nr

1 \»#t+2
-(-o) T —rew<o an
nr

An important result from (17) is that if N and » are held
constant, it is still possible to determine the value of u
by varying 7. Therefore, the relationship between the
power spectral density and the standard deviation has
the same form as for the continuous sampling case.
Additional insight may be obtained by considering
some special cases. If u= —1, (S;(w) =%) [6], the series
in (17) goes to zero for all possible values of » and hence

a(—1)

|7l

for white noise frequency modulation; this is the same
result obtained in the continuous data sampling case.
One notices that (18) is independent of N as would be
espected since the frequency fluctuations are uncor-
related.

If p= —2, the series in (17) again goes to zero for all
values of #>1. The value of « is degenerate except that
one may say —1 <e«. In this domain, the frequency
fluctuations appear to be uncorrelated as long as the
measurement dead-time is nonzero. Using the proper
form of U(r) from (9) and substituting into (13) for the
case where r=1 (zero dead-time), gives:

(e*(N, 7)) = [a(a) | wp | (N + 1)/N72]-

(N, T, 7)) = (18)
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One, therefore, has the unusual result that

N+ 8¢ = 1) a() | wg et

AN, T, 7)) =
(N, T,7)) N .

(19)

where
1, r=1

for —1 < « and (wpr)*t! > 1.
0, r=1,

o(r—1) = {
A slight N dependence then appears only in the con-
tinuous sampling case. Experimentally, one can show
that the Kronecker 8-function is replaced by Ry(r—1)
/R,(0) because of the finite bandwidths involved.

It will be recalled that the curves in Figs. 1 and 2 are
for =1 (the dead-time equal zero). The results of (19)
show a character change in the curves for r>1 and
—2<u< —1, for now the curve for u= —2 is coincident
with the curve for u=—1 in Fig. 1 and x(&, —2)
=x(N, —1)=1.0 in Fig. 2. No profound character
change occurs for —1 <u <0.

It is possible to show that the series in (17) approaches
zero as N approaches infinity for all values of »>1 and
u <0, hence (¢*(N, T, 7)) has the same asymptotic value
as for the continuous sampling technique, independent
of the counter dead-time.

If a binomial expansion is made of the second two
terms in the series expression of (17), and fourth-order
terms and higher in 1/n7 are neglected, the following
simplification occurs:

{(o®(N, T, )
4+ 2DE+1) ¥

*.—‘\'(‘\' :~1) r ,§1 (N — n)n“_‘. (20)

=a<y>ir!“[1—

On the first observation of (20), one may notice that
as r becomes large, the standard deviation approaches
its asymptotic value. This occurs when one is taking
samples much shorter than the capable reset time of the
counter. The dependence on N is, therefore, reduced as
r#. In fact, it has been determined by a computer
analysis of (17) that the net effect of increasing the dead-
time is to collapse the curves in Figs. 1 and 2 towards the
unit axis.

D. The “Flicker Noise” Problem

The existence of “flicker noise” frequency modulation
on the signal of quartz crystal oxcillators has caused
difficulty in handling such quantities as the auto-
covariance function of the phase and the standard devia-
tion of the frequency fluctuations. As mentioned previ-
ously, the development by J. A. Barnes [1] makes it
possible to classify “flicker noise” frequency modula-
tion without any divergence difficulties or dependence
on the value of the low-frequency cutoff.

Some of the other difficulties associated with the
presence of “flicker noise” frequency modulation, as
Barnes has shown, are illustrated in the following
equations:
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iy ayy = BN Y ’
<‘7 (* :T) - _ﬁ_' ( )

and
lim + < [ﬁiﬂ_—di(ﬁp =(©0). (2

The fact that the standard deviation diverges with N, as
shown in (21), is an annoyance, aside from the fact that
it becomes more difficult to write specifications on the
frequency fluctuations of an oscillator. The limit ex-
pressed in (22) does not exist or is dependent on the low-
frequency cutoff; this, of course, affords difficulty in
defining a frequency, and would be an unfortunate
property to be present in a frequency standard. As has
been stated previously for all values of u considered thus
far, —2<u <0, the limit as N approaches infinity of
(6®(N, 1)) exists; and as the sampling time increases,
{a%(N, 7)) converges toward zero or perfect precision.

Data have been analyzed that indicate the presence of
“flicker noise” frequency modulation on the signals
from rubidium gas cell frequency standards. It is of con-
cern to determine if this type of noise is present on the
signals of other atomic frequency standards, and specifi-
cally masers. It is not the intent to determine the source
or sources of “flicker noise,” as this is a ponderous prob-
lem in and of itself, but perhaps only infer where such
noise might arise.

Consider, now, ways to establish the presence of
“flicker noise.” If the data were on a continuous basis,
the method of finite differences [1] developed by Barnes
would be very useful. One may also notice from (21)
that if Vis held constant, the value of u is zero for values
of 7 in the “flicker noise” frequency modulation region.
If data were taken by the common technique of non-
adjacent samples, the following considerations are of
value.

For “flicker noise” frequency modulation, U(r) takes
on a different form as a result of the divergence of the
autocovariance function of the phase [1],

]
U(r) = lim

u—0 4 - 2“’+2

(23)

The constant k£ is dependent on the quality of the oscil-
lator. 1f (23) is substituted into (12), letting u—0 (u=0
corresponds to “flicker noise”), an indeterminate form
results for (¢2(&, T, 7). Applying L'Hospital's Rule,
and then passing to the limit, gives the following equa-
tion:

o

] ‘—-____1‘_*]\’_1 . L |
(@*(N, T,7)) = YO 1) 2 (N n)L 2n21n (n7)

—

-+ <n — i>21n (nr+1) + <n — 1)21n (m’——l)i!. (24)
r

r

Hencé, for a fixed ratio r=7/7, and a determined num-
ber of samples N, the standard deviation is constant,
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independent of 7. So for both adjacent and nonadjacent
data sampling, the value of uis zero. One may, therefore,
determine if “flicker noise” frequency modulation is
present on a signal sampled in a nonadjacent fashion,
subject to the above constraints.

A consideration of interest at this point is “flicker
noise” phase modulation (S,(w) =/ lw l“). One can show
from the work of J. A. Barnes® that the value of the
function U(r) for = —11s

U(r) = 4h(2 4+ In 7wg),
TWp > 1, (25)

where wy is the system bandwidth. Substituting (25)
into (13) yields the following:
In &
+ Inrwp — ———

(N + 1)4h [2
N—1

N2

(@2, 7)) =

— 1, Twp> 1. (26)

a =

One thus obtains the somewhat unfortunate result that
experimentally it would be unlikely that one could
distinguish between “flicker noise” phase modulation
and any other noise with —1 <« up to and including
white noise frequency modulation using the depen-
dence of {(¢*(N, T, 7)) on 7, since u=~—2 in this range.
However, one might be able to infer from the experi-
mental setup which of the two types of noise was being
observed. If this were not possible, one would be forced
to determine the type of noise present by some other
technique, such as the one employed by Vessot in which
he varies wp.b

If the number of samples N, and the ratio of the
period of sampling to the sample time », are held con-
stant, the following general equation can be written for
both adjacent and nonadjacent sampling of data:

(*(N, T, 7)) = K(N,r)| 7|~ (27)

Using (27) and (6), (Ss(w) =/|w|«), coupled with the re-
sults established thus far, one is now able to extract the
power spectral density from the dependence of the
standard deviation on sample time for values of u
ranging from —2<u<0. All of the results have there-
fore been obtained to make the previous mapping of u
into « for finite data sampling.

ITI. AtoMIC FREQUENCY STANDARDS
A. Passive Atomic Standards

Devices such as atomic beam machines and rubidium
gas cells have been made to generate impressively stable
frequencies [7], [8]. In October, 1964, the appropriately
authorized International Committee of Weights and
Measures adopted as a provisional definition for the

5 See Barnes {1], equation (74), page 219.

8 R. Vessot, L. Mueller, and J. Vanier, “The specification of oscil-
lator characteristics from measurements made in the frequency
domain,” this issue, page 199. (Also see Appendix.)
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measurement of time, the transition between the F=4,
mp=0and F=3, mp=0 hyperfine levels of the ground
state 2S5y of the atom of cesium 133, unperturbed by
external fields, with the assigned frequency for the
transition of 9 192 631 770 Hz. The cesium beam at
N BS has also been established as the United States IFre-
quency Standard. The analysis of the theory of opera-
tion of these quantum devices has been covered in many
publications [7], [8], along with the methods of slave-
locking an oscillator to a given transition [8]. An analy-
sis of the noise that should be present in an oscillator
servoed to an atomic transition has been made by
Kartaschoff [9], Cutler [6], and others. The author de-
sires to reiterate at this point some of the results of these
analyses: the frequency should appear white noise
modulated ; therefore, the phase fluctuations will go as
the random walk phenomena, and hence the mean
square time error in a clock running from one of these
frequency standards would be proportional to the
running time. Barnes [1] has also shown that

((A%p)*) ~ ((34)°),

where A? denotes the 3rd finite difference and &8¢ the
clock error time for a running time ¢, and also that

((Akg)2) ~ | 7 |wt2

(28)

-2 <u<O. (29)
The results from combining (28) and (29) are obvious,
but still very important, i.e., if either the power spec-
trum or the dependence of (¢?) on the sample time is
known, one may then determine the rate of time diver-
gence and conversely [see (7) and 10)],

@5~ [rp=5  —2<u<o, (30)

An example of the above is illustrated by the follow-
ing: if in fact “flicker noise” frequency modulation is
present on the signal of rubidium gas cells, and if one
assumes the rms time errors were equal on clocks driven
by a rubidium gas cell and a cesium beam of theoretical
form at % of a day—say, for example, 0.1 microsecond—
then the accumulated rms time error after 1 year would
be of the order of 100 microseconds for the rubidium
cell and 3 microseconds for the cesium bean.

B. Masers

Masers, in contrast to the passive atomic devices
discussed in Section III-A, may be used as quantum
mechanical oscillators [10]. Since the sources of “flicker
noise” frequency modulation could arise from many
different mechanisms, the suggestion exists that per-
haps the active character of masers could be influenced
by one of these mechanisms. Most of the basic experi-
mental research associated with this paper and per-
formed by the author has been to determine if the above
suggestion is valid or not, and specifically to determine
the type or types of noise present on the signals from
masers.

One NBH; maser has been in operation at NBS for
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several years. It is desirable to compare similar atomic
devices in looking at noise, so another N'*H; maser was
put into operation for direct comparison purposes.
Worth considering at this time is the basic operation of a
maser so that arguments made later on will be under-
standable.

Three basic elements of a maser are the source, the en-
ergy-state selector, and the resonant cavity. A needle
valve and a collimating nozzle are coupled to the source
to provide a highly directed beam of N'H; down the
axis of the four-pole focusers. The four-pole focusers are
the energy-state selectors and consist of four electrodes
with alternate high voltages so that on-axis (in line with
the resonant cavity) the electric field is zero, but slightly
off-axis the field is large and increases as the distance off
axis. Because ammonia has an induced electric dipole
moment, an interaction occurs as it enters this electric
field region, and as it has been shown [10] the low en-
ergy states of the inversion levels of ammonia are de-
focused while the high energy states are focused on axis
and into the resonant cavity. Therefore, if a noise com-
ponent of the proper frequency is present and the
ammonia beam flux is sufficient, a regenerative process
will take place in which a high energy-state molecule
will decay and radiate a quantum of energy “Av” causing
the field to increase in the cavity and hence inducing
other molecules to undergo the transition, etc. The
radiation may be coupled off with a waveguide and then,
with an appropriate detection scheme, one may observe
the maser oscillations at a frequency v where, neglecting
any frequency pulling effects, v is approximately
22 789 421 700 Hz for NV¥H,.

There are many parameters that affect the output fre-
quency of an ammonia maser, [t is from these parame-
ters that one may expect correlation of frequency
fluctuations over long times such as exist for “flicker
noise” frequency modulation. To see the mechanism,
consider the fundamental pulling equation [10]

AV]

Vo‘ViE(VU—VC)+B, (31)

where p, is the unperturbed transition frequency, » the
maser output frequency, Ay, the transition line width,
Ay, the cavity bandwidth, », the cavity’s frequency, and
B is a term involving the basic parameters such as
ammonia beam flux, the voltage on the state selectors,
and the magnetic and electric field intensities inside the
cavity. Most of the quantities in (31) are dependent on
temperature either directly or through the coupling
electronics. Some of the quantities in (31) are dependent
on the maser’s alignment affording another mechanism
for correlation of the long-term frequency fluctuations.

As described in detail elsewhere [11], it is possible to
construct an electronic servo that will tune the resonant
frequency of the cavity to that of the ammonia transi-
tion frequency (v,=».). The tuning is not perfect be-
cause of the noise present. The effect this has, as can be
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seen from (31), is profound, greatly reducing the effect
of the basic parameters and almost entirely eliminating
cavity dimensional instability. The correlation now
existing in the long term frequency fluctuations may
well be expected to be masked out by other noise in the
system.

Since the servomechanism is of the frequency lock
type, and if the noise in the servo i1s white over some
finite bandwidth, then the fluctuations on the output
frequency would be white inasmuch as they were caused
by the servo. This is the same as for passive atomic
devices—a result not altogether unexpected.

1V. EXPERIMENTS PERFORMED

A. N“BHy Maser Comparison

Two NUH; masers were compared by the following
technique. Each maser hascoupled onto its output wave-
guide a balanced crystal detector and onto each detector
a 30 MHz IF amplifier. Since the frequency of the inver-
sion transition in N'"*Hj; is about 22 790 MHz, a local
oscillator signal at 22 760 MHz is inserted into each re-
maining leg of the balanced crystal detectors. The 30
MHz beat frequencies resulting from the output of the
IF amplifiers are then compared in a balanced mixer and
its audio output is analyzed; the bandwidth of this
mixer is about 20 kHz. The frequency of the audio
signal can be adjusted to a reasonable value by offset
tuning the cavity of one of the masers. The period of this
audio signal is determined with a counter; the data are
punched on paper tape for computer analysis. The com-
puter determines the average value of the fractional
standard deviation ¢, along with its confidence limit for
pertinent discrete values of the sampling time r.

In all of the maser data taken it was necessary to sub-
tract out a systematic but well-understood linear drift—
due to a change of the ammonia beam flux in the N*H,
maser and due to cavity dimensional drift from changing
temperature in the case of the H maser. This was ac-
complished by the method of least squares [12]. The
ability to change the number of samples N was also
built into the computer program.

A plot of the computer output for some of the data
analyzed in the NYH; maser comparison is shown in
Fig. 4. The output frequencies of the masers were not
servo-controlled for these data. The slope is very nearly
that of white noise frequency modulation. It will be
noted that for a time of one second, the fractional
standard deviation of the frequency fluctuations is less
than 2X10712,

B. Cesium Beam, Maser, Quartz Oscillator Intercompar-
isons

Many comparisons were made between all the differ-
ent types of atomic devices made available in the
Atomic Frequency and Time Standards Section of NBS.
Most of the comparisons were made at 5 MHz by mea-
suring the period of the beat frequency with a counter,
and the resulting data were processed by a computer.
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Fig. 3. Block diagram of maser cavity servo system.
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The bandwidth of the 5 N[Hz mixer that produces the
beat frequency was about 33 Hz.

A comparison was made between the double beam
NBH; maser with the cavity servo in operation as
illustrated in Fig. 3, and the NBS III cesium beam.
A 5 MHz quartz crystal oscillator of good spectral
purity was phase locked by a double heterodyne tech-
nique to the output frequency of the maser, and this
oscillator was compared with a high quality quartz
crystal oscillator that was frequency locked to NBS [11.
A plot of the data is shown in Fig. 5. The noise is un-
doubtedly that of the maser cavity servo system, and
though it exhibits very nearly its theoretical value of
u= —1 for white noise frequency modulation, the noise
level will be seen to be well over an order of magnitude
higher than for the free-running maser.

The free-running, single beam, N*H; maser was com-
pared with NBS I1] on a longer time basis and indicated
the presence of “flicker noise” frequency modulation.
There was indicated a fair amount of uncertainty to the
data, however.

In Fig. 6 one sees a very interesting plot in the com-
parison of the NBS III cesium beam with a very high
quality quartz crystal oscillator. The comparison was
again made at 5 MHz as indicated above. The first part
of the curve shows the white noise frequency modula-
tion in the cesium beam servo system, and then the
curve changes slope indicating the presence of “flicker
noise” frequency modulation as is typically exhibited
byv quartz crystal oscillators. This shows experimentally
the theoretical result discussed previously, that one
may have quite a high level of white noise in a system
and eventually the system will be better than one with
“flicker noise” frequency modulation.

An extended comparison was made (58 hours) be-
tween the I1 maser, NBS III cesium beam, a rubidium
gas cell, and a quartz crystal oscillator. Some of the data
are still to be analyzed, but some interesting and im-
pressive results have been obtained thus far. Figure 7
shows the analysis of some of the data obtained from
the H maser, cesium beam (NBS III) comparison.
White noise frequency modulation is exhibited for
sampling times extending to 4 hours with the very
impressive standard deviation of ~6X 10~ for =4
hours. “Flicker noise” frequency modulation was ob-
served on both the rubidium gas cell and on the quartz
crystal oscillator in this comparison.

V. CONCLUSIONS

An invariant quality factor of a frequency standard
having definite esthetic value would be the infinite time
average, standard deviation of the frequency fluctua-
tions. From the theoretical development a least biased
estimate of this factor may be established in terms of the
expectation value of the standard deviation for any
finite number of samples:
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, V= DN, 7))
N1 —No

—2< pu<0and | rwg|=ti > 1. (32)

o? also has the desirable feature of being dependent on
only one variable, 7, except for u= —2, where it is also
necessary to specify wg, the system bandwidth. Equa-
tion (32) is valid for all types of noise between and in-
cluding “flicker noise” frequency modulation and white
noise phase modulation (—3<a<0). However, if
o= —3, some other means of specification need be em-
ployed, such as Barnes' [1] finite difference technique or
{6%(2, 7)) which, interestingly, is equal to ((A)?)/272
(A? denotes the second finite difference).

“Flicker noise” frequency modulation was not ob-
served on the frequency fluctuations of the maser type
of atomic frequency standard for any of the reliable
data obtained—the time coverage here being from about
0.1 second to 4 hours. The presence of “flicker noise”
was indicated for free-running masers (both H and
N*H;) in the long term range, though the data were
somewhat unreliable. This type of noise was eliminated
in the case of the N¥H; maser by use of a cavity servo
mechanism, and one might infer from the similarities
in the masers that the same would hold true for the H
maser.

It is acknowledged that if “flicker noise” is present on
the frequency fluctuations of a free-running maser for
longer times, the lower cutoff frequency might be
greater than for quartz crystal oscillators—for indeed
the maser operator is himself a part of a cavity servo
when he retunes the cavity or perhaps recoats the quartz
bulb.

The existence of “flicker noise” frequency modulation
on the frequency fluctuations of rubidium gas cells is
just another indication that they would not at present
make a reliable primary frequency standard. One can-
not conclude from the data analyzed that “flicker noise”
is not present on masers—even if a cavity servo is em-
ploved. Tt is possible, however, to determine an upper
limit for the level of “flicker noise.” If G (w)=hlw|,
then using (22), the upper limit of % can be determined
from the minimum value of ¢?(NV, 7). The value of 4 for
NUYH; (determined from Fig. 4) is ~7 X 107% seconds™™.
It is of interest to compare this with the value of £ de-
termined for the quartz crystal oscillator shown in Fig.
6— ~8 X 107% seconds—. Though comparable, it should
be stated that this oscillator is one of the best that has
been analyzed at NBS. The upper limit on % for the H
maser, cesium beam (NBS III) comparison shown in
Fig. 7 is «<2X107% seconds 2—being a factor of 350
and 400 times better than the N*H; maser and quartz
crystal oscillator, respectively.

There are many areas where additional data analysis
would be informative. It would be very interesting to
look at the behavior of the cesium beam, hydrogen
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maser comparison, shown in Fig. 7, for extended times,
Another analysis of interest would be that of a cavity-
servoed H maser. Such a servo system is under develop-
ment for the NBS H maser. To then compare the cavity-
servoed H maser with a cesium beam and its associated
servo system would afford great insight into determining
which of these competitive atomic standards should be
primary.

APPENDIX

The general expression for the autocovariance func-
tion for infinite bandwidth is:

Re(r) = d'(a)| 71—, (33)

a0, and not an integer, where

o (a) = z[cos (ﬂﬁ;ﬂﬂ-r(a + 1),

Physically, R,(0) is kept from diverging in the region
—1 <a because of finite system bandwidths, wg;i.e., for
any e<1/wgp, R, (e)=R_(1/ws). A good approximation
to R,(0) in this region is, therefore, R, (1/w3z). One may
notice that the variance of the frequency fluctuations
diverges [see (5)] with increasing wg. The variance of
the frequency fluctuations may, therefore, be written:

, _ )

[ wg =t = | |-, 34)
In the region —3<a<—1, R,(0) is approximately
zero; and if Irwgi lettl 551 then the equations for U(r)
are as written in (9),

Consider now a finite number of data samples ¥ in the
domain where —1 <« <0, and jrw3’“+1>>1. Using the
appropriate form of U(7) from (9) and substituting into
(13) gives:

N+1
(0N, 7)) =

h

(35)

a(a) | T “‘ | TWR |“+1,

where
g = —a—3.

Hence, by keeping N and rwp constant, one can de-
termine the value of u (of @) on a log (¢*(N, 7)) vs. log 7
plot, thus eliminating the degeneracy in this region.
Equation (35) may also be written:

(N + 1)-a(@) [ws|=T

Nt

(¢*(N, 7)) = (36)

Hence, if N and 7 are held constant and wp is varied, the
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slope on a log-log plot of (¢*(N, 7)) vs. wg would be
a+1—affording another technique of determining the
spectral density in this domain.

It is of interest to note that the most sensitive
parameters to use in arriving at the value of « are:
the bandwidth, wg, f —1 <a<0; the sample time 7, if
—2<a<~—1; and the number of samples N, if
—I<a<~2.
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