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Statistics of Atomic Frequency Standards 

DAVID W. ALLAN 

Abstract-A theoretical development is presented which results 
in a relationship between the expectation value of the standard 
deviation of the frequency fluctuations for any finite number of data 
samples and the infinite time average value of the standard deviation, 
which provides an invariant measure of an important quality factor 
of a frequency standard. A practical and straightforward method of 
determining the power spectral density of the frequency fluctuations 
from the variance of the frequency fluctuations, the sampling time, 
the number of samples taken, and the dependence on system band- 
width is also developed. Additional insight is also given into some 
of the problems that arise from the presence of ‘Wicker noise” 
(spectrum proportional to 1 ~1 -l) modulation of the frequency of an 
oscillator. 

The theory is applied in classifying the types of noise on the signals 
of frequency standards made available at NBS, Boulder Laboratories, 
such as: masers (both H and N1&HH,), the cesium beam frequency 
standard employed as  the U. S. Frequency Standard, and rubidium 
gas cells. 

“Flicker noise” frequency modulation was not observed on the 
signals of masers for sampling times ranging from 0.1 second to 
4 hours. In a comparison between the NBS hydrogen maser and 
the NBS I11 cesium beam, uncorrelated random noise was observed 
on the frequency fluctuations for sampling times extending to 4 
hours; the fractional standard deviations of the frequency fluctua- 
tions were as  low as  5 parts in loL4. 

I. INTKODI CTION 

S .4TC)\IIC TI7\1EI<EEPING has come of age, it 
has become increasingly important to  identify A qualit) in  an atomic frequencj standard. Some 

of the most important quality factors are directly re- 
lated to  the inherent noise of a quantum device and its 
associated electronics. For example, a proper measure- 
ment and statistical classification [l ] of this inherent 
noise makes it possible to determine the probable rate of 
time divergence of two independent atomic time sys- 
tems, as  well as giving insight concerning the precision 
and accurac?. obtainable from an atomic frequency 
standard. 

In the realm of precise frequency measurements, t he  
properties of noise again play an important role. The  
relative precision obtainable with atomic frequency 
standards is unsurpassed in any field, and the precision 
limitations in this field are largel>- due to inherent noise 
in the atomic device and the associated electronic equip- 
ment. The  standard deviation of the frequency fluctua- 
tions can be shown to be directly dependent on the type 
of noise in  the system, the number of samples taken, and 
the dead-time betaeen samples. 

A very coninion and convenient u a y  of making 
nieasurenients of the noise components on a signal from 
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a frequencl. standard is to compare trim such standards 
by measuring the period of the beat frequency between 
the tu-o standards. I t  is again the intent of the author to  
shou- a practical and easy \lay of classifying the statis- 
tics, i.e., of determining the pol\-er spectral density of 
the frequency fluctuations using this type of measuring 
system. 

,4n analysis has already been made of the noise pres- 
ent in passive atomic frequency standards [ t ] ,  such as 
cesium beams, but  a classification of the types of noise 
exhibited by the maser type of qUanturn-mechanical 
oscillator has not been made in the long term area, i.e., 
for low frequency fluctuations. ‘Though this paper is far 
from exhaustive, the intent is to give additional in- 
formation on the noise characteristics of masers. Be- 
cause a maser’s output frequency is more critically 
parameter dependent than a passive atomic device, i t  
has been suggested [2 ]  that  the output frequency might 
appear to be “flicker noise” modulated, Xvhere “flicker 
noise” is defined as a type of power spectral density 
which is inverselj- proportional to the spectral frequency 
w/27r .  I t  has been sho1i.n that  if “flicker noise” frequency 
modulation is present on a signal froni a standard, some 
significant problems arise, such as the logarithmic di- 
vergence of the standard deviation of the frequency 
fluctuations as the number of samples taken increases, 
and also the inability to define precisely the time aver- 
age frequency. I t  thus becomes of special interest to 
determine I\-hether “flicker noise” is or is not present on 
the signal from a maser so that one might better evalu- 
a te  its quality as  a frequency standard. 

Throughout the paper, the paramount niathematical 
concern is the functional form of the equations with the 
hope of maintaining simplicity and of providing better 
understanding of the material to be covered. 

11. ~ I E T H O D S  EMPLOYED ~o MEAS[:I~E NOISE 
.4. Power Spectr i im and Variance Relat ionship 

The  average angular frequency Q,(t) of an oscillator 
(to distinguish i t  from spectral frequency w )  over a time 
interval 7 can be lvritten 

1 
W) = - [dl + 7) - ,#J(OI> (1) 

7 

\\-here 4 is the phase angle in radians. Now the variance 
of the frequency deviations is the square of the standard 
deviation g. Define the time average of a function as  

( f ( t ) )  = lim - s ‘ ‘ ‘ , f ( t )  dt .  
T - r m  T - - T i 2  

221 
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One ma) ,  therefore, write the square of the standard 
deviation as follows: 

u? = { % ( / ) 2 )  - (Q, ( t )Y .  (3  ) 

One may assume u i th  no loss of generality that  the 
second term in (3) can be set equal to zero by a proper 
translation, since i t  is the square of the time average 
frequency. Therefore, Q,(t) is non the frequency devia- 
tion from the average value, and 4(t) the integrally 
related phase deviation. 

Substituting (1) into (3) gives 
, 

The time average of r $ ( f + ~ )  .r$(t) is the autocovariance 
function of the phase-denoted 1 2 , ( ~ ) .  One is justified 
in assuming that  a time translation has no effect on the 
autocovariance function [l],  therefore [4], 

2 
u? = - 

7 2  
[R4(O) - W7)l. ( 5 )  

I t  is now possible to  relate the variance of the squared 
frequency deviations t o  the power spectral density bl, 
use of the Wiener-Khinchin Theorem, which states t ha t  
the autocovariance function of the phase is equal to  the 
Fourier transforin (F.T.) of the power spectral densit! 
of the phase S4(w). The power spectral density of the 
frequency is related to this by the useful equation 

&(a) = W2S$(W). 

)lost of the discussion that  follows is based on the 
restriction 

S&) = h I W I " .  (6) 

Tha t  a singular t\  pe of poi\ er spectrum predominates 
over a reasonable range of w has been verified experi- 
mentally. The region of interest for a is - 3  <a< - 1, 
and a = 0 .  This covers white noise phase modulation 
(S,(w) = h ) ,  "flicker noise" frequency modulation 
(S,(w) = h Iw and includes, of course, white noise 
frequency modulation (S; (w)  = h ) .  Fortunately, the 
I;ourier transforms of functions of the above form [3]  
have been tabulated, and the follon-ing transforms can 
be established : 

F.T. 1 o ( a  = a'(Ly). I r j-a-1 for Ly z 0 or not an integer 

F.T. I w I-' = 6 ( ~ )  

F.?'. I w I-3 = a ' ( - 2 ) .  1 7 '  (7) 

11 here a' is an a dependent coefficient. A useful substitu- 
tion is the following [ l ] .  

U(7)  = 2[R,(O) - R4(r)1. (8) 

Because of finite S J  stem bandividths, w I j ,  a better rep- 
resentation of U(7)  is obtained by replacing R,(O) with 
IZ,il :wn) (see Appendix). If the sample time T is large 
compared to the reciprocal system bandwidth 1 lar3, 
then R$(l/u&) is negligible compared to  11,(7) in the 

region where - 2 < p < O ( - l > a >  -3). K 4 ( l l o s )  be- 
comes the larger term, how-ever, in the region of 
-1 <a<O, and if  one assumes (wnr)u+l>>l, then li,(r) 
is neglectable (see Appendix). The  following equations 
for U(r )  may, therefore, be written : 

The standard deviation squared may, therefore, be 
written : 

where p =  -a-3. 
A ( p )  has a small dependence on UTj, implicit within the 

previous assumptions. Considering the results of ( lo ) ,  
the Appendix, and that  to be discussed in Section 11-D 
on "flicker noise" modulation (a= - 1,  - 3 ) ,  an in- 
formative graph of p into a may be established as il- 
lustrated below. 
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“flicker noise” and long-term frequency fluctuations in 
general. On the other hand, if one uses the period count- 
ing technique for data acquisition, the following form 
of analysis is useful. I t  also may be cast in a form where 
one may use the finite difference technique. 

Data  are often obtained with one counter measuring 
the frequency or the period of the beat note between two 
oscillators with a dead-time between counts.‘ The con- 
cern of Section I1 is with the dead-time being zero, but  
it is convenient to develop the general case for which 
the dead-time is nonzero for use in Section 111, and 
specialize this to  the continuous sampling case for which 
the dead-time is zero, which is the case of interest i n  
this section. 

Let 1’ be the period of sampling, T the sample time, 
and iV the number of samples. The standard deviation, 
r ( N ,  T ,  T ) ,  of the frequency fluctuations2 may, therefore, 
be written as: 

nT + 7) - +(nT) 
{Y[“ 7 -1 

- _  A i  2 -I2j 3 (11) 

1 
~’((s, T ,  7) = ____ 

117 - 1 n=O 

1 N--l +(nT + 7) - +(nT) 

Taking the expectation value of a 2 ( N ,  T ,  7) and making 
the substitution given in (8) yields 

1 
{ u 2 ( N ,  T ,  T)} = - U ( 7 )  + 

72 { N ( N  - 1) 
N - 1  

(Jr -n)[2U(nT)-  U ( ~ T + T ) -  C ( n T - r ) ] }  . (12) 

If the dead-time were zero, then T = T ,  and (12) becomes 

n=O 

11 1 
(O“N,  7)) = [ N U ( . )  - N 

(1V - 1)72 

Remembering that  p =  -a-3 and substituting (9) into 
(13) gives 

which establishes the interesting result of the depen- 
dence of the expectation value of the standard devia- 
tion of the frequency fluctuations on the number of 
samples, the sample time, and the power spectral den- 
sity. I t  will be noted that  

(d( w , 7) )  = a(j4) 1 7 IF; - 2  < j4 < 0 (15) 

in agreement with (10). 

See L. S. Cutler and C .  L. Searle, “Some aspects of the theory 
and measurement of frequency fluctuations in frequency standards, ” 
this issue, page 136. This paper shows that the fluctuations AT in 
the period T are a good approximation to the frequency fluctuations 
if AT>>T. 

Note that this u ( N ,  T, 7 )  is not the same as the u in ( 3 ) - ( S ) ,  and 
(10). u(N, T ,  T )  is over a finite number of data samples N and, to 
avoid confusion, the variable N will always be used with u in the 
finite sampling case as in (11). 

By keeping N constant and assuniing p to be constant 
over several different values of T ,  it  may be seen that  the 
value of p is the slope on a log-log plot of (rr2(N, 7) )  vs. 
T .  This provides a means of determining the power 
spectral density simply by varying the saniple time over 
the region of interest [4]. 

I t  is informative to look a t  the family of curves ob- 
tained from a plot of the dependence of (u2(N,  .)) as a 
function of N for various pertinent values of p to see hotv 
i t  approaches (d( m ,  7)). The  family of curves is shown in 
Fig. 1. One may notice that  the convergence is much 
faster in the region between white noise frequency 
modulation and white noise phase modulation than 
between white noise frequency modulation and “flicker 
noise” frequency n~odu ia t ion .~  In fact, as p - 4 ,  the 
ratio approaches zero, and one would conjecture that  the 

lim (u2((iV, 7)) 

is infinite in the presence of “flicker noise” frequency 
modulation-a result proven by J.  A. Barnes et  al. [l].  

N-.  m 

r ’  -1 

, 7 
- 

0 I I I I I  I 1 I I I , , I 1  I I I 1 I 1 8 1 1  
I I, * 102 1 ? il>J 

N IT*L NUUBEP OF I l V P L E S I  

Fig. 1. A plot showing the dependence of the staudard deviation of 
the frequency fluctuation on the number of samples and the type 
of noise present. 

The  data  points plotted in Fig. 1 were extracted from 
a cesium beam-cesium beam comparison analyzed else- 
where [l], and exhibit in this new formulation a type of 
frequency modulation proportional to  Iw 1 - 1 / 3 ,  giving 
confirmation to this strange type of power spectral 
density. 

I t  is possible to  utilize the dependence of the standard 
deviation on the number of samples to determine a 
value of p by considering a function which takes into 
account the extreme values of N obtainable from a 
finite set of data ,  namely,4 

3 To see that p=O corresponds to ‘‘flicker noise” see Section 11-11. * I t  will be noted that  the T dependence cancels i n  the expression 
for x and hence i t  is N and p dependent only. I n  the table and 
graphs, the T dependence is not shown and is, therefore, suppressed 
since the p dependence is the thing emphasized. 
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-0.1 1.288 
-0.2 1.217 
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1.928 
1.753 

Tabulated values of this function are given i n  Table I ,  
and a plot of x(iV, p )  as  a function of p for various values 
of N is given in Fig. 2.  I t  may be noted that  the function 
is most sensitive in the region betn een “flicker noise” 
frequency modulation p = 0 and 11 hite noise frecluenc>r 
modulation p = - 1-one of basic interest. In practice, 
the table and graph have proven very useful. x( = ,  p )  
is plotted for comparison and computationnl purposes. 

Note that  x( 30, 0) = ZC.  In the development thus far, 

2.167 2.332 2.660 -0.3 1.208 
-0 .4  1 1.171 

1.369 
1.249 
1.150 
1.068 

1.122 
1.278 
1.165 
1.074 

1 .601  
1.475 
1.365 
1.270 
1.188 
1.116 
1 .os4 
1 .000 
0.952 
0.910 
0.873 
0.841 
0.812 
0 786 
0.763 
0.71.3 
0 . 7 2 1  
0,708 

-0.9 
-1.0 
-1 .1  
-1 .2  
-1 .3  
-1 .4 
-1 .5 
-1.6 
-1 .7 

3.018 
2. 580 
2 . 2 1 5  

1.023 
1.000 
0.977 
0.956 
0.937 
0.919 
0.902 
0.886 
0.871 

1.928 

0.912 
0.893 
0.851 
0.815 
0.784 

0.938 
0.887 
0.811 
0.807 
0.776 

1.700 1.817 1 1.517 1 1.606 
1.937 
1.655 
1.447 
1.291 
1.171 
1.076 
1.000 
0.937 
0.886 
0.812 
0.805 
0.774 
0.716 
0 ,723  
0 702 
0.683 
0.667 

2.062 
1.705 
1.467 
1.299 
1.174 
1.076 
1.000 
0.937 
0.886 
0.812 
0.804 
0 7 7 3  
0.745 
0.721 
0,701 
0 682 
0.667 

Fig. 2. :\ plot eiiabliiig one to espcriiiietit;tll~ extract the statistics 
of ai1 oscillator by knowing the  staticlard deviation for iV samples 
and for two samples using S;(w)=h;wl-”-’ except at p =  -2. 

no consideration has been given to the experimental 
fact that  there must exist a lower cutoff frequency that  
keeps the functions considered from going to infinit,., 
corresponding to certain types of noise, such as “flicker 
noise.” The value of the cutoff frequent)- is not im- 
portant other than to say that the functions considered 
are valid for times up to the order of l i(w cutoff). This 
time is apparently more than a 3 ear for quartz crystal 
oscillators [SI. If “flicker noise” is present in solile 
atomic frequtnc,. standards, the value of l/(u cutoff) is 
probnbl>r less than for quartz cr) s t J  oscillators for rea- 
sons discussed later, and i f  “flicker noise” is not present, 
infinities do not occur in the functions considered for 
most other types of pertinent noise and hcrice there is 
no concern. 

C. Non-Adjacent Sampling of Data 
The next consideration is to determine the effect of 

counter dead-time on one’s ability to deduce the statis- 
tics of an oscillator using the techniques developed in 
Section 11-B. This form of data  acquisition is one of the 
most common, and hence merits attention. 

I t  vas  shown ea-lier that  (12) is applicable to the 
present case, and i f  (9) is substituted into (1 2 ) ,  with the 
assignment that  r =  T / T  (the ratio of the period of 
sampling to the sample time), then 

(u2(- i7 ,  T ,  T ) )  

A n  important result from (1 7 )  is that  if A‘ and r are held 
constant, i t  is still possible to determine the value of p 
b). varying T .  Therefore, the relationship bet\veen the 
poiver spectral density and the standard devi,rtion has 
the same form as for the continuous sampling case. 
Additional insight may be obtained by considering 
some special cases. If p =  -1, (S;(w) = h j  [SI, the series 
in (17) goes to zero for all possible values of r and hence 

for white noise frequency  nodulation ; this is the same 
result obtained in the continuous data  sampling case. 
One notices tha t  (18) is independent of N as would be 
espected since the frequency fluctu a t’ ions are uncor- 
related. 

If p = -2 ,  the series in (17) again goes t o  zero for all 
values of r > 1. The value of CY is degenerate except t ha t  
one may say -1 <a. In this domain, the frequency 
fluctuations appear to be uncorrelated as long as the 
measurement dead-time is nonzero. Using the proper 
form of U(T) from (9) and substituting into (13) for the 
case urhere r =  1 (zero dead-time), gives: 

(U”(S, T ) )  = [u(a)  1 wg la+ylv + 1 ) / 1 \ 4 .  
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One, therefore, has the unusual result that  

where 

A slight N dependence then appears only in the con- 
tinuous sampling case. Experimentall)-, one can shon- 
that  the Kronecker &function is replaced by R4(r-  1) 
/X,(O) because of the finite bandwidths involved. 

I t  will be recalled that  the curves in Figs. 1 and 2 are 
for r = 1 (the dead-time equal zero). The results of (19) 
show a character change in the curves for r > l  and 
- 2 < p  < - 1, for now the curve for p = - 2 is coincident 
with the curve for p =  -1 in Fig. 1 and x ( N ,  -2)  
= x ( N ,  -1) = 1 . O  in Fig. 2. No profound character 
change occurs for - 1 < p  < 0. 

I t  is possible to shou that  the series i n  (1 7) approaches 
zero as N approaches infinity for all values of r >  1 and 
p <0, hence {uz(A’, T ,  7)) has the same asymptotic value 
as for the continuous sampling technique, independent 
of the counter dead-time. 

I f  a binomial expansion is made of the second tn.0 
terms in the series expression of (17), and fourth-order 
terms and higher in l i n r  are neglected, the following 
simplification occurs: 

(u2((iV, T ,  T )  

On the first observation of (20), one may notice that  
as r becomes large, the standard deviation approaches 
its asymptotic value, This occurs lvhen one is taking 
samples much shorter than the capable reset time of the 
counter. The dependence on N is, therefore, reduced as  
7’. In fact, i t  has been determined by a computer 
analysis of (17) that  the net effect of increasing the dead- 
time is to  collapse the curves in Figs. 1 and 2 towards the 
unit axis. 

D. T h e  “Flicker Noise” Problem 

The existence of “flicker noise” frequency modulation 
on the signal of quartz crystal oxcillators has caused 
difficulty in handling such quantities as the auto- 
covariance function of the phase and the standard devia- 
tion of the frequency fluctuations. As mentioned previ- 
ously, the development by J. A. Barnes [ l ]  makes it 
possible to  classify “flicker noise” frequency modula- 
tion without any divergence difficulties or dependence 
on the value of the low-frequency cutoff. 

Some of the other difficulties associated with the 
presence of “flicker noise” frequency modulation, as 
Barnes has shown, are illustrated in the following 
equations: 

and 

The fact that  the standard deviation diverges 11 ith M, n s  
shown in (21), is a n  annoyance, aside from the fact th,it 
it becomes more difficult to \s.rite specifications on the 
frequency fluctuations of an oscillator. The  limit ex- 
pressed in (22 )  does not exist or is dependent on the lon - 
frequency cutoff; this, of course, affords difficulty i n  
defining a frequency, and \\-auld be an unfortunate 
property to be present in a frequency standard. X s  has 
been stated previously for a l l  values of p considered thus 
far, - 2  < p < O ,  the limit a s  N approaches infinity of 
(a?(” T) ’) exists; and as  the sampling time increases, 
(a?(N, T)) converges tou ard zero or perfect precision 

Data have been analyzed that  indicate the presence of 
“flicker noise” frequency modulation on the signals 
from rubidium gas cell frequency standards. I t  is of con- 
cern to determine i f  this type of noise is present on the 
signals of other atomic frequenc~ standards, and specifi- 
cally masers. I t  is not the intent to determine the source 
or sources of “flicker noise,” as  this is a ponderous prob- 
lem in and of itself, but  perhaps only infer where such 
noise might arise. 

Consider, nou ,  ways to establish the presence of 
“flicker noise.” If the data  nere  on a continuous basis, 
the method of finite differences [ l ]  developed by Barnes 
n.ould be very useful. One ma: also notice from (21) 
that  if Nis held constant, the value of ,u is zero for values 
of T in  the “flicker noise” frequency modulation region. 
If data  mere taken by the coninion technique of non- 
adjacent samples, the folloib ing considerations are of 
value. 

For “flicker noise” frequency modulation, D’(T) takes 
on a different form as  a result of the divergence of the 
autocovariance function of the phase [ l ] ,  

The  constant k is dependent on the quality of the oscil- 
lator. If (23) is substituted into (12), letting p-0 (p=O 
corresponds to  “flicker noise”), an indeterminate form 
results for (a2(N, 7’, T ) ) .  Applying L’Hospital’s Rule, 
and then passing to the limit, gives the following equa- 
tion : 

Hence, for a fixed ratio r = T/T, and a determined num- 
ber of samples N ,  the standard deviation is constant, 
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independent of 7. So for both ,idjacent and nonadjacent 
data s‘impling, the value of pis  zero. One mal , therefore, 
determine if “flicker noise” frequencb modulation is 
present on <i signd sanipled in <i nonadjacent fashion, 
subject to the above constr ints .  
X considerntion of interest a t  this point is “flicker 

noise” phase modulation (SQ(w)  = k /w 1-0. One can shov 
from the nork of J. A. Harnes5 th,it the v,ilue of the 
function U(7) for a= - 1 is 

[ ’ ( T )  Ah(2 + 111 T W H ) ,  

Tan >> 1, (25) 

\\here oII is the s ~ s t e n i  h i i d \ \  idth. Substituting (25) 
into (13) yields the follo\\ing: 

a = - 1 ,  T W B  >> 1. (26) 

One thus obtains the sonien.hat unfortunate result that  
experimentally i t  would be unlikely t h a t  one could 
distinguish between “flicker noise” phase modulation 
and any other noise \\-ith - 1 <a up to and including 
white noise frequency modulation using the depen- 
dence of (g2(iV, T ,  7)) on 7, since p ~ v - 2  in this range. 
However, one might be able to infer from the experi- 
mental setup Lvhich of the two types of noise \\-as being 
observed. If this \\-ere not possible, one \\-auld be forced 
to determine the type of noise present by some other 
technique, such as the one eniployed by \‘essot in which 
he varies w B . ~  

If the number of samples AT, and the ratio of the 
period of sampling to  the sample time r,  are held con- 
stant,  the following general equation can be written for 
both adjacent and nonadjacent sampling of data:  

( c T ~ ( ~ ,  T ,  7)) = K(-V , r )  I 7- I#. ( 2 7 )  

lJsing (27)  and (6), (S+(w) =hl wl a), coupled with t h e  re- 
sults established thus far, one is no\\- able to extract the 
poner spectral density from the dependence of the 
standard deviation on sample time for values of p 
ranging from - 2  < p < O .  All of the results have there- 
fore been obtained to  make the previous mapping of p 
into a for finite data  sampling. 

111. ATOMI(‘ 1:RI:Qt-KXCY ST.\ND.iKI>S 

.I. Passive 21 tomic Standards 

Devices such as  atomic beam nixhines and rubidium 
gas cells have been made to generate inipressivel!. stable 
frequencies [ 7 ] ,  [ 8 ] .  I n  October, 1964, the appropriately 
authorized International Committee of byeights ,ind 
Jleasures adopted a s  ;I provisional definition for the 

See Barnes \ I ] ,  eqiirition (74) ,  page 219. 
R. Vessot, L. iMrieller, and J.  \’aiiier, “The speciticntioir of  oscil- 

lator .characteristics from me;isuremeiits made i n  the  frequenry 
dornaiii,” this issue, page 199. (Also see A4ppendix. ) 

measurenient of time, the transition betxveen the I;= 4, 
m p  = 0 and F = 3, mF = O  hJ-perfine levels of the ground 
state ?Sl,Z of the atom of cesium 133, unperturbed l q .  
external fields, \vith the assigned frequency for the 
transition of 9 102 631 750 H z .  The cesium beam a t  
SRS has also been established as the Irnited States Fre- 
quency Standard. The  analysis of the theory of opera- 
tion of these cl~iaiituni devices has been covered i n  i i i a r i ~ .  

publications [ 7 ] ,  [8], along ivith the niethods of slave- 
locking an  oscillator to a given transition [8]. An anal).- 
sis of the noise that  should he present in  an oscillator 
servoed to  an atomic transition has been niade b,. 
Kartaschoff [9], Cutler 161, and others. The author de- 
sires to reiterate a t  this point some of the results of these 
analyses: the frequency should appear Lvhite noise 
modulated ; therefore, the phase fluctuations n i l 1  go as 
the random v d k  phenomena, and hence the mean 
square time error in a clock running from one of these 
frequency standards tvould be proportional to the 
running time. Barnes [ l]  has also shown that  

((A”)”, - ((6QZ), ( 2 8 )  

\\-here A3 denotes the 3rd finite difference and 6t  the 
clock error time for a running time t ,  and also that  

((AS+)Z) - I TI’+? - 2  < p 5 0. (29) 

The results from conihining (28) and (29) are obvious. 
but still very iniportant, i .e.,  i f  either the po\ver spec- 
truni or the dependence of (g2) on the sample time is 
knoum, one ma). then determine the rate of time diver- 
gence and conversely [see ( 7 )  and lo ) ] ,  

( ( 8 f ) Z )  - 1 7 p; - 2  < p _< 0. (30) 

An example of the above is illustrated by the follow- 
ing: if in fact “flicker noise” frequency modulation is 
present on the signal of rubidium gas cells, and if one 
assumes the rnis time errors were equal on clocks driven 
by a rubidium gas cell and a cesium beam of theoretical 
form a t  $ of a day-say, for exaniple, 0.1 niicrosecond- 
then the accumulated rms time error after 1 year would 
be of the order of 100 microseconds for the rubidium 
cell and 3 microseconds for the cesium beam. 

B. Masers 
Masers, in contrast to the passive atomic devices 

discussed in Section 111-A, m a y  be used as quantum 
mechanical oscillators [ lo] .  Since the sources of “flicker 
noise” frequency modulation could arise froin 11ian~. 
different mechanisms, the suggestion exists that  per- 
haps the active character of nidsers could be influenced 
b> one of these mechanisms. RIost of the basic experi- 
mental research associated with this paper and per- 
formed by the author has  been to determine if  the ,ibove 
suggestion is valid or not, ,ind specifically to determine 
the type or t>.pes of noise present on the signals froiii 

masers. 
One S15H3 iiiaser has been i n  operation a t  NBS for 
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several years. I t  is desirable to compare similar atomic 
devices i n  looking a t  noise, so another N15H3 maser was 
put into operation for direct comparison purposes. 
Lf’orth considering a t  this time is the basic operation of a 
niaser so that arguments made later on will be under- 
standable. 

‘Three basic elements of a maser are the source, the en- 
ergy-state selector, and the resonant cavity. A needle 
valve and a colliniating nozzle are coupled to the source 
to  provide 21 highly directed beam of N15HR domm the 
axis of the four-pole focusers. ’The four-pole focusers are 
the energy-state selectors and consist of four electrodes 
with alternate high voltages so t ha t  on-axis (in line with 
the resonant cavity) the electric field is zero, but slightl3- 
off-axis the field is large and increases as  the distance off 
axis. Because ammonia has an induced electric dipole 
moment, an interaction occurs as  i t  enters this electric 
field region, and as  it has been shown [lo] the low en- 
ergy states of the inversion levels of ammonia are de- 
focused 1% hile the high energy states are focused on axis 
and into the resonant cavity. Therefore, if  a noise com- 
ponent of the proper frequency is present and the 
ammonia beam flux is sufficient, a regenerative process 
will take place in which a high energy-state molecule 
will decay and radiate a quantum of energy “hv” causing 
the field to increase in the cavity and hence inducing 
other molecules to undergo the transition, etc. The  
radiation may be coupled off with a waveguide and then, 
with an appropriate detection scheme, one may observe 
the maser oscillations a t  a frequency v where, neglecting 
any  frequency pulling effects, v is approximately 
2 2  789 421 700 H z  for N15H3. 

There are many parameters that  affect the output fre- 
quency of an ammonia maser. I t  is from these parame- 
ters that  one nia) expect correlation of frequency 
fluctuations over long times such as  exist for “flicker 
noise” frequency modulation. T o  see the mechanism, 
consider the fundamental pulling equation [ lo]  

tc  here vi) is the unperturbed transition frequency, v the 
niciser output frequent) , Av, the transition line width, 
Av, the cavity bnndkvidth, v c  the cavity’s frequency, and 
H is ‘i term involving the basic parameters such as  
minionia beam flux, the voltage on the state selectors, 
,tnd the magnetic and electric field intensities inside the 
cavity. l l o s t  of the qu‘mtities in (31) are dependent on 
temperature either directly or through the coupling 
electronics. Some of the quantities in (31) are dependent 
on the maser’s alignment affording another mechanism 
for correlation of the long-term frequency fluctuations. 

As described i n  detail elsewhere [ l l ] ,  it is possible to 
construct an electronic servo that  will tune the resonant 
frequency of the cavitj. to  that  of the aniinonia transi- 
tion frequency (v, ,=v,) .  The  tuning is not perfect he- 
cause of the noise present. The  effect this has, as can be 

seen from (31), is profound, greatly reducing the effect 
of the basic paranieters and almost entirelj? eliminating 
cavity dimensional instability. ’The correlation now 
existing in the long term frequency fluctuations mal’ 
\vel1 be expected to be masked out by other noise in the 
system . 

Since the servomechariisni is of the frequency lock 
type, and if  the noise in the servo is nhi te  over some 
finite bandwidth, then the fluctuations on the output 
frequency would be white inasiiiuch ;IS they were caused 
bj. the servo. This is the same as for passive atomic 
devices-a result not altogether unexpected. 

Iv. EXPEKIMISNTS PEKFOKMED 

-4. N’5Ha Maser  Comparison 
Two N’jH3 masers were compared by- the following 

technique. Each maser has coupled onto its output wave- 
guide a balanced crystal detector and onto each detector 
a 30 YIHz IF amplifier. Since the frequency of the inver- 
sion transition in NI5H3 is about 22 790 MHz,  a local 
oscillator signal at 22 760 MHz is inserted into each re- 
maining leg of the balanced crystal detectors. The  30 
M H z  beat frequencies resulting from the output of the 
IF amplifiers are then compared in a balanced mixer and 
its audio output is analyzed; the bandwidth of this 
mixer is about 20 kHz. The frequency of the audio 
signal can be adjusted to a reasonable value by offset 
tuning the cavity of one of the masers. The period of this 
audio signal is determined lvith a counter; the data  are 
punched on paper tape for computer analysis. I he coni- 
puter determines the average value of the fractional 
standard deviation u, along with its confidence limit for 
pertinent discrete values of the sampling time 7. 

In all of the maser data  taken it was necessary to sub- 
tract out a systematic but well-understood linear drift- 
due to ;L change of the amnionia beam flux in the SL5H:j 
maser and due to cavity dimensional drift from changing 
temperature in the case of the t l  maser. This \vas ac- 
complished by the method of least squares [ 1 2 ] .  The  
ability to change the number of samples N was also 
built into the computer program. 

A plot of the computer output for some of the data  
analyzed in the S15H3 maser comparison is shown in 
Fig. 4. The output frequencies of the masers were not 
servo-controlled for these data.  The slope is very nearl). 
that  of white noise frequent!, modulation. I t  n-ill be 
noted that  for a time of one second, the fractional 
standard deviation of the frequency fluctuations is less 
than 2 x lo-’*. 

B. Cesiidrn Beam, J laser ,  Quartz Oscillator Intercompar- 
isons 

Many comparisons were made between all the differ- 
ent types of atomic devices made available in the 
,4toniic Frequency- and Time Standards Section of NHS. 
1‘Iost of the comparisons \vere made a t  5 A l l  Iz by mea- 
suring the period of the beat frequency with a counter, 
and the resulting data  Ivere processed by a computer. 

I .  
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Fig. 3.  Block diagram of maser cavity servo system. 
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Fig. 6 Cesium beam (NBS I I I ) ,  quart7 cr>5tal oscillator coiiipari- 
son;  standard deviation of the frequencq fluctuations as a func- 
tion of sampling time. 

SAMPLE TIME IN S E f O N G S  

Fig. 7 .  Cesium beam (NBS I I I ) ,  hydrogen maser comparison; 
standard deviation of the frequency fluctuations as a function of 
sampling time. 
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The bandLvidth of the 5 4IMz mixer that  produces the 
beat frequency \cas about 33 Hz. 

A comparison 11 ‘LS made betxveen the double beam 
N15H3 miser u i th  the cavitj  servo in operation as 
illustrated in Fig. 3, and the ABS 111 cesium beam. 
A 5 AIHz qucirtL crjstal  oscillator of good spectral 
purit j  \\as phase locked 11) ‘L double heterodyne tech- 
nique to the output frecluencj of the maser, and this 
oscil1,itor \\ <LS compared \\ ith <L high clualit) quartz 
cryst‘il oscillator that  I\ <ts frequent), locked to S B S  111. 
.A plot of the d a h  is shoitn in  l?g. 5 .  The noise is un- 
doubtedl) th,it of the n i a e r  cavitx servo system, and 
though it exhibits verj  nearlj its theoretical value of 
p =  - 1 for 15 hite noise frequenc) modulation, the noise 
level ‘L\ i l l  be seen to be \I ell over an order of magnitude 
11 ig her than for the free -r u n n i ng i n  aser 

’The free-running, single beam, S15H3 nidser \ \as coni- 
pared \+ ith S B S  111 on a longer time b,rsis and indicated 
the presence of “flicker noise” frequencj modulation. 
There \\‘IS indicated fair amount of uncert,iintJ to t h e  
d,ita, hou ever. 

In Fig. 6 one sees a verj’ interesting plot in the coni- 
jxrison of the UBS I I I cesium becum \\ ith a very high 
qu.ilit) quartz cr j  stal oscillator. ’The comparison \vas 
q ‘ i i n  made a t  5 I‘IHz <is indic,ited above. The first part  
of the curve shons the vhi te  noise frequency modula- 
tion in the cesium beam servo system, and then the 
curve changes slope indicating the presence of “flicker 
noise” frequency nioduLition as is typicall) exhibited 
b j  quartz cr) stal oscillators. This sho\vs experimentall) 
the theoretical result discussed previouslJ , that  one 
ma) have quite a high level of n hite noise in a system 
and eventually the s? stem \ \ i l l  be better than one \\ ith 
“flicker noise” frequency 111 od u lation. 

An extended comparison v a s  made (58 hours) be- 
t13een the I I  maser, YBS 111 cesium beam, a rubidium 
gas cell, and a quartz crystal oscillator. Some of the data  
are still to be analjzed, but sonie interesting and im- 
pressive results have been obtained thus far. Figure 7 
shons the anallsis of sonie of the data  obtained from 
the FI maser, cesiuni beam ( S H S  111) comparison 
White noise frequency modulation is exhibited for 
sarnplirig times extending to  4 hours \I i t h  the ver)’ 
impressive standard deviation of -6X for T = 4  
hours. “I<.licker noise” frequenc) niodulation 11 as  ob- 
served on both the rubidium gas cell and on the quartz 
cr j  stal oscillator in this coniparison 

1’. CC)NCLI-SIOP\‘S 

LAn invariant quality factor of a frequency standard 
having definite esthetic value would be the infinite time 
average, standard deviation of the frequenc) fluctua- 
tions. Froin the theoretical development a least biased 
estimate of this factor may be established in terms of the 
expectation value of the standard deviation for anj- 
finite number of samples: 

u2 also has the desirable feature of being dependent on 
onl). one variable, T, except for p =  -2 ,  where i t  is also 
necessary to specify wR, the system bandwidth. Equa- 
tion (32) is valid for all t>.pes of noise betiveen and in- 
cluding “flicker noise” frequency modulntion and white 
noise phase modulation (-3 <a<O). Ilowever, if 
01 = - 3, some other means of specification need be ein- 
plo).ed, such as Barnes’ [ l ]  finite difference technique or 
(a2(2, 7 )  ) ivhich, interestinglj., is equal to ( ( A 2 4 ) 2 ) / 2 ~ 2  
(Az denotes the second finite difference). 

“Flicker noise” frequency modulation was not ob- 
served on the frequency fluctuations of the niaser type 
of atomic frequencj standard for any of the reliable 
data  obtained- the time coverage here being from about 
0.1 second to 4 hours. The presence of “flicker noise” 
was indicated for free-running masers (both H and 
Y5H3) in the long term range, though the data  were 
some\vhat unrelinble. This type of noise \\as eliminated 
in the case of the X15H.r maser 11) use of a cavity servo 
mechanism, and one might infer from the similarities 
i n  the ~iiasers t ha t  the same mould hold true for the 11 
in a se r . 

I t  is acknou ledged that  if ‘.flicker noise” is present on 
the frequencj. fluctuations of d free-running niaser for 
longer times, the loxver cutoff frequency might be 
greater than for quartz crystal oscillators- for indeed 
the iiiaser operator is himself a part  of a cavity servo 
lvhen he retunes the cavity or perhaps recoats the quartz 
bulb. 

The existence of “flicker noise!’ frequenc) niodulation 
on the frequenq- fluctuations of rubidiuhi gas cells is 
just another indication that  they ivould not at present 
inake a reliable priniary frequency standard. One c m -  
not conclude from the data  analyzed that  “flicker noise” 
is not present on nicisers-even if a cavitl servo is eni- 
plo) ed. Jt is possible, however, to determine a n  upper 
limit for the level of “flicker noise.” If G,(w) = k Iw 
then using (22), the upper limit of k can be determined 
from the niinimum value of u 2 ( N ,  T ) .  The value of k for 
S1jHa (determined from Fig. 4) is -7 X seconds-?. 
I t  is of interest to compare this with the value of h de- 
termined for the quartz crystal oscillator shown in Fig 
6- -8 x l O V 5  secondss2. Though comparable, i t  should 
be stated that  this oscillator is one of the best that  has 
been analyzed a t  SBS.  The upper limit on h for the H 
niaser, cesium beam (NBS 111) comparison shown in 
Fig. 7 is 42x10-27 seconds-2-being a factor of 350 
and 400 tinies better than the ?J15H3 niaser and quartz 
crystal oscillator, respectively. 

There are many a r e a  where additional data  analysis 
n ould be informative. I t  11 o d d  be very interesting to  
look a t  the behavior of the cesiuni beam, hydrogen 
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maser comparison, shown in Fig. 7 ,  for extended times. 
Another analysis of interest Lvould be that  of a cavity- 
servoed H maser. Such a servo system is under develop- 
ment for the NBS I-I maser. T o  then compare the cavity- 
servoed H maser with a cesium beam and its associated 
servo system lvould afford great insight into determining 
which of these competitive atomic standards should be 
primary. 

APPENDIX 

The general expression for the autocovariance func- 
tion for infinite bandwidth is: 

Rp(7) = a’(..) I 7 ( 3 3 )  

a f O ,  and not a n  integer, where 

7r(a + 1) 
a’(@) = 2 ( )]. r(a + 1). 

Physically, R,(O) is kept from diverging in the region 
- 1 <a because of finite system bandwidths, w & ;  i.e., for 
any E < 1 Iwu, R,(E) =X,(l/oe). A good approximation 
to  R,(O) in  this region is, therefore, X, ( l /wn) .  One may 
notice that  the variance of the frequency fluctuations 
diverges [see ( S ) ]  with increasing w B .  The  variance of 
the frequency fluctuations may, therefore, be written: 

(34) 

In the region - 3 <a < - 1, R,(O) is approxiniatelj- 
zero; and if / T W , ~ I  Ie+ll>>l, then the equations for U ( 7 )  
are as  written in (9). 

Consider now a finite number of data  samples N in  the 
domain where - 1 <a <0,  and ~ T W ~ (  a+l>>l. Using the 
appropriate form of U(7)  from (9) and substituting into 
(13) gives: 

where 

/ l = - f f - 3 .  

Hence, by keeping iV and 7wB constant, one can de- 
termine the value of p (of a )  on a log (u2(N, T ) )  vs. log T 

plot, thus eliminating the degeneracy in this region. 
Equation (35) may also be written: 

Hence, if AT and T are held constant and W B  is varied, the 

slope on a log-log plot of (u’(N, 7 ) )  vs. W B  would be 
a+ 1-affording another technique of determining the 
spectral density in this domain. 

I t  is of interest to note that the most sensitive 
parameters to  use in  arriving a t  the value of a are: 
the bandwidth, W B ,  if - 1 <a < O ;  the sample time T ,  if 
-2<c r<  -1; and the number of samples N ,  if 
-3<a<-2 .  
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