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Summary 
This paper is a review of frequency stability 

measurement techniques and of noise properties of 
frequency sources. 

First, a historical development of the utetul- 
ness of spectrum analysis and time domain measure- 
ments will be presented. Then the rationale will 
be stated for the use of the two-sample (Allan) 
variance rather than the classical variance. 
Next, a range of measurement procedures will be 
outlined with the trade-offs given for the various 
techniques employed. Methods of interpreting the 
measurement results will be given. In particular, 
the five commonly used noise models (white PM, 
flicker PM, white FM, flicker FM, and random walk 
FM) and their causes will be discussed. Methods 
of characterizing systematics will also be given. 
Confidence intervals on the various measures will 
be discussed. In addition, we will point out 
methods of improving this confidence interval for 
a fixed number of data points. 

Topics will be treated in conceptual detail. 
Only light (fundamental) mathematical treatment 
will be given. 

Although traditional concepts. will be de- 
tailed, two new topics will be introduced in this 
paper: (1) accuracy limitations of digital and 
computer-based analysis and (2) optimizing the 
results from a fixed set of input data. 

The final section will be devoted to funda- 
mental (physical) causes of noise in commonly used 
frequency standards. Also transforms from time to 
frequency domain and vice-versa will be given. 

%E$* 
Frequency stability; Oscillator noise 

Power law spectrum; Time-domain sta- 
bility; Frequency-domain stability: White noise; 
Flicker noise. 

Introduction 

Precision oscillators play an important role 

in high speed communications, navigation, space 

tracking, deep space probes and in numerous other 

important applications. In this paper, we will 

review some precision methods of measuring the 

frequency and frequency stability of precision 

oscillators. Development of topics does not rely 

heavily on mathematics. The equipment and set-up 

for stability measurements are outlined. Examples 

and typical results are presented. Physical 

interpretations of common noise processes are 

discussed. A table is provided by which typical 

frequency domain stability characteristics may be 

translated to time domain stability characteristics 

and vice-versa. 

1. THE SINE WAVE AN0 STABILITY 

A sine wave signal generator produces a 

voltage that changes in time in a sinusoidal way 

as shown in figure 1.1. The signal is an oscil- 

lating signal because the sine wave repeats itself. 

A cycle of the oscillation is produced in one 

period "T". The phase is the angle '%" within a 

cycle corresonding to a particular time "t". 

FIGURE 1.1 

It is convenient for us to express angles in 

radians rather than in units of degrees, and 

positive zero-crossings will occur at even mul- 

tiples of n-radians. The frequency "Y" is the 

number of cycles in one second, which is the 

reciprocal of period (seconds per cycle). The 

expression describing the voltage "V" out of a 

sine wave signal generator is given by V(t) = VP 

sin [a(t)] where VP is the peak voltage amplitude. 

Equivalent expressions are 

v(t) = Vpsin 
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and 

V(t) = Vp sin (27tvt). 

Consider figure 1.2. Let's assume mat the maximum 

value of "V" equals 1, hence "VP" = 1. We say 

that the voltage "V(t)" is normelired to unity. 

If we know the frequency of a signal and if the 

signal is a sine wave, then we can determine the -- 

incremental change in the period "T" (denoted by 

At) at a particular angle of phase. 

+t 

V 

-1 
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FIGURE 1.2 

Note that no matter how big or small At may be, we 

can determine AV. Let us look at this from another 

point of v.iew. Suppose we can measure AV and At. 

From this, there is a sine wave at a unique minimum 

frequency corresponding to the given AV and At. 

For infinitesimally small At, this frequency is 

called the instantaneous frequency at this t. The 

smaller the interval At, the better the approxi- 

mation of instantaneous frequency at t. 

When we speak of oscillators and the signals 

they produce, we recognize that an oscillator has 

some nominal frequency at which it operates. The 

"frequency stability" of an oscillator is a ten 

used to characterize the frequency fluctuations of 

the oscillator signal. There is no formal defini- 

tion for "frequency. stability". However, one 

usually refers to frequency stability when com- 

paring one oscillator with another. As we shall 

see later, we can define particular aspects of an 

osci 1 later's output then draw conclusions about 

its relative frequency stability. In general 

terms, 

"Frequency stability is the degree to which 

an oscillating signal produces the same value 

of frequency for any interval, At, throughout 

a specified period of time". 

Let's examine the two waveforms shown in 

figure 1.3. Frequency stability depends on the 

amount of time involved in a measurement. Of the 

two oscillating signals, it is evident that "2" is 

more stable than "1" from time t, to t, assuming 

the horizontal scales are linear in time. 

FIGURE 1.3 

From time tl to t,. there may be some question as 

to which of the two signals is more stable, but 

it's clear that from time t, to t,, signal "I" is 

at a different frequency from that in interval t, 

to t,. 

If we want an oscillator to produce a parti- 

cular frequency vo, then we're correct in stating 

that if the oscillator signal frequency deviates 

from v. over any interval, this is a result of 

something which is undesirable. In the design of 

an oscillator, it is important to consider the 

sources of mechanisms which degrade the oscil- 

lator's frequency stability. All undesirable 

mechanisms cause random (noise) or systematic 

processes to exist along with the sine wave signal 

of the oscillator. To account for the noise 

components at the output of a sine wave signal 

generator, we can express the output as 

v(t) = [V, + e(t)] sin [2nvCt + e(t)]. (1.1) 
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where V,, s nominal peak voltage amplitude, 

&(t) L deviation of amplitude from nominal, 

"0 I nominal fundamental frequency, 

e(t) H deviation of phase from nominal. 

Ideally "8" and "6" should equal zero for all 

time. However, in the real world there are no 

perfect oscillators. To determine the extent of 

the noise components "E" and "e", we shall turn 

our attention to measurement techniques. 

The typical precision oscillator, of course, 

has a very stable sinusoidal voltage output with a 

frequency v and a period of oscillation T, which 

is the reciprocal of the frequency (v = l/T). One 

goal is to measure the frequency and/or the fre- 

quency stability of the sinusoid. Instability is 

actuaily measured, but with little confusion it is 

often called stability in the literature. Natur- 

ally, fluctuations in frequency correspond to 

fluctuations in the period. Almost all frequency 

measurements, with very few exceptions, are mea- 

surements of phase or of the period fluctuations 

in an oscillator, not of frequency, even though 

the frequency may be the readout. As an example, 

most frequency counters sense the zero (or near 

zero) crossing of the sinusoidal voltage, which is 

the point at which the voltage is the most sensi- 

tive to phase fluctuations. 

One must also realize that any frequency 

measurement involves two oscillators. In some 

instances, one oscillator is in the counter. It 

is impossible to purely measure only one oscil- 

lator. In some instances one oscillator may be 

enough better than the other that the fluctuations 

measured may be considered essentially those of 

the latter. However, in general because frequency 

measurements are always dual, it is useful to 

define: 

"1 - "0 
Y (t)'=- 

V 
(1.2) 

0 

as the fractional frequency difference or deviation 

of oscillator one, vl, with respect to a reference 

oscillator v. divided by the nominal frequency vo. 

Now, y(t) is a dimensionless quantity and useful 

in describing oscillator and clock performance; 

e-g. , the time deviation, x(t), of an oscillator 

over a period of time t, is simply given by: 

x(t) = Jt y(t')dt' 
0 

(1.3) 

Since it is impossible to measure instantaneous 

frequency, any frequency or fractional frequency 

measurement always involves some sample time, 3t 

or "1''--some time window through which the oscil- 

lators are observed; whether it's a picosecond, a 

second, or a day, there is always some sample 

time. So when determining a fractional frequency, 

y(t), in fact what is happening is that the time 

deviation is being measured say starting at some 

time t and again at a later time, t + t. The 

difference in these two time deviations, divided 

by t gives the average fractional frequency over 

that period t: 

B(t) = 
x(t + T) - x(tl 

r (1.4) 

Tau, t, may be called the sample time or averaging 

time; e.g., it may be determined by the gate time 

of a counter. 

What happens in many cases is that one samples 

a number of cycles of an oscillation during the 

preset gate time of a counter; after the gate time 

has elapsed, the counter latches the value of the 

number of cycles so that it can be read out, 

printed, or stored in some other way. Then there 

is a delay time for such processing of the data 

before the counter arms and starts again on the 

next cycle of the oscillation. During the delay 

time (or process time), information is lost. We 

have chosen to call it dead time and in some 

instances it becomes a problem. Unfortunately for 

data processing in typical oscillators the effects 

of dead time often hurt most when it is the hardest 

to avoid. In other words, for times that are 

short compared to a second when it is very dif- 

ficult to avoid dead time, that is usually where 

dead time can make a significant difference in the 

data analysis. Typically for many oscillators, if 
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the sample time is long compared to a second, the 

dead time makes little difference in the data 

analysis, unless it is excessive. ' New equipment 

or techniques are now available which contribute 

zero or negligible dead time. 2 

In reality, of course, the sinusoidal output 

of an oscillator is not pure, but it contains 

noise fluctuations as well. This section deals 

with the measurement of these fluctuations to 

determine the quality of a precision signal source. 

We will describe five different methods of 

measuring the frequency fluctuations in precision 

oscillators. 

1.1 Common Methods of Measurinq Frequency Sta- 

bility 

A. Beat frequency method 

The first system is called a heterodyne 

frequency measuring method or beat frequency 

method. The signal from two independent oscil- 

lators are fed into -the two ports of a double 

balanced mixer as illustrated in figure 1.4. 

HETEROOYNE FREQUENCY 
MEASUREMENT METHOD 

FIGURE 1.4 

The difference frequency or the beat frequency, 

vb, is obtained as the output of a low pass filter 

which follows the mixer. This beat frequency is 

then amplified and fed to a frequency counter and 

printer or to some recording device. The frac- 

tional frequency is obtained by dividing vb by the 

nominal carrier frequency vo. This system has 

excellent precision; one can measure essentially 

all state-of-the-art oscillators. 

e. Dual mixer time difference (DTMD) system 

This system shows some significant promise and 

has just begun to be exploited. A block diagram is 

shown is figure 1.5. 

FIGURE 1.5 

To preface the remarks on the DMTD, it should be 

mentioned that if the time or the time fluctua- 

tions can be measured directly, an advantage is 

obtained over just measuring the frequency. The 

reason is that one can calculate the frequency 

from the time without dead time as well as know 

the time behavior. The reason, in the past, that 

frequency has not been inferred from the time (for 

sample times of the order of several seconds and 

shorter) is that the time difference between a 

pair of oscillators operating as clocks could not 

be measured with sufficient precision (commercially 

the best that is available is 1O-11 seconds). The 

system described in this section demonstrates a 

precision of lo-l3 seconds. Such precision opens 

the door to making time measurements as well as 

frequency and frequency stability measuements for 

sample times as short as a few milliseconds and 

longer, al 1 without dead time. 

In figure 1.5, oscillator 1 could be con- 

sidered under test and oscillator 2 could be 

considered the reference oscillator. These signals 

go to the ports of a pair of double balanced 

mixers. Another oscillator with separate symmetric 

buffered outputs is fed to the remaining other two 
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ports of the pair of double balanced mixers. This 

common oscillator's frequency is offset by a 

desired amount from the other two oscillators. 

Then two different beat frequencies come out of 

the two mixers as shown. These two beat frequen- 

cies will be out of phase by an amount proportional 

to the time difference between oscillator 1 and 

Z--excluding the differential phase shift that may 

be inserted. Further, the beat frequencies differ 

in frequency by an amount equal to the frequency 

difference between oscillators 1 and 2. 

This measurement technique is very useful 

where one has oscillator 1 and oscillator 2 on the 

same frequency. This is typical for atomic stan- 

dards (cesium, rubidium, and hydrogen frequency 

standards). 

Illustrated at the bottom of figure 1.5 is 

what might represent the beat frequencies out of 

the two mixers. A phase shifter may be inserted 

as illustrated to adjust the phase so that the two 

beat rates are nominally in phase; this adjustment 

sets up the nice condition that the noise of the 

common oscillator tends to cancel (for certain 

types of noise) when the time difference is deter- 

mined. After amplifying these beat signals, the 

start port of a time interval counter is triggered 

with the positive zero crossing of one beat and 

the stop port with the positive zero crossing of 

the other beat. Taking the time difference be- 

tween the zero crossings of these beat frequencies, 

one measures the time difference between oscillator 

1 and oscillator 2, but with a precision which has 

been amplified by the ratio of the carrier fre- 

quency to the beat frequency (over that normally 

achievable with this same time interval counter). 

The time difference x(i) for the ith measurement 

between oscillators 1 and 2 is given by eq (1.5). 

x(i) I at(r> - & + !L 
'b"o 0 “0 

(1.5) 

where At(i) is the ifh time difference as read on 

the counter, fb is the beat period, v. is the 

nominal carrier frequency, 0 is the phase delay in 

radians added to the signal of oscillator 1, and k 

is an integer to be determined in order to remove 

the cycle ambiguity. It is only important to know 

k if the absolute time difference is desired; for 

frequency and frequency stability measurements and 

for time fluctuation measurements, k may be assumed 

zero unless one goes through a cycle during a set 

of measurements. The fractional frequency can be 

derived in the normal way from the time fluctua- 

tions. 

yl ,(i, ~1 = . 1 

y(i, t) - v2(i, t) 
“0 

x(i + 1) - x(i 
K (1.6) 

f 1) - At(i 
Z 

tb "o 

In eqs (1.5) and (l-6), assumptions are made 

that the transfer (or common) oscillator is set at 

a lower frequency than oscillators 1 and 2, and 

that the voltage zero crossing of the beat v1 - vc 

starts and that vz - uc stops the time interval 

counter. The fractional frequency difference may 

be averaged over any integer multiple of rb: 

yl,2(ia mKb) = 
x(i + m) - x(i) 

mzb 
(1.7) 

where m is any positive integer. If needed, zb 

can be made to be very small by having very high 

beat frequencies. The transfer (or common) oscil- 

lator may be replaced with a low phase-noise 

frequency synthesizer, which derives its basic 

reference frequency from oscillator 2. In this 

set-up the nominal beat frequencies are simply 

given by the amount that the output frequency of 

the synthesizer is offset from vz. Sample times 

as short as a few milliseconds are easiliy ob- 

tained. Logging the data at such a rate can be a 

problem without special equipment. The latest NBS 

time scale measurement system is based on the OMTD 

and is yielding an excellent cost benefit ratio. 

C. Loose ohase lock loop method 

This first type of phase lock loop method is 

illustrated in figure 1.6. The signal from an 

oscillator under test is fed into one port of a 
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mixer. The signal from a reference oscillator is 

fed into the other port of this mixer. The signals 

are in quadrature, that is, they are 90 degrees out 

OUTPUT Of 
PlL FILTER 

FIGURE 1.6 

of phase so that the average voltage out of the 

mixer is nominally zero, and the instantaneous 

voltage fluctuations correspond to phase fluc- 

tuations rather than to amplitude fluctuations 

between the two signals. The mixer is a key 

element in the system. The advent of the Schottky 

barrier diode was a significant breakthrough in 

making low noise precision stability measurements. 

The output of this mixer is fed through a low pass 

filter and then amplified in a feedback loop, 

causing the voltage controlled oscillator (refer- 

ence) to be phase locked to the test oscillator. 

The attack time of the loop is adjusted such that 

a very loose phase lock (long time constant) 

condition exists. This is discussed later in 

section VIII. 

The attack time is the time it takes the 

servo system to make 70% of its ultimate correction 

after being slightly disturbed. The attack time 

is equal to l/nwh, where wh is the s4rvo bandwidth. 

If the attack time of the loop is about a second 

then the voltage fluctuations will be proportional 

to the phase fluctuations for sample tiaras shorter 

than the attack time. Depending on the coaffi- 

cient of the tuning capacitor and the quality of 

the oscillators involved, the amplification used 

may vary significantly but may typically range 

from 40 to 80 dB via a good low noisa amplifier. 

In turn this signal can be fed to a spccturm 

analyzer to measure the Fourier components of the 

phase fluctuations. This system of frequcncy- 

domain analysis is discussed in sections VIII to X. 

It is of particular us4 for sample times shorter 

than on4 s4cond (for Fourier frequencies greater 

than 1 Hz) in analyzing the characteristics of an 

oscillator. It is specifically very useful if one 

has discrete side bands such as 60Hz or detailed 

structure in the spectrum. How to characterize 

precision oscillators using this technique will be 

treated in detail later in section IX and XI. 

One may also take the output voltage from the 

above amplifier and feed it to an A/D converter. 

This digital output bacomes an extremely sensitive 

measure of the short term time or phase fluctua- 

tions between the two oscillators. Precisions of 

the order of a picosecond are easily achievable. 

D. Tight phase lock 1000 method 

The second type of phase lock loop method 

(shown in figure 1.7) is essentially the same as 

the first in figure 1.6 except that in this case 

the loop is in a tight phase lock condition; i.e., 

the attack time of the loop should be of the order 

of a few milliseconds. In such a case, the phase 

fluctuations are being integrated so that the 

voltage output is proportional to the frequency 

TIGHT PHASE.LOCK LOOP 
METHOD OF MEASURlN6 
FREUUENCY STABILITY 

FIGURE 1.7 

fluctuations between the two oscillators and is no 

longer proportional to the phase fluctuations for 

sample times longer than the attack time of the 

loop. A bias box is used to adjust the voltage on 

the varicap to a tuning point that is fairly 

linear and of a reasonable value. The voltage 
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fluctuations prior to the bias box (biased slightly 

away from zero) may be fed to a voltage to fre- 

quency converter which in turn is fed to a fre- 

quency counter where one may read out the frequency 

fluctuations with great amplification of the 

instabilities between this pair of oscillators. 

The frequency counter data are logged with a data 

logging device. The coefficient of the varicap 

and the coefficient of the voltage to frequency 

converter are used to determine the fractional 

frequency fluctuations, yi, between the oscil- 

lators, where i denotes the f th measurement as 

shown in figure 1.7. It is not difficult to 

achieve a sensitivity of a part in 10" per HZ 

resolution of the frequency counter, so one has 

excellent precision capabilities with this system. 

E. Time difference method 

The last measurement method we will illustrate 

is very commonly used, but typically does not have 

the measurement precision more readily available 

in the first four methods illustrated above. This 

method is called the time difference method. and 

is shown in figure 1.8. Because of the wide 

conversion, or multiplication factors. Caution 

should be exercised in using this technique even 

if adequate measurement precision is available 

because it is not uncommon to have significant 

instabilities in the frequency dividers shown in 

figure 1.8--of the order of several nanoseconds. 

The technology exists to build better frequency 

dividers than are cosssonly available, but manufac- 

turers have not yet availed themselves of state-of- 

the-art techniques in a cost beneficial manner. A 

trick to by-pass divider problems is to feed the 

oscillator signals directly into the time interval 

counter end’observe the zero voltage crossing into 

a well matched impedance. (In fact, in all of the 

above methods one needs to pay attention to impe- 

dance matching, cable lengths and types, and con- 

nectors). The divided signal can be used to 

resolve cycle ambiguity of the carrier, otherwise 

the carrier phase at zero volts may be used as the 

time reference. The slope of the signal at zero 

volts is 2nVp/t1, where t1 = l/u, (the period of 

oscillation). For VP = 1 volt and a 5 MHz signal, 

this slope is 3m volts/ns, which is a very good 

sensitivity. 

II. MEASUREMENT METHOOS COMPARISON 
nlmtrmc- 

When makina measurements between a oair of 

II I 
frequency standards or clocks, it is desirable to 

i' OSS.3SZ.lSS YI j 

IL 
)rr 1. asc, / have less noise in the measurement system than the 

/ 2 i 

y 1, 

composite noise in the pair of standards being 

! measured. This places stringent requirements on 

I measurement systems as the state-of-the-art of 

FIGURE 1.8 

bandwidth needed to measure fast rise-time pulses, 

this method is limited in signal-to-noise ratio. 

However, some counters are conmercfally available 

allowing one to do signal averaging or to do 

precision rise-time comparison (precision of time 

difference measurements in the range of 10 ns to 

10 ps are now available). Such a method yields a 

direct measurement of x(t) without any translation, 

precision frequency and time standards has advanced 

to its current level. As will be shown, perhaps 

one of the greatest areas of disparity between 

measurement system noise and the noise in current 

standards is in the area of time difference nea- 

surements. Couuiercial equipment can measure time 

differences to at best lo-1x5, but the time fluc- 

tuations second to second of state-of-the-art 

standards is as good as 10-13s. 

The disparity is unfortunate because if time 

differences between two standards could be measured 

with adequate precision then one may also know the 

time fluctuations, the frequency differences, and 

the frequency fluctuations. In fact, one can set 
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up an interesting hierarchy of kinds of measurement 

systems: 1) those that can measure time, x(t); 2) 

those that can measure changes in time or time 

fluctuations 6x(t); 3) those that can measure 

frequency, v(y s (v-vo)/vo); and 4) those that can 

measure changes in frequency or frequency flu&W 

tions. 6v (by a 6u/vo). As depicted in table 2.1, 

if a measurement system is of status 1 in this 

hierarchy, i.e., it can measure time, then time 

fluctuations, frequency and frequency fluctuations 

can be deduced. However, if a measurement system 

is only capable of measuring time fluctuations 

(status 2 - table 2.1), then time cannot be de- 

duced, but frequency and frequency fluctuations 

can. If frequency is being measured (status 3 - 

table 2.1), then neither time nor time fluctuations 

may be deduced with fidelity because essentially 

all commercial frequency measuring devices have 

"dead time" (technology is at a point where that 

is changing with fast data processing speeds that 

are now available). Dead time in a frequency 

measurement destroys the opportunity of integrating 

the fractional frequency to get to "true" time 

fluctuations. Of course, if frequency can be 

measured, then trivially one may deduce the fre- 

quency fluctuations. Finally, if as system can 

only measure frequency fluctuations (status 4 - 

table 2.1), then neither time, nor time fluctua- 

tions, nor frequency can be deduced from the data. 

If the frequency stability is the primary concern 

then one may be perfectly happy to employ such a 

measurement system, and similarly for the other 

statuses in this measurement hierarchy. Obviously, 

if a measurement method of Status 1 could be 

employed with state-of-the-art precision, this 

would provide the greatest flexibility in data 

processing. From section 1, the dual mixer time 

difference system is purported to be such a method. 

FIGURE 2.1 

are most appropriately applied. The large diago- 

nally oriented area indicates the typical noise 

limits of the measurement technique (at particular 

values of sample time indicated on the horizontal 

scale). 

III. CHARACTERIZATION 

Given a set of data of the fractional fre- 

quency or time fluctuations between a pair of 

oscillators, it is useful to characterize these 

fluctuations with reasonable and tractable models 

of performance. In so doing for many kinds of 

oscillators, it is useful to consider the flucua- 

tions as those that are random (may only be pre- 

dicted statistically) and those that are non- 

random (e.g., systematics- those that are environ- 

mentally induced or those that have a causal 

effect that can be determined and in many cases 

can be predicted). 

Table 2.2 is a comparison of these different 

measurement methods. The values entered are 

nominal; there may be unique situations where 

significant departures are observed. The time and 

frequency stabilities listed are the nominal 

second to second rms values. The accuracies 

listed are taken in an absolute sense. The costs 

listed are nominal estimates in 1981 dollars. 

3.1 Non-random Fluctuations 

Non-random fluctuations are usually the main 

cause of departure from "true" time or "true" 

frequency. 
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If, for example, one has the values of the 

frequency over a period of time and a frequency 

offset from nominal is observed, one may calculate 

directly that the phase error will accumulate as a 

ramp. If the frequency values show some linear 

drift then the time fluctuations will depart as a 

quadratic. In almost all oscillators, the above 

systematics, as they are sometimes called, are the 

primary cause of time andfor frequency departure. 

A useful approach to determine the value of the 

frequency offset is to calculate the simple mean 

of the set, or for determining the value of the 

frequency drift by calculating a linear least 

squares fit to the frequency. A least squares 

quadratic fit to the phase or to the time deriva- 

tive is typically not as efficient an estimator of 

the frequency drift for most oscillators. 

3.2 Random Fluctuations 

After calculating or estimating the systematic 

or non-random effects of a data set, these may be 

subtracted from the data leaving the residual 

random fluctuations. These can usually be best 

characterized statistically. It is often the case 

for precision oscillators that these random fluc- 

tuations may be well modeled with power law spcc- 

tral densities. This topic is discussed later in 

sections VIII to X. We have 

sym = hofo, (3.1) 

where Sy(f) is the one-sided spectral density of 

the fractional frequency fluctuations, f is the 

Fourier frequency at which the density is taken, 

ho is the intensity coefficient, and a is a number 

modeling the most appropriate power law for the 

data. It has been shown1'3 that in the time 

domain one can nicely represent a power law spec- 

tral density process using a well defined time- 

domain stability measure, uy(r), to be explained 

in the next section. for example, if one observes 

from a log oyz(t) versus T diagram a particular 

slope (call it u) over certain regions of sample 

time. K. this slope has a correspondence to a 

power law spectral density or a set of the same 

with some amplitude coefficient ha. In particular, 

p = -a -1 for -3 c a ~1 and u H -2 for 1 5 a. 

Further a correspondence exists between ha and the 

coefficient for uy(r>. These coefficients have 

been calculated and appear in section XI. The 

transformations for some of the more common power 

.law spectral densities have been tabulated making 

it quite easy to transform the frequency stability 

modeled in the time-domain over to the frequency 

domain and vice versa. Examples of some power-law 

spectra that have been simulated by computer are 

shown in figure 3.1. In descending order these 

POWCR MU SPECTRL 

FIGURE 3.1 

have been named white noise, flicker noise, random 

walk, and flicker walk (the w  in fig. 3.1 is 

angular Fourier frequency, 10 = 2nf). 

Once the noise characteristics have been 

determined, one is often able to deduce whether 

the oscillators are performing properly or not and 

whether they are meeting either the design speci- 

fications or the manufacturers specifications. 

For example a cesium beam frequency standard or a 

rubidium gas cell frequency standard when working 

properly should exhibit white frequency noise, 

which is the seme as random walk phase (or time) 

for tau values of the order of a few seconds to 

several thousand seconds (see also sec. XI). 

IV. ANALYSIS OF TIME DOMAIN DATA 

Suppose now that one is given the time or 

frequency fluctuations between a pair of precision 

oscillators measured, for example, by one of the 

techniques outlined in section I, and a stability 

analysis is desired. Let this comparison be 

depicted by figure 4.1. The minimum sample time 
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is determined by the measurement system. I? the 

time difference or the time fluctuations are 

available then the frequency or the fractional 

frequency fluctuations may be calculated from one 

period of sampling to the next over the data 

length as indiciated in figure 4.1. Suppose 

further there am H values of the ftactional 

frequency yi. Now there are many ways to analyze 

these data. Historically, people have typically 

used the standard deviation equation shown in 

figure 4.1, ostd dev (t), where i is the average 

fractional frequency 'over the data set and is 

subtracted from each value of y, before squaring, 

sufmning and dividing by the number of values minus 

one, (M-l), and taking the square root to get the 

standard deviation. At NBS, we have studied what 

happens to the standard deviation when the data 

set may be characterized by power law spectra 

which are more dispersive than classical white 

noise frequency fluctuations. In ottw words, if 

the fluctuations are characterized by flicker 

noise or any other non-white-noise frequency 

deviations, what hagpens to the standard deviation 

for that data set? One can show that the standard 

deviation is a function of the number of data 

points in the set; it is also a function of the 

dead time and of the measurement system bandwidth. 

For example, using flicker noise frequency modula- 

tion as a model, as the number of data points 

increases, the standard deviation monotonically 

increases without limit. Some statistical meesms 

have been developed which do not depend upon the 

data length and which are readily usable for 

characterizing the random fluctuations in precision 

oscillators. An IEEE subcoedttee on frequency 

stability has racouseended what has come to be 

known as the "Allan variance" taken from the set 

of useful variances developed, and an experimental 

estimation of the square root of the Allan vati- 

ante is shown as the bottom right equation in 

figure 4.1. This equation is very easy to imple- 

ment experimentally as one simply need add up the 

squares of the differences between adjacent values 

Of Yi* divide by the number of them and by two, and 

take the square root. One then has the quantity 

which the IEEE subcommittee has recosseended for 

specifizmn of stability in the time domairr- 

denotedbyny(r). 

where the brackets "<>I‘ denote infinite time 

avetage. In practice this is easily estimated 

from aCTMte data set as follows: 

1 

*1 4 
1 

oy(r) s - 2(M-1) =( itl yi+l - yi ' ' )I (4.2) 

where %he yi are the discrete frequency averages 

as illustrated in figure 4.1. 

FIGURE 4.1 

A simulated plot of the time fluctuations, x(t) 
between a pair of oscillators and of the corres- 
ponding fractional frequencies calculated from the 
time fluctuations each averaged over a sample time 
T. At the bottom are the equations for the stan- 
dard deviation (left) and for the time-domain 
measure of frequency stability as recoaacnded by 
the IEEE subcoeanittee on frequency stability 
(right). 

One would like to know how oy(r) varies with 

the sample time, t. A simple trick that one can 

use that is very useful if there is no dead time, 

is to average the previous values for yl and y2 

and call that a new y1 averaged over 2r, similarly 

average the previous values for yj and y4 and call 

that a new y2 averaged over 2~ etc., and finally 

apply the same equation as before to get oy(2~). 

One can repeat this process for other desired 

integer multiples of t and from the same data Set 
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be able to generate values for uy(mr) as a function 

of mt from which one may be able to infer a model 

for the process that is characteristic of this 

pair of oscillators. If one has dead time in the 

measurements adjacent pairs cannot be averaged in 

an unambiguous way to simply increase the sample 

time. One has to retake the data for each new 

sample time--often a very time consuming task. 

This is another instance where dead time can be a 

problem. 

How the classical variance (standard deviation 

squared) depends on the number of samples is shown 

in figure 4.2. Plotted is the ratio of the stan- 

dard deviation squared for N samples to the stan- 

dard deviation squared for 2 samples; &(2,r)> is 

the same as the Allan variance, uya(r). One can 

see the dependence o'f the standard deviation upon 

the number of samples for various kinds of Dower 

FIGURE 4.2 

The ratio of the time average of the standard 
deviation squared for N samples over the time 
average of a two sample standard deviation squared 
as a function of the number of smaplcs, N. The 
ratio is plotted for various power law spectral 
densities that commonly occur in precision oscil- 
lators. The figure illustrates one reason why the 
standard deviation is not a convenient measure of 
frequency stability; i.e. it may be very important 
to specify how many data points are in a data set 
if you use the standard deviation. 

law spectral densities commonly encountered as 

reasonable models for many important precision 

oscillators. Note, crya has the same value as 

the classical variance for the classical noise 

case (white noise FM). One main point of figure 

4.2 is simply to show that with the increasing 

data length the standard deviation of the coamton 

classical variance is not well behaved for the 

kinds of noise processes that are very often 

encountered in most of the precision oscillators 

of interest. 

One may combine eq (1.4) and eq (4.l);which 

yields an equation for cry(r) in terms of the time 

difference or time deviation measurements. 

uyw = 47 r' (x(t+tr) - 2xtt+r1 + x(t))* 
> 

+ . 

(4.3) 

which for N discrete time readings may be estimated 

as, 

uy(r) a 

[ 
‘&2 8 (‘i+2 - 2xi+l + ‘f)’ 

I 

+ ’ 

(4.4) 

where the i denotes the number of the reading in 

the set of N and the nominal spacing between 

readings is T. If there is no dead time in the 

data and the original data were taken with the x's 

Spaced by 'co, we can pick t in eq (4.4) to 

be any integer multiple of to, i.e., t = mto: 

Equation (4.5) has some interesting consequences 

because of the efficient data usage in terms of 

the confidence of the estimate as will be explained 

in the next section. 

EXAMPLE: Find the Allan variance, uy*(l), of the 

following sequence of fractional fre- 

quency fluctuation values yk, each value 

averaged over one"sicond. 

y1 
= 4.36 x 10-s 

Y5 
= 4.47 x 10-s 

y2 
= 4.61 x 10-s 

y6 
= 3.96 x 1O-s 

y3 = 3.19 x 10-s y7 = 4.10 x 10-s 

y4 = 4.21 x 10-s yg = 3.08 x 10-s 

(assume no dead-time in measurement of averages) 
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Since each average of the fractional frequency 

fluctuation values is for one second, then the 

first variance calculation will be at 'c = 1s. We 

are given H = 6 (eight values); therefore, the 

number of pairs in sequence is M-l- 7. We have: 

oata V4lWS 
yt (1 IO-‘) 

Pint a~ffmncas 
(r c+1 - Yk) (I lo”‘) 

rlrst aiffa- sauma 

%il - yp (L lo-'@) 

4.36 
4.61 
3.u 
4.21 
4.47 
I.% 
4.10 
3.06 

-- 
0.23 

-l.42 

;:ii 
-0.61 

0.14 
-1.02 

0.06 
2.02 
1.01 
0.07 
0.26 
0.02 

-if+ 

g (yk+l - yk)2 = 4.51 x 10-10 

Therefore, 

uG(ls) = 
4.51 x 10-10 

2(7) = 3.2 x 10-11 

and 

uy(z) = [o;(ls)]' = C3.2 x lo-=]+ = 5.6 x 1O-8 

Using the same data, one can calculate the 

variance for s = 2s by averaging pairs'of adjacent 

values and using these new averages as data values 

for the same procedure as above. For three second 

averages (t = 3s) take adjacent threesomes and 

find their averages and proceed in a similiar 

manner. More data must be acquired for longer 

averaging times. 

One sees that with large numbers of data 

values, it is helpful to use a computer or program- 

mable calculator. The confidence of the estimate 

on uy(t) improves nominally as the square root of 

the number of data values used. In this example, 

M=6 and the confidence can be expressed as being 

no better the Uflx 100% = 35%. This then is the 

allowable error in our estimate for the f = Is 

average. The next section shows methods of com- 

puting and improving the confidence interval. 

V. CONFIDENCE OF THE ESTIMATE AND OVERLAPPING 

SAMPLES4 

One can imagine taking three phase or time 

measurements of one oscillator relative to another 

at equally spaced intervals of time. From this 

phase data one can obtain two, adjacent values of 

average frequency. From these two frequency mea- 

surements, one can calculate a single sample Allan 

(or two-sample) variance (see fig. 5.1). Of 

course this variance does not have high precision 

or confidence since it is based on only one fre- 

quency difference. 

FIGURE 5.1 

Statisticians have considered this problem of 

quantifying the variability of quantities like the 

Allan Variance. Conceptually, one could imagine 

repeating the above experiment (of taking the 

three phase points and calculating the Allan 

Variance), many times and even calculating the 

distribution of the values. 

For the above cited experiment we know that 

the results are distributed like the statistician's 

chi-square distribution with one degree of freedom. 

That is, we know that for most common oscillators 

the first difference of the frequency is a normally 

distributed variable with the typical bell-shaped 

curve and zero mean. However, the square of a 

normally distributed variable is NOT normally 

distributed. That is easy to see since the square 

is always positive and the normal curve is com- 

pletely syumnetric and negative values are as 

likely as positibe. The resulting dfstribution is 

called a chi-square distribution, and ft has ONE 

"degree of freedom" since the distribution was 

obtained by considering the squares of individual 

(i.e., one independent sample), normally distri- 

buted variables. 

In contrast, if we took five phase values, 

then we could calculate four consecutive frequency 

values, as in figure 5.2. We could then take the 
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FIGURE 5.2 

first pair and calculate a sample Allan Variance, 

and we could calculate a second sample Allan 

Variance from the second pair (i.e., the third and 

fourth frequency measurements). The average of 

these two sample Allan Variances provides an 

improved estimate of the "true" Allan Variance, 

and we would expect it to have a tighter confidence 

interval than in the previous example. This could 

be expressed with the aid of the chi-square distri- 

bution with TWO degrees of freedom. 

However. there is another option. We could 

also consider the sample Allan Variance obtained 

from the second and third frequency measurements. 

That is the middle sample variance. Now, however, 

we're in trouble because clearly this last sample 

Allan Variance is NOT independent of the other 

two. Indeed, it is made up of parts of each of 

the other two. This does NOT mean that we can't 

use it for improving our estimate of the "true" 

Allan Variance, but it does mean that we can't 

just assume that the new average of three sample 

Allan Variances is distributed as chi-square with 

three degrees of freedom. Indeed, we will en- 

counter chi-square distributions with fractional 

degrees of freedom. And as one might expect, the 

number of degrees of freedom will depend upon the 

underlying noise type, that is, white FM, flicker 

FM, or whatever. 

Before going on with this, it is of value to 

review some concepts of the chi-square distri- 

bution. Sample variances (like sample Allan 

Variances) are distributed according to the equa- 

tion: 

where S* is the sample Allan Variance, x2 is 

chi-square, d.f. is the number of degrees of 

freedom (possibly not an integer), and 02 is the 

"true" Allan Variance we're all interested in 

knowing--but can only estimate imperfectly. 

Chi-square is a random variable and its distri- 

bution has been studied extensively. For some 

reason, chi-square is defined so that d.f., the 

number of degrees of freedom, appears explicitly 

in eq (5.1). Still, X* is a (implicit) 

function of d.f., also. 

The probability density for the chi-square 

distribution is given by the relation 

P(X') = 
1 

2d.f. r d.f. 
c ) 

(5.2) 
2 

is the gamma function, defined by 

the integral 

= r (t) = I, x t-1 e-x dx 
(5.3) 

Chi-square distributions are useful in deter 

mining specified confidence intervals for variances 

and standard deviations. Here is an example. 

Suppose we have a sample variance s* = 3.0 and we 

know that this variance has 10 degrees of freedom. 

(Just how we can know the degrees of freedom will 

be discussed shortly.) Suppose also that we Want 

to know a range around our sample value of s* = 3.0 

which "probably" contains the true value, 02. The 

desired confidence is, say, 90%. That is, 10% of 

the time the true value will actually fall outside 

of the stated bounds. The usual way to proceed is 

to allocate 5% to the low end and 5% to the high 

end for errors, leaving our 90% in the middle. 

This is arbitrary and a specific problem might 

dictate a different allocation. We now resort to 

tables of the chi-square distribution and find 

that for 10 degrees of freedom the 5% and 95% 

points correspond to: 

x2(.05) = 3.94 

for d.f. = 10 (5.4) 

x*(.95> = 18.3 
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Thus, with 90% probability the calculated sample 

variance, $2, satisfies the inequality: 

(5.5) 

and this inequality can be rearranged in the form 

1.64 5 u2 2 7.61 (5.6) 

or, taking square roots: 

1.28 2 u 5 2.76 

Now someone might 

(5.7) 

object to the form of 

eq (5.7) since it seems to be saying that 

the true sigma falls within two limits with 90% 

probability. Of course, this is either true or 

not and is not subject to a probabilistic inter- 

pretation. Actually eq (5.7) is based on 

the idea that the true sigma is not known and we 

estimate it with the square root of a sample 

variance, 52. This sample variance is a random 

variable and is properly the subject of probabil- 

ity, and its value (which happened to be 3.0 in 

the example) will conform to eq (5.7) nine 

times out of ten. 

Typically, the sample variance is calculated 

from a data sample using the relation: 

s2 = & n$l (x n- 3’ 

where it is implicitly assumed that the x,,'s are 

random and uncorrelated (i.e., white) and where ; 

is the sample mean calculated from the same data 

set. If all of this is true, then 52 is chi-square 

distributed and has N-l degrees of freedom. 

Thus, for the case of white x,, and a conven- 

tional sample variance (i.e., eq (5.8)), the 

number of degrees of freedom are given by the 

equation: 

d-f. = N-l (5.9) 

The problem of interest here is to obtain the 

corresponding equations for Allan Variances using 

overlapping estimates on various types of noise 

(i.e., white FM, flicker FM, etc.). 

Other authors (Lesage and Audoin, and 

Yoshimura) have considered the question of the 

variance of the Allan Variances without regard to 

the distributions. This is, of course, a closely 

related problem and use will be made of their 

results. These authors considered a more restric- 

tive set of overlapping estimates than will be 

considered here, however. 

VI. MAXIMAL USE OF THE OATA AND DETERMINATION OF 

THE DEGREES OF FREEDOM. 

6.1 Use of Data 

Consider the case of two oscillators being 

compared in phase and exactly N values of the 

phase difference are obtained. Assume that the 

data are taken at equally spaced intervals, 'ho. 

From these N phase values, one can obtain N-l 

consecutive values of average frequency and from 

these one can compute N-2 individual, sample Allan 

Variances (not all independent) for 'I: = to. These 

N-2 values can be averaged to obtain an estimate 

of the Allan Variance at t = to. The variance of 

this variance has been calculated by the above 

cited authors. 

Using the same set of data, it is also possi- 

ble to estimate the Allan Variances for integer 

multiples of the base sampling interval, t = nt,. 

Now the possibilities for overlapping sample Allan 

Variances are even greater. For a phase data set 

of N points one can obtain exactly N-2n sample 

Allan Variances for t f nto. Of course only a 

fraction of these are generally independent. 

Still the use of ALL of the data is well justified 

(see fig. 6.1). 

Consider the case of.an experiment extending 

for several weeks in duration with the aim of 

getting estimates of the Allan Variance for tau 

values equal to a week or more. As always the 

purpose is to estimate reliably the "true" Allan 

Variance as well as possible--that is, with as 

tight an uncertainty as possible. Thus one wants 
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FIGURE 6.1 

to use the data as efficiently as possible since 

obtaining more data can be very expensive. The 

most efficient use is to average all possible 

. sample Allan Variances of a given tau value that 

one can compute from the data. 

The problem comes in estimating how tight the 

confidence intervals really are-that is, in esti- 

mating the number of drgrees of freedom. Clearly, 

if one estimates the confidence intervals pessimi- 

stically, then more data is needed to reach a 

specified tolerance, and that can be expensive. 

The other error of over-confidence in a question- 

able value can be even more expensive. Ideally, 

one has realistic confidence estimates for the 

most efficient use of the data, which is the 

intent of this writing. 

6.2 Determininq the Degrees of Freedom 

In principle, it should be possible to deter 

mine analytically the equations corresponding to 

eq (5.9) for all cases of interest. Unfor 

tunately the analysis becomes quite complicated. 

Exact computer algorithms were devised for the 

cases of white phase noise, white frequency modu- 

lation and random walk fM. For the two flicker 

cases (i.e., flicker FM and PM) a completely 

empirical approach was used. Due to the complexity 

of the computer programs, empirical fits were 

devised for all five noise types. 

The approach used is based on three equations 

relating to the chi-square distribution: 

(6.11 

E[xa] = d.f. (6.2) 

Var[$] = 2(d.f.) (6.31 

where the expression E[xs] means the "expectation," 

or average value of x, VarW] is the variance of 

~2, and d.f. is the number of degrees of freedom. 

A computer was -used to simulate phase data 

sets of some length, N, and then Allan Variances 

with t=nTo were calculated for all possible 

samples. This "experiment" was repeated at least 

1000 times using new simulated data sets of the 

same spectral type, and always of the same length, 

N. Since the data were simulated on a computer, 

the "true" Allan Variance 9 u2 , was known for many 

of the noise models and could be substituted into 

eq (6.1). From the 1000 values of s2/ua, distri- 

butions and sample variances were obtained. The 

"experimental" distributions were compared with 

theoretical distributions to verify that the 

observed distributions truely conformed to the 

chi-square distribution. 

The actual calculation of the degrees of 

freedom were made using the relation: 

which can be deduced from eqs (6.1). (6.2). 

and (6.3). The Var(sa) was estimated by the 

sample variance of the 1000 values of the average 

Al lan Variances, each obtained from a phase data 

set of length N. 

Of course this had to be repeated for various 

values,of N and n, as well as for each of the five 

cotmuon noise types: white PM, flicker PM, white 

FM, flicker FM, and random walk FM. Fortunately, 

certain limiting values are known and these can be 

used as checks on the method. For example, when 

(N-1)/T-n, only one Allan Variance is obtained 

from each data set and one should get about one 

degree of freedom for eq (6.4), which was observed 
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in fact. Also for n=l the "experimental* condi- 

tions correspond to those used by Lesage and 

Audoin, and by Yoshimura. Indeed, the method also 

was tested by verifying that it gave results 

consistent with eq (5.9) when applied to the 

conventional sample variance. Thus, combining eq 

(6.4) with the equations for the variance of the 

Allan Variances from Lesage and Audoin and 

Yos'himura, one obtains: 

White PM d.f. = ,w , for N ?, 4 

Flicker PM d.f. = ? 

White FM (6.5) 

Flicker FM d.f. = 

Random Walk FM d. f. = N-Z 

for n=l. Unfortunately, their results are not 

totally consistent with each other. Where incon- 

sistency arose the value in best agreement with 

the "experimental" results was chosen. 

The empirical equations which were fit to the 

"experimental" data and the known values are 

summarized below: 

White PM 

Flicker PM 

White FM 

Flicker FM 

de f. ; IN+l)(N-2nl 
2(N-n) 

d.f. P exp In F In J2n+a)(N-1) 
> 

d-f. I 

2(N-2) 
2.3N - 4.9' 'Or IF1 

d.f. I 

I -6, for n 2 2 

Random Walk FM d.f. z y jv 

The figures in Appendix I demonstrate the fit to 

the "experimental" data. 

It is appropriate to give some estimate of 

just how well these empirical equations approach 

the "true" values. The equations have approxi- 

mately (a few percent) the correct assymptotic 

behavior at n=l and n=(N-1)/2. In between, the 

values were tested (using the simulation results) 

over the range of N=S to F(r1025 for ~1 to 

&N-1)/2 changing by octaves. In general, the 

fit was good to within a few percent. We must 

acknowledge that distributional problems with the 

random number generators can cause problems, 

although there were several known values which 

should have revealed these problems if they are 

present. Also for three of the noise types the 

exact number of degrees of freedom were, calculated 

for many values of N and n and compared with the 

"Monte Carlo" calculations. The results were all 

very good. 

Appendix I presents the data in graphical 

form. All values are thought to be accurate to 

within one percent or better for the cases of 

white PM, white FM, and random walk FM. A larger 

tolerence should be allowed for the flicker cases. 

VII. EXAMPLE OF TIME-DOMAIN SIGNAL PROCESSING AN0 

ANALYSIS 

We will analyze in some detail a commercial 

portable clock, Serial No. 102. This cesium was 

measured against another commercial cesium whose 

stability was well documented and verified to be 

better than the one under test. Plotted in figure 

7.1 are the residual time deviations after removing 

FIGURE 7.1 
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a mean frequency of 4.01 parts in 1013. Applying 

the methods described in section IV and section V, 

we generated the a,(r) diagram shown in figure 

7.2. 

FIGURE 7.2 

One observes that the last two points are propor 

tional to t +1 and one is suspicious of a signifi- 

cant frequency drift. 

If one calculates the drift knowing that 

up is equal to the drift times & a drift of 

1.22 x 10-l' per day is obtained. A linear least 

squares to the frequency was removed and sections 

FIGURE 7.3 

FIGURE 7.4 

IV and V were applied again. The linear least 

squares fit showed a drift of 1.23 x 10-l' per 

day, which is in excellent agreement with the 

previous calculated value obtained from uyy(z). 

Typically, the linear least squares will give a 

much better estimate of the linear frequency drift 

than will the estimate from Us being propor- -\ 
-. 

+1 tional to t . 
d9J 

1 3 
b E/i: 

Figure 7.3 gives the plot of the time resid- f 

uals after removing the linear least squares and 

figure 7.4 is the corresponding uy(t) vs. t dia- 

gram. From the 33 days of data, we have used the &jl’ L 1 

90% confidence interval to bracket the stability u? Id d Id 

estimates and one sees a reasonable fit corres- 
s lwc,ti3 

ponding to white noise frequency modulation at a 

level of 4.4 x lo-l1 T'+. This seemed excessive FIGURE 7.5 
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in terms of the typical performance of this par- 

ticular cerium and in as much as we were doing 

some other testing within the environment, such as 

working on power supplies and charging and dis- 

charging batteries, we did some later tests. 

Figure 7.5 is a plot of uy('~) after the standard 

had been left alone in a quiet environment and had 

been allowed to age for about a week. One ob- 

serves that the white noise frequency modulation 

level is more than a factor of 4 ilrproved over the 

previous data. This led us to do SO(M studies on 

the effects of the power supply on the cesium fre- 

quency as one is charging and discharging bat- 

teries, which proved to be significant. One 

notices in figure 7.4 that the uy(r) values plotted 

are consistent within the error bars with flicker 

noise frequency modulation. This is more typical 

of the kind of noise one would expect due to such 

anvirornnental perturbations as discussed above. 

Careful time- and/or frequency-domain analy- 

ses can lead to significant insights into problems 

and their solutions and is highly recommended by 

the authors., The frequency-domain techniques will 

be next approached. 

VIII. SPECTRUM ANALYSIS 

Another method of characterizing the noise in 

a signal source is by means of spectrum analysis. 

To understand this approach, let's examine the 

wavefona shown in figure 8.1. 

FIGURE 8.1 

Here we have a sine wave which is perturbed 

for short instances by noise. Some loosely refer 

to these types of noises as "glitches". The 

waveform has a nominal frequency over one cycle 

which we'll call "YC" (UC = $1. At times, noise 

causes the instantaneous frequency to differ 

markedly from the nominal frequency. If a pure 

Sine wave Signal of frequency vO is subtracted 

from this waveform, the remainder is the sum of 

the noise components. These components are of a 

variety of frequencies and the sum of their ampli- 

tudes 

during 

tarily 

ically 

is nearly zero except for the intervals 

each glitch when their amplitudes momen- 

reinforce each other. This is shown graph- 

in figure 8.2. 

,-- 
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FIGURE 8.2 

One can plot a graph showing MIS power vs. 

frequency for a given signal. This kind of plot 

is called the power spectrum. For the waveform of 

figure 8.1 the power spectrum will have a high 

value at UC and will have lower values for the 

signals produced by the glitches. Closer analysis 

reveals that there is a recognizable, somewhat 

constant repetition rate associated with the 

glitches. In fact, we can deduce that there is a 

significant amount of power in another signal 

whose period is the period of the glitches as 

shown in figure 8.2. Let's call the frequency of 

the glitches vs. Since this is the case, we will 

observe a noticeable amount of power in the spec- 

trum at us with an amplitude which is related to 

the characteristics of the glitches. The power 

spectrum shown in figure 8.3 has this feature. A 

predominant us component has been depicted, but 

other harmonics also exist. 

FIGURE 8.3 
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Some noise will cause the instantaneous fre- 

quency to "jitter" around ~0, with probability of 

being higher or lower than ug. We thus usually 

find a "pedestal" associated with vg as shown in 

figure 8.4. 

FIGURE 8.4 

0 

The process of breaking down a signal into 

all of its various components of frequency is 

called Fourier exoansion (see sec. X). In 

other words, the addition of all the frequency 

components, called Fourier frequency components, 

produces the original signal. The value of a 

Fourier frequency is the difference between the 

frequency component and the fundamental frequency. 

The power spectrum can be normalized to unity such 

that the total area under the curve equals one. 

The power spectrum normalized in this way is the 

power soectral density. 

The power spectrum, often called the RF 

spectrum, of V(t) is very useful in many appli- 

cations. Unfortunately, if one is given the RF 

spectrum, it is impossible to determine whether 

the power at different Fourier frequencies is a 

result of amplitude fluctuations "e(t)" or phase 

fluctuations "e(t). The RF spectrum can be separ- 

ated into two independent spectra, one being the 

spectral density e "s(t)" often called the AM 

power spectral density and the other being the 

soectral density of "O(t)". 

For the purposes here, the phase-fluctuation 

components are the ones of interest. The spectral 

density of phase fluctuations is denoted by Se(f) 

where “f" is Fourier frequency. For the fre- 

quently encountered case where the AM power spec- 

tral density is negligibly small and the total 

modulation of the phase fluctuations is small 

(mean-square value is much less than one rad'), 

the RF spectrum has approximately the same shape 

as the phase spectral density. However, a main 

difference in the representation is that the RF 

spectrum includes the fundamental signal (car- 

rier), and the phase spectral density does not. 

Another major difference is that the RF spectrum 

is a dower spectral density and is measured in 

units of watts/hertz. The phase spectral density 

involves no "power" measurement of the electrical 

signal. The units are radians2/hertz. It is 

tempting to think of So(f) as a "power" spectral 

density because in practice it is measured by 

passing V(t) through a phase detector and measuring 

the detector's output power spectrum. The measure- 

ment technique makes use of the relation that for 

small deviations (6e CC 1 radian), 

V ms (f) 
sp = " ( > 2 

S 
(8.3) 

where Vrms (f) is the root-mean-square noise.voltage 

per m at a Fourier frequency "f", and Vs is the 

sensitivity (volts per radian) at the phase quadra- 

ture output of a phase detector which is comparing 

the two oscillators. In the next section, we will 

look at a scheme for directly measuring Se(f). 

One question we might ask is, "How do fre- 

quency changes relate to phase fluctuations?" 

After all it's the frequency stability of an 

oscillator that is a major consideration in many 

applications. The frequency is equal to a rate of 

change in the phase of a sine wave. This tells us 

that fluctuations in an oscillator's output fre- 

quency are related to phase fluctuations since we 

must change the rate of "e(t)" to accomplish a 

shift in "u(t)", the frequency at time t. A rate 

of change of total "@T(t)" is denoted by %T(t)". 

We have then 

2nvct1 = 4T(t) (8.4) 

The dot denotes the mathematical operation of 

differentiation on the function eT with respect to 

its independent variable t.* From eq (8.4) 

* As an analogy, the same operation relates the 

position of an object with its velocity. 

20 

TN-33 



and cq (1.1) we get 

Rearranging, we have 

OP 

The quantity u(t) - v0 can be more conveniently 

denoted as au(t), a change in frequency at time t. 

Equation (8.5) tells us that if.we differentiate 

the phase fluctuations o(t) and divide by 2n, we 

will have calculated the frequency fluctuation 

au(t). Rather than specifying a frequency fluc- 

tuation in terms of shift in frequency, it is 

useful to denote au(t) with respect to the nominal 

frequency v0. The quantity y is called the 

fractional frequency fluctuation** at time t and 

is signified by the variable y(t). We have 

y(t) = yl = !i!g 
0 

(8.6) 

The fractional frequency fluctuation y(t) is 

a dimensionless quantity. When talking about fre- 

quency stability, its appropriateness becomes 

clearer if we consider the following example. 

Suppose in two oicillators au(t) is consistently 

equal to + 1 Hz and we have sampled this value for 

many times t. Are the two oscillators equal in 

their ability 'to produce their desired output 

frequencies? Not if one oscillator is operating 

at 10 Hz and the other at 10 MHz. In one case, 

the average value of the fractional frequency 

fluctuation is l/10, and in the second case is 

1/10,000,000 or 1 x lo-'. The 10 MHz oscillator 

is then more precise. If frequencies are nulti- 

plied or divided using ideal electronics, the 

fractional stability is not changed. 

In the frequency domain, we can measure the 

spectrum of frequency fluctuations y(t). The 

** Some international recommendations replace 

"fractional" by "normalized". 

spectral density of frequency fluctuations is 

denoted by Sy(f) and is obtained by passing the 

signal from an oscillator through an ideal FM 

detector and performing spectral analysis on the 

resultant output voltage. Sy(f) has dimensions of 

{fractional frequency)2/Hz or Hz-l. Oifferentia- 

tion of e(t) corresponds to multiplication by 2 
"0 

in terms of spectral densities. With further cal- 

culation, one can derive that 

( ) 
2 

Sy(f) = f 
0 

sp 

We will address ourselves primarily to So(f), that 

is, the spectral density of phase fluctuations. 

For noise-measurement purposes, S,(f) can be 

measured with a straightforward, easily duplicated 

equipment set-up. Whether one measures phase or 

frequency spectral densities is of minor importance 

since they bear a direct relationship. It is 

important, however, to make the distinction and to 

use eq (8.7) if necessary. 

8.1 The Loose Phase-Locked Loop 

Section I, 1.1, C described a method of 

measuring phase fluctuations between two phase- 

locked oscillators. Now we will detail the pro- 

cedure for measuring So(f). 

Suppose we have a noisy oscillator. We wish 

to measure the oscillator's phase fluctuations 

relative to nominal phase. One can do this by 

phaselocking another oscillator (called the re- 

ference oscillator) to the test oscillator and 

mixing the two oscillator signals 90' out of phase 

(phase quadrature). This is shown schematically 

in figure 8.9. The two oscillators are at the 

same frequency in long term as guaranteed by the 

phase-lock loop (PLL). A low-pass filter (to 

filter the R.F. sum component) is used after the 

mixer since the difference (baseband) signal is 

the one of interest. By holding the two signals 

at a relative phase difference of 90°, short-term 

phase fluctuations between the test and reference 

oscillators will appear as voltage fluctuations 

out of the mixer. 
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FIGURE 8.9 

With a PLL, if WC can make the servo time 

constant very long, then the PLL bandwidth as a 

filter will be small. This may be done by lowering 

the gain Av of the loop amplifier. We want to 

translate the phase modulation spectrum to base- 

band spectrum so that it is easily measured on a 

low frequency spectrum analyzer. With a PLL 

filter, we must keeo in mind that the reference 

oscillator snould be as good or better than the 

test oscillator. This is because the output of 

the PLL represents the noise from both oscillators, 

and if not properly chosen, the reference can have 

noise masking the noise from the test oscillator. 

Often, the reference and test oscillators are of 

the same type and have, therefore, approximately 

the same noise. We can acquire a meaningful 

measurement by noting that the noise we measure is 

from two oscillators. Many times a good approxi- 

mation is to assume that the noise power is twice 

that which is associated with one oscillator. 

So(f) is general notation depicting spectral den- 

sity on a per hertz basis. A PLL filter output 

necessarily yields noise from two oscillators. 

The output of the PLL filter at Fourier 

frequencies above the loop bandwidth is a voltage 

representing phase fluctuations between reference. 

and test oscillator. It is necessary to make the 

time-constant of the loop long compared with the 

inverse of the lowest Fourier frequency we wi sh to 

measure. That is, tc > b f 
1 

(lowestf' This means 

that if we want to measure So(f) down to 1 Hz, the 

loop time-constant must be greater than & se- 

conds. One can measure the time-constant by 

perturbing the loop (momentarily disconnecting the 

battery is convenient) and noting the time it 

takes for the control voltage to reach 70% of its 

final value. The signal from the mixer can then 

be inserted into a spectrum analyzer. A preamp 

may be necessary before the spectrum analyzer. 

l See Appendix Note X 3 

The analyzer determines the mean square volts that 

pass through the analyzer's bandwidth centered 

around a pre-chosen Fourier frequency f. It is 

desireable to normalize results to a 1 Hz band- 

width. Assuming white phase noise (white PM), 

this can be done by dividing the mean square 

voltage by the analyzer bandwidth in Hz. One may 

have to approximate for other noise processes. 

(The phase noise sideband levels will usually be 

indicated in rms volts-per-root-Hertz on mOSt 

analyzers. ) 

8.2 m 

Measurements 

(1) Low-noise mixer 

This should be a high quality, double- 

balanced type, but single-ended types 

may be used. The oscillators should 

have well-buffered outputs to be able to 

isolate the coupling between the two 

input RF ports of the mixer. Results 4rtrF 

that are too good may be obtained if the 

two oscillators couple tightly via 

signal injection through the input 

ports. We want the PLL to control 

locking. One should read the specifi- 

cations in order to prevent exceeding 

the maximum allowable input power to the 

mixer. It is best to operate near the 

maximum for best signal-to-noise out of 

the IF port of the mixer and, in some 

cases, it is possible to drive the,mixer 

into saturation without burning out the 

device. 

FIGURE 8.10 

(2) Low-noise DC amplifier 

The amount of gain AV needed in the loop 

amplifier will depend on the amplitude 

of the mixer output and the degree of 

l * See Appendix Note X 4 
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varactor control in the reference oscil- 

lator. Ue may need only a raall amount 

of gain to acquire lock. On the other 

hand, it may be necessary to add as much 

as 80 dB of gain. Good low-noise DC 

amplifiers are available from a number 

of sources, and with cascading stages of 

amplification, each contributing noise, 

it will be the noise of the first stage 

which will add most significantly to the 

noise being measured. If a suitable 
low-noise first-stage amplifier is not 

readily available, a schematic of an 

amplifier with 40 dB of gain is shown in 

figure 8.11 which will sewe nicely for 

the first stage. Amplifiers with very 

low equivalent input noise performance 

are also available from many manufac- 

turers. The response of the amplifier 

should be flat from DC to the highest 

Fourier frequency one wishes to measure, 

The loop time-constant is inversely 

related to the gain AV and the deteni- 

nation of AV is best made by experimen- 
l 

tation knowing that TV < bf ~owesr~. 

FIGURE 8.11 

(3) Voltaqe-controlled reference quartz 
: . 

oscillator 

The signal analyzer typically should be 

capable of measuring the noise in rms 

volts in a narrow bandwidth from near 

1 Hz to the highest Fourier frequency 

of interest. This may be 50 kHt for 

carrier frequencies of 10 MHz or lower. 

For voltage measuring analyzers, it is 

typical to use units of "volts per mu. 

The spectrum analyzer and any associated 

input amplifier will exhibit high-fre- 

quency rolloff. The Fourier frequency 

at which the voltage has dropped by 3 dB 

is the measurement system bandwidth fh, 

or uh = 2nf h' This can be measured 

directly with a variable signal gener- 

ator. 

This oscillator should be a good one Section X describes how analysis can be 

with specifications available on its performed using a discrete fourier transform 

frequency domain stability. The refer- analyser. hpanding digital technology has made 

ence should be no worse than the test the use of fast-fourier transform analysis affor- 

oscillator. The varactor control should dable and compact. 

*!keAppendixNote#S 

* 

be sufficient to maintain phase-lock of 

the reference. In general, low quality 

test oscillators w  have varactor 

control of as much as 1 x lo-* fractional 

frequency change per volt. Some provi- 

sion should be available on the reference 

oscillator for tuning the mean frequency 

over a frequency range that will enable 

phase-lock. Many factors enter into the 

choice of the reference oscillator, and 

often it is convenient to simply use two 

test oscillators phase-locked together. 

In this way, one can assume that the 

noise out of the PLL filter is no worse 

than 3 dB greater than the noise from 

each oscillator. If it is uncertain 

that both oscillators are contributing 

approximately equal noise, then one 

should perform measurements on three 

oscillators taking two at a time. The 

noisier-than-average oscillator will 

reveal itself. 

(4) Spectrum analyzer 
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Rather than measure the spectral density of 

phase fluctuations between two OSCillUtOrS, it iS 

possible to measure the phase fluCtUatiOnS intro- 

duced by a device such as an active filter or 

amplifier. Only a slight modification of the 

existing PLL filter equipment set up is needed. 

The scheme is shown in figure 8.12. 

LJUW'ta TO MASURf llTRIIlSlC NOlSf Of SIT-UP 

FIGURE 8.12 

Figure 8.12 is a differential phaSe noise 

measurement set-up. The output of the reference 

oscillator is split so that part of the signal 

passes through the device under test. We want the 

two signals going to the mixer to be 90“ out of 

phase, thus, phase fluctuations between the two 

input ports cause voltage fluctuations at the 

output. The voltage fluctuations then can be 

measured at various Fourier frequencies on a 

spectrum analyzer. 

To estimate the noise inherent in the test 

srt-up, one can in principle bypass the device 

under test and compensate for any change in ampli- 

tude and phase at the mixer. The PLL filter 

technique must be converted to a differential 

phase noise technique in order to measure inherent 

test equipment noise. It is a good oractice to 

measure the system noise before proceeding to mea- 

surement of device noise. 

A frequency domain measurement 

shown schematically in figure 8.13. The 

set-up is 

component 

values for the low-pass filter out of the mixer 

are suitable for oscillators operating at around 

5 MHz. 

The active gain element (a,) of the loop is a 

DC amplifier with flat frequency response. One 

may replace this element by an integrator to 

achieve high gain near DC and hence, maintain 

better lock of the reference oscillator in long 

term. Otherwise long-term drift between the 

reference and test oscillators might require 

manual re-adjustment of the frequency of one or 

the other oscillator.' 

8:3 Procedure and Example 

At the input to the spectrum analyzer, the 

voltage varies as the phase fluctuations in short- 

term 

V ms (f) 2 
sp = v ( 1 S 

Vs is the phase sensitivity of the mixer in volts 

per radian. Using the previously described equip- 

ment set-up, V, can be measured by disconnecting 

the feedback loop to the varactor of the reference 

oscillator. The peak voltage swing is equal to Vs 

in units of volts/rad if the resultant beat note 

is a sine wave. This may not be the case for 

state-of-the-art Se(f) measurements where one must 

drive the mixer very hard to achieve low mixer 

noise levels. Hence, the output will not be a 

sine wave, and the volts/rad sensitivity must be 

estimated by the slew-rate (through zero volts) of 

the resultant square-wave out of the mixer/ampli- 

fier. 

The value for the measured Se(f) in decibels 

is given by: 

V 
sp 

,,Voltage at f 

,= *' log VSfull-scale @-detector voltage 

EXAMPLE: Given a PLL with two oscillators such 

that, at the mixer output: 

* 

I 

FIGURE 8.13 V, = 1 volt/rad 

8 See Appendix Note X 6 
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V&45 Hz) = 100 nV per root hertz 

solve for Sot45 Hz). 

= IO-14 g 

In decibels, 

So(45 HZ) = 20 log * = 20 log s 

= 2;) (-7) = -140 dB at 45 Hz 

In the example, note that the mean frequency 

of the oscillators in the PLL was not essential to 

computing S+(f). However, in the application of 

So(f), the mean frequency u. is necessary informa- 

tion. Along with an S@(f), one should always 

attach u 
0’ 

In the example above v. = 5 MHz, so we 

have 

So (45 Hz) = 10-l' s, v. = 5 MHz. 

From cq (8.7). Sy(f) can be computed as 

Sy (45 Hz) = 2 l(J-14 * 

Sy (45 Hz) = 8.1 x 10-2s Hz-l, v = 5 MHz. 
0 

IX. POWER-LAW NOISE PROCESSES 

Power-law noise processes are models of 

precision oscillator noise that produce a parti- 

cular slope on a spectral density plot. We often 

classify these noise processes into one of five 

categories. Far plots of So(f), they are: 

1. Random walk FM (random walk of fre- 

quency), So plot goes down as l/f4. 

2. Flicker FM (flicker of frequency), Se 

plot goes down as l/f3. 

3. White FM (white of frequency), Sa plot 

goes down as l/fs. 

4. Flicker PM (flicker of phase), So plot 

goes down as l/f. 

5. White PM (white of phase), So plot is 

flat. 

Power law noise processes are characterized by 

their functional dependence on Fourier frequency. 

Equation 8.7 relates So(f) to Sy(f), the spectral 

density of frequency fluctuations. Translation of 

Sy(f) to time-domain data uy(t) for the five model 

noise processes is covered later in section XI. 

The spectral density plot of a typical oscil- 

lator's output usually is a combination of dif- 

ferent power-law noise processes. It is very 

useful and meaningful to categorize the noise 

processes. The first job in evaluating a spectral 

density plot is to determine which type of noise 

exists for a particular range of Fourier fre- 

quencies. It is possible to have all five noise 

processes being generated from a single oscillator, 

but, in general, only two or three noise processes 

are dominant. Figure 9.1 is a graph of S,(f) 

showing the five noise processes on a log-log 

. scale. Figure 9.2 shows the spectral density of 

phase fluctuations for a typical high-quality 

oscillator. 
SPECW ENmY OF Pwsf 

-30 v. = 5 MHz 

40 

-110 4 

100 IO’ 101 103 IO’lU 

roullln fRfOYlBC? ( f I 

FIGURE 9.1 

sPEcmLnENsIlYff PHASE 

-110 
r 

v. = 5 MHz 

-110 I I 
100 10' 102 IOJ 1O'MZ 

louIlfI rnfaurrcT (0 

FIGURE 9.2 

25 

TN-38 



X. PITFALLS IN DIGITIZING THE DATA 

The advent and prolific use of digftal com- 

puters has changed the manner in which processing 

of analog signals takes place if a computer is 

used. This section addresses the most co-n 

problems in such analyses. 

10.1 Discrete-Continuous Processes 

Digital processing implies that data must be 

presented to a computer or other processor as an 

array of numbers whether in a batch or in a time 

series. If the data are not already in this form 

(it usually is not when considering frequency 

stability measurements), then it is necessary to 

transform to this format by digitizing. Usually. 

the signal available for analysis is a voltage 

which varies with frequency or phase difference 

between two oscillators. 

10.2 Diqitizino the Data 

Digitizing the data is the process of conver- 

ting a continuous waveform into discrete numbers. 

The process is completed in real time using an 

analog-to-digital converter (AK). Three consid- 

erations in the AOC are of importance here: 

1. Conversion time 

2. Resolution (quantization uncertainty) 

3. Linearity 

An ADC "looks at" an incoming waveform at equi- 

spaced intervals of time 1. Ideally, the output 

of the ADC is the waveform (denoted by y(t)) 

multiplied by a series of infinitely narrow 

sampling intervals of unit height as in figure 

10.1. We have at t = T 

YI(t) * y(t)b(t-T) = y(T)b(t-T) (10.1) 

where 6(t-T) is a delta function. If y(t) is 

continuous at t = nf and n = 0, *l, i2,..., then 

Y,(t) = 5 y(nT) 6 (t-nT) 
Iv-0 

(10.2) 
P = integer 

The delta function respresentation of a sampled 

waveform eq (10.2) is useful when a subsequent 

continuous integration is performed using it.6 

FIGURE 10.1 

In AOC's, the input signal is sampled during an 

aperture time and held for conversion to a digital 

number, usually binary. Sampling and processing 

takes time which is specified as the conversion 

*. This is the total time required for a 

complete measurement at one sample to achieve a 

given level of accuracy, If y,(t) is the ideal 

discrete-time representation of continuous process 

y(t), then the ADC output denoted by y;(t) is: 

,$ = Yp-,, - + c(g) (10.3) 

where "d" is the conversion time and t . g the 

accuracy tolerance at "d" as a function of rate-of- 

change in y(t). In general a trade-off exists 

between d and t. For example, for a commonly 

available, high-quality N-bit ADC, a conversion 

time of d = 10 us yields a maximum error of 3%. 

Whereas given a 30 us conversion time, we can 

obtain 0.1x maximum error. 

The error due to conversion time “d” is many 

times negligible since processing in digital 

filters and spectrum analysis takes place after 

the converter. Conversion time delay can be of 

critical concern, however, where real-time proces- 

sing at speeds of the order of "d" become important 
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such as in digital servo loops where corrections 

are needed for fart changing errors. 

A portion of the conversion-time error is a 

function of the rate of change dt 9 of the process 

if the sample-and-hold portion of the AOC relies 

on the charging of a capacitor during an aperture 

time. This is true because the charge cycle will 

have a finite time-constant and because of aperture 

time uncertainty. For example, if the timr-con- 

stant is 0.1 nr (given by say a 0.1 Q source 

resistance charging a 0.001 pfd capacitor), then 
& a 0.1x nominal error will exist for slope At = 

lV/us due to charging. With good design, this 

error can be reduced. The sampling circuit (be- 

fore charge) is usually the dominant source of 

error and logic gate-delay jitter creates an 

aperture time uncertainty. The jitter typically 

is between 2-5 ns which means an applied signal 

slewing at, say, 1 V/us produces an uncertainty 

of 2-5 mV. Since c*g is directly proportional 

to signal slewing rate, it can be anticipated that 

high-level, high-frequency components of y(t) will 

have the greatest error in conversion. For typical 

AOC's, less than 0.1x error can be achieved by 

holding s to less than 0.2 V/us. 

The continuous process y(t) is partitioned 

into 2" discrete ranges for n-bit conversion. All 

analog values within a given range are represented 

by the same digital code, usually assigned to the 

nominal midrange value. There is, therefore, an 

inherent auantizatfon uncertainty of f 4 least- 

significant bit (LSB), in addition to other conver- 

sion errors. For example, a lo-bit AOC has a total 

of 1024 discrete ranges with a lowest order bit 

then representing about 0.U: of full scale and 

quantitation uncertainty of f 0.06%. 

We define the dynamic range of a digital 

system as the ratio between the maximum allowable 

value of the process (prior to any overflow condi- 

tion) and the minimum discernable value. The 

dynamic range when digitizing the data is set by 

the quantizing uncertainty, or resolution, and 

is the ratio of 2" to 4 LSB. (If additive noise 

makes coding ambiguous to the 4 LSB level, then 

the dynamic range is the ratio of 2" to the noise 

uncertainty, but this is usually not the case.) 

For example, the dynamic range of a lo-bit system 

is 2" = 1024 to 4, or 2048 to 1. Expressed in 

de’s, this is 

20 log 2048 = 66.2 dB 

if referring to a voltage-to-code converter. 

The converter linearity specifies the degree 

to which the voltage-to-code transfer approximates 

a straight line. The nonlinearity is the deviation 

from a straight line drawn between the end points 

(all zeros to all ones code). It is usually not 

acceptable to have nonlinearity greater than 4 LS8 

which means that the sum of the positive errors or 

the sum of the negative errors of the individual 

bits must not exceed 4 LSB (or f 4 LSB). The 

linearity specification used in this context 

includes all effects such' as temperature errors 

under expected operating temperature extremes and 

power supply sensitivity errors under expected 

operating supply variations. 

10.3 Aliasinq 

Figure 10.1 illustrates equispaced sampling 

of continuous process y(t). It is important to 

have a sufficient number of samples/second to prop- 

erly describe information in the high frequencies. 

On the other hand, sampling at too high a rate may 

unnecessarily increase the processing labor. As 

we reduce the rate, we see that sample values 

could represent low or high frequencies in y(t). 

This property is called aliasinq and constitutes a 

source of error similiar to "imaging" which occurs 

in analog frequency mixing schemes (i.e., in the 

multiplication of two different signals). 

If the time between samples (k) is T seconds, 

then the sampling rate is $ samples per second. 

Then useful data in y(t) will be from 0 to b Hz 

and frequencies higher than &I Hz will be folded 

into the lower range from 0 to b Hz and confused 

with data in this lower range. The cutoff fre- 

quency is then given by 

fS = +T (10.4) 

and is sometimes called the "Myquist frequency." 
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We can use the convolution theorem to simply 

illustrate the existence of aliases. This theorem 

states that multiplication in the time domain 

cot-responds to convolution in the frequency domain, 

and the time domain and frequency domain represen- 

tations are Fourier transform pairs.' The 

Fourier transform of y(t) in figure 10.1(a) is 

denoted by Y(f); thus: 

Y(f) convolved with Af is denoted by Y(f)* 

A(f) and is shown in figure 10.2(c). We see that 

the transform Y(f) is repeated with origins at 

f = 3. Conversely, high frequency data with infot- 

mation around f = ; will fold into the data around 

the origin between -fS and +f,. In the computation 

of power spectra, we encounter errors as shown in 

figure (10.3). 

0 

Y(f) = 

/ 

y(t)e-j2nftdt (10.5) 

-0 

and 

m 

y(t) = 2 
/ 

Y(f)ej2nftdf (10.6) 

FIGURE 10.3 

Aliased power spectra due to folding. (a) True 
Spectra, (b) Aliased Spectra. 

Two pioneers in information theory, Harold 

Nyquist and Claude Shannon, developed design 

criteria for discrete-continuous processing sys- 

tems. Given a specified accuracy, we can convey 

time-domain process y(t) through a finite band- 

width whose upper limit f,,, is the highest signifi- 

cant spectral component of y(t). For discrete- 

continuous process y,(t), ideally the input signal 

spectrum should not extend beyond fS, or 

The function Y(f) is depicted in figure 10.2(a). 

The Fourier transform of A(t) is shown in figure 

10.2(b) and is given by A(f) where applying the 

discrete transform yields: 

A(f) = f (10.7) 

recalling that 

A(t) = ,$- a(t -nT), (10.8) 

fN 5 f~ 
(10.9) 

from eq (10.2). where fs is given by eq (10.4). Equation (10.9) 

is refered to as the "Shannon limit." 

In practice, there is never a case in which 

there is absolutely no signal or noise component 

above f,,. Filters are used before the ADC in 

order to suppress components above fN which fold 

into the lower bandwidth of interest. This so- 

called anti-aliasing filter usually must be quite 

sophisticated in order to have low ripple in the 

passband, constant phase delay in the passband, 

and steep rolloff characteristics. In examining 

the rolloff requirements of the anti-aliasing 

filter, we can apply a fundamental filter property 

that the output spectrum is equal to the input FIGURE 10.2 
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spectrum multiplied by the square of the frequency 

response function; that is, 

S(f) [H(f)12 = S(f) (10.10) 
out 

The filter response must be flat to fN and at- 

tenuate aliased noise components at y t f f 

2nfsf f. In digitizing the data, the observed 

spectra will be the sum of the baseband spectrum 

(to fN) and all spectra which are folded into the 

baseband spectrum 

S(f) = So(f) + s-1 (2fs - f) l S,l (2fs + f) 

observed 

+ Se, (4fs - f).... + Si (2 i (fs + $ f)) 

(10.11) 
M 

= SO(f) + 
i=-M 

si (2 i (fs + f)) 

where M is an appropriate finite limit. 

For a given rejection at an upper frequency, 

clearly the cutoff frequency f, for the anti- 

aliasing filter should be as low as possible to 

relax the rolloff requirements. Recall that an 

nth order low-pass filter has frequency response 

function 

(10.l22) 

and output spectrum 

S(f) = 

37 

s f 2n (10.13) 
out 1 + f 

C 

and after sampling, we have 

S(f) = 
S,(f) M 

c 
observed 2n *it-M 

1+ 

(applying eq (10.11)) 

Si(2 i (fs + ff)) 

1+ 
2 i (fs + +f)2n 

fc 

(10.14) 

If fc is chosen to be higher than fN, then the 

first term (baseband spectrum) is negligibly 

affected by the filter, which is our hope. It is 

the second term (the sum of the folded in spectra) 

which causes an error. 

As an example of the rolloff requirement, 

consider the measurement of noise process n(t) at 

f = 400 HZ in a 1 Hz bandwidth on a digital spec- 

trum analyzer. Suppose n(t) is white; that is, 

S,,(f) = k, (10.15) 

kO 
= constant 

Suppose further that we wish to only measure the 

noise from 10 Hz to 1 kHr; thus fN = 1 kHz. Let 

us assume a sampling frequency of f, = 2fN or 

2 kHz. If we impose a 1 dB error limit in 

5 observed and have 60 d6 of dynamic range, then we 

can tolerate an error limit of ?O-s due to aliasing 

effects in this measurement, and the second term in 

eq (10.14) must be reduced to this level. We can 

choose f C 
f l.SkHr and obtain 

kO 
S(f) 

observed 
= k, + 5 

i=-M 2 i (fs + +f) 2n 

l+ fc 

(10.161 

The term in the series which contributes most is 

at i f -1, the nearest fold-in. The denominator 

must be lo6 or more to realize the allowable error 

limit and at n 2 8 this condition is met. The 

next most contributing term is i = +l at which the 

error is < lo-' for n = 8, a negligible contribu- 

tion. The error increases as f increases for a 

fixed n because the nearest fold-in (i = -1) is 

coming down in frequency (note fig. 10.2(c)) and 

power there is filtered less by the anti-aliasing 

filter. Let us look at the worst case (f = 1kHt) 

to determine a design criteria for this example. 

At f = 1 kHz, we must have n 2 10. 

Thus the requirement in this example is for a 

lO:pole low-pass filter (60 dB/octave rolloff). 

10.4 Some History of Spectrum Analysis Leadinq to 

the Fast Fourier Transform 

Newton in his Principia (1687) documented the 

first mathematical treatment of wave motion al- 
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though the concept of harmonics in nature was in the analysis, but in general the time-averaged, 

sample spectrum is the approach taken since its 

implementation is direct and straightforward. 

Most always, ergodicity can be assumed.899 

pointed out by Pythagoras, Kepler, and Galileo. 

However, it was the work of Joseph Fourier in 1807 

which showed that almost any function of a real 

variable could be represented as the sum of sines 

and cosines. The theory was rigorously treated in 

a document in 1622. 

In using Fourier's technique, the periodic 

nature of a process or signal is analyzed. Fourier 

analysis assumes we can apply fixed amplitudes, 

frequencies, and phases to the signal. 

In the early 1900's two relatively independent 

developments took place: (1) radio electronics 

and electric power hardware were fast growing 

technologies; and (2) statistical analysis of 

events or processes which were not periodic became 

increasingly understood. The radio engineer 

explored signal and noise properties of a voltage 

or current into a load by means of the spectrum 

analyzer and measurement of the power spectrum. 

On the other hand, statisticians explored deter- 

ministic and stochastic properties of a process by 

means of the variance and self-correlation pro- 

perties of the process at different times. Wiener 

(1930) showed that the variance spectrum (i.e., 

the breakdown of the variance with Fourier fre- 

quency) was the Fourier transform of the autocor- 

relation function of the process. He also theor- 

ized that the variance spectrum was the same as 

the power spectrum normalized to unit area. Tukey 

(1949) advocated the use of the variance spectrum 

in the statistical treatment of all processes 

because (1) it is more easily interpreted than 

correlation-type functions; and (2) it fortuitously 

is readily measureable by the radfo engineer. 

The 1950's saw rigorous application of stati- 

stics to coswunication theory. Parallel to this 

was the rapid advancement of digital COslputer 

hardware. Blackman and Tukey (1959) and Welch 

(1961) elaborated on other useful methods of 

deriving an estimate for the variance spectrum by 

taking the ensemb!e time-average sampled, discrete 

line spectra. The approach assumes the random 

process is ergodic. Some digital approaches 

estimate the variance spectrum using Wiener's 

theorem if correlation-type functions are useful 

The variance of process y(t) is related to 

the total power spectrum by 

0 

oZ~r(t)l = 1 Sy(f) df. (10.17) 

Since 

02b(t)l = ;E h -{Ty2(t) dt (10.18) 

we see that if y(t) is a voltage or current into a 

l-ohm load, then the mean power of y(t) is the 

integral of Sy(f) with respect to frequency over 

the entire range of frequencies (-0~0). Sy(f) is, 

therefore, the power spectrum of process y(t). 

The power spectrum curve shows how the variance is 

distributed with frequency and should be expressed 

in units of watts per unit of frequency, or volts 

squared per unit of frequency when the load is not 

considered. 

Direct estimation of power spectra has been 

carried out for many years through the use of 

analog instruments. These have variously been 

referred to as sweep spectrum analyzers, harmonic 

analyzers, filter banks, and wave analyzers. 

These devices make use of the fact that the spec- 

trum of the output of a linear system (analog 

filter) is the spectrum of the input multiplied by 

the square of the system's frequency response 

function (real part of the transfer character- 

istic). Note eq (10.10). If y(t) has spectrum 

Sy(f) feeding a filter with frequency response 

function H(f), then its output is 

S(f) f [H(f)]* Sy(f) (10.19) 
filtered 

If H(f) is rectangular in shape with width Af, 

then we can measure the contribution to the total 

power spectrum due to Sy(f 2 $1. 

The development of the fast Fourier transform 

(FFT)'in 1965 made digital methods of spectrum 
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estimation increasingly attractive. Today the 

choice between digital or analog methods depends 

more on the objectives of the analysis rather than 

on technical limitations. However, many aspects 

of digital spectrum analysis are not well known by 

the casual user in the laboratory while the analog 

analysis methods and their limitations are under- 

stood to a greater extent. 

Digital spectrum analysis is realized using 

the discrete Fourier transform (OFT), a modified 

version of the continuous transform depicted in 

l qs (10.5) and (10.6). By sampling the input 

waveform y(t) at discrete intervals of time t, = 

At representing the sampled waveform by eq (10.2) 

and integrating eq (10.5) yields 

Y(f) = 2 y(et)e 
-j2nfPT 

(10.20) 
g=-o 

Equation (10.20) is a Fourier series expansion. 

Because f(t) is specified as being bandlimited, 

the Fourier transform as calculated by eq (10.20) 

is as accurate as eq (10.5); however, it cannot 

extend beyond the Nyquist frequency, eq (10.4). 

In practice we cannot compute the Fourier 

transform to an infinite extent, and we are re- 

stricted to some observation time T consisting of 

nht intervals. This produces a spectrum which is 

not continuous in f but rather is computed with 

resolution Af where 

(10.21) 

With this change, we get the dlscrete finite 

transform 

Y(mAf) = 8 ye(t)e-jMfnt (10.22) 

The DFT computes a sampled Fourier series, 

and eq (10.22) assumes that the function y(t) 

repeats itself with period T. Y(mAf> is called 

the "line spectrum." A comparison of the DFT with 

the continuous Fourier transform is shown later in 

part 10.7. 
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The fast Fourier transform (FFT) is an algor- 

ithm which efficiently computes the line spectrum 

by reducing the number of adds and multiplies 

involved in eq (10.22). If we choose T/At to 

equal a rational power of 2, then a symmetric 

matrix can be derived through which y,(t) passes 

and quickly yields Y(Mf). An N-point transfor- 

mation by the direct method requires a processing 

time proportional to Na whereas the FFT requires a 

time proportional to N log, N. The approximate 

ratio of FFT to direct computing time is given by 

N logs N log, N 

N' 
z--q 

N 
(10.23) 

where N = 2y. For example, if N = 21°, the FFT 

requires less than l/100 of the normal processing 

time. 

We must calculate both the magnitude and 

phase of a frequency in the line spectrum, i.e., 

the real and imaginary part at the given frequency. 

N points in the time domain allow N/2 complex 

quantities in the frequency domain. 

The power spectrum of y(t) is computed by 

squaring the real and imaginary components, adding 

the two together and dividing by the total time T. 

We have 

Sy(mAf) = 
R[Y(maf)]z + I[Y(maf)]* 

T (10.24) 

This quantity is the sampled power spectrum 

and again assumes periodicity in process y(t) with 

total period T.io 

10.5 Leakaqe 

Sampled digital spectrum analysis always 

involves transforming a finite block of data. 

Continuous process y(t) is "looked at" for T time 

through a data window which can functionally be 

described by 

Y' (t) = w(t)-y(t) (10.25) 

where w(t) is the time domain window. The time- 

discrete counterpart to eq (10.25) is 

Yp = W,WY,W (10.26) 
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and w,(t) is now the sampled version of w(t) The transform process (eq 10.22) treats the 

derived similarly to eq (10.2). Equation (10.26) sample signal as if it were periodically extended. 

is equivalent to convolution in the frequency Discontinuitier usually occur at the ends of the 

domain, or window function in the extended version of the 

sampled waveform as in figure 10.5(c). Sample 

spectra thus represent a periodically extended 

sampled waveform, complete with discontinuites at 

its ends, rather than the original waveform. 

Y'(ln4f) = w(mPf)*Y(mPf) (10.27) 

Y'(mAf) is called the "modified" line spectrum due 

to convolution of the original line spectrum with 

the Fourier transform of the time-domain window 

function. 

Suppose the window function is rectangular, 

and . 

we(t) = 1, 

= 0, 
(10.28) 

This window is shown in figure 10.4(a). The 

Fourier transform of this window is 

W(maf) = T 
sinn mPf NT 

mufNT 
(10.29) 

and is shown in figure 10.4(b). If y(t) is a sine 

wave, we convolve the spectrum of the sinusoid, a 

delta function, with W(mAf). 

FIGURE 10.4 

FIGURE 10.5 

Spurious components appear near the sinusoid 

spectrum and this is referred to as "leakage." 

Leakage results from discontinuites in the periodi- 

cally extended sample waveform. 

Leakage cannot be eliminated entirely, but 

one can choose an appropriate window function w(t) 

in order to minimize its effect. This is usually 

done at the expense of resolution in the frequency 

domain. An optimum window for most cases is the 

Hanning window given by: 

w(t) = [$ - $ cos (?)]a (10.30) 

for 0 5 t 5 T and "a" designates the number of 

times the window is implemented. Figure 10.6(a) 

shows the window function and 10.6(b) shows the 

Hanning line shape in the frequency domain for 

various numbers of "Harms." Note that this window 
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FIGURE 10.6 

eliminates discontinuities due to the ends of 

sample length T. 

Each time the Hanning window is applied,the 

sidelobes in the transform are attenuated by 32 

&/octave, and the main lobe is widened by Z&f. 

The amplitude uncertainty of an arbitrary sine 

wave input is reduced as we increase the number of 

Hanns; however, we trade off resolution in fre- 

quency. 

The effective noise bandwidth indicates the 

departure of the filter response away from a true 

rectangularly shaped filtered response (frequency 

domain). Table 10-I lists equivalent noise band- 

width corrections for up to three applfcations of 

the Hanning window.11 

Number of- Hanns 
. 
L 

2 

3 

Equivalent Noise 

_ Bandwidth 

1.5 Af 

1.92 Af 

2.31 Of 

TABLE 10.1 

10.6 Picket-Fence Effect 

The effect of leakage discussed in the pre- 

vious section gives rise to a sidrlobe type re- 

sponse that can be tailored according to the 

time-window function through which the analyzed 

signal passes as a block to be transformed to the 

frequency domain. Using the Hanning window dimin- 

ishes the amplitudes of the sidelobes, however, it 

increases the effective bandwidth of the passband 

around the center frequency. This is because the 

effective time-domain window length is shorter 

than a perfect rectangular window. Directly 

related to the leakage (or sidelobe) effect is one 

called the "picket-fence" effect. This is because 

the sidelobes themselves resemble a frequency 

response which has geometry much like a picket 

fence. 

The existence of both sidelobe leakage and 

the resultant picket-fence effect are an artifact 

of the way in which the FFT analysis is performed. 

Frequency-domain analysis using analog filters 

involves a continuous .signal in and a continuous 

signal out. On the other hand, FFT analysis 

involves a continuous signal in, but the transform 

to the frequency domain is performed on blocks of 

data. In order to get discrete frequency informa- 

tion from a block, the assumption is made that the 

block represents one period of a periodic signal. 

The picket-fence effect is a direct consequence of 

this assumption. For example, consider a sinewave 

signal which is transformed from a time-varying 

voltage to a frequency-domain representation 

through an FFT. The block of data to be transform- 

ed will be length, T, in time. Let's say that the 

block, T, represents only 44 cycles of the input 

sinewave as in figure 10.5. Artificial sidebands 

will be created in the transfona to the frequency 

domain, whose frequency spacing equals f, or the 

reciprocal of the block length. This represents 

a worst-case condition for sidelobe generation 

and creates a large number of spurious discrete 

frequency components as shown in figure 10.7(b). 

If, on the other hand, one changes the block 

time, T, so that the representation is an integral 

number of cycles of the input sinewave, then the 

transform will not contain sidelobe leakage compo- 
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FIGURE 10.7 

nents and the artificial sideband frequency compo- 

nents disappear. In practice, when looking at 

complex input signals, the block time, T, is not 

synchronous with any component of the transformed 

part of the signal. As a result, discrete fre- 

quency components in the frequency domain have 

associated with them sidebands which come and go 

depending on the phase of the time window, T, 

relative to the sine components of the incoming 

signal. The effect is much like looking through a 

picket fence at the sidebands.12 

An analogy to the sidelobe leakage and picket- 

fence effect is to record the incoming time-varying 

signal on a tape loop, which has a length of time, 

T. The loop of tape then repeats itself with a 

period of T. This repeating signal is then coupled 

to a scanning or filter-type spectrum analyzer. 

The phase discontinuity between the end of one 

passage of the loop and the beginning of the loop 

on itself again represents a phase-modulation 

component, which gives rise to artificial sidebands 

in the spectrum analysis. A word of caution - 

this is not what actually happens in a FFT analyzer 

(i.e., there is no recirculating memory). However, 

the Fourier transform treats the incoming block as 

if this were happening. 

10.7 Time Domain-Frequency Domain Transforms 

A. Integral transform 

Figure 10.8 shows the well-known integral 

transform, which transforms a continuous time- 

domain signal extending over all time into a 

FIGURE 10.8 

continuous frequency-domain signal extending over 

all frequency. This is the ideal transform. In 

practice, however, one deals with finite times and 

bandwidths. The integral transform then, at best, 

is an estimate of the transform and is so for only 

short, well-behaved signals. That is, the signal 

goes to zero at infinite time and at infinitely 

high frequency. 

9. Fourier series 

The Fourier-series transform assumes perio- 

dicity in the time-domain signal for all time. 

Only one period of the signal (for time T) is 

required for this kind of transform. The Fourier 

series treats the incoming signal as periodic with 

period, T, and continuous. The transformed spec- 

trum is then discrete with infinite harmonic 

components with frequency spacing of $. This is 

shown in figure 10.9. 

FIGURE 10.9 
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FIGURE 10.10 

Figure 10.10 shows the transform from a SW 

pled time-domain signal to the frtqruncy domain. 

Note that in the frequency domain, the result is 

repetitive in frequency. This effect, cmmeonly 

called aliasing, is discussed earlier in section 

10.3. Figure 10.9 and figure 10.10 show the sym- 

metry between the time- and frequency-domain trans. 

forms of discrete lines. 

C. Discrete fourier transform 

Finally, we have the sampled, periodic 

(assumed) time-domain signal which is transformed 

to a discrete and repetitive (dliased) frequency- 

domain representation. This is shown in figure 

10.11 

FIGURE 10.11 

XI. TRANSLATION FROM FREQUENCY DOMAIN STABILITY 

MEASUREMENT TO TIME DOMAIN STABILITY MEASURE- 

MENT AND VICE-VERSA. 

11.1 Procedure 

Knowing lum to measure Se(f) or Sy(f) for a 

pair of oscillators, let us see how to translate 

the power-law noise process to a plot of uy2(r). 

First, convert the spectrum data to Q(f), the 

spectral density of frequency fluctuations (see 

sections III dnd VIII). There are two quantities 

which tolnpletely specify Sy(f) for a particular 

power-law noise process: (1) the s.lope on a 

log-log plot for a given range of f and (2) the 

amplitude. The slope we shall denote by “a”; 

therefore P is the straight line (on log-log 

scale) which relates Sy(f) to f. The amplitude 

will be denoted “her"; it is simply the coefficient 

of f for a range of f. When we examine a plot of 

spectral density of frequency fluctuations, we are 

looking at a representation of the addition of all 

the power-law processes (see sec. IX). We have 

m 

Sy(f) = c ha e 
a=- 

(11.1) 

In section IX, five power-law noise processes 

WCC outlined with respect to Se(f). These five 

are the c-on ones encountered with precision 

oscillators. Equation (8.7) relates these noise 

processes to Sy(f). One obtains 

1. Uandom Walk FM 

2. Flicker FM 

3. White Fi4 

4. Flicker @l 

5. White @i 

with respect to 

Sy(f) 

(f-2) . . . a = -2 

(f-1) . . . 4 = -1 

(1) . ..a= 0 

(f) . ..a= 1 

(f2) . . . a = 2 

slope on 

log-log 

paper 

Table Il.1 is a list of coefficients for 

translation from uy*(r) to Sy(f) and from Se(f) to 
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ayw. In the table, the left column is the 

designator for the power-law process. Using the 

middle column, we can solve for the Value of Sy(f) 

by computing the coefficient "a" and using the 

measured time domain data uy*(r). The rightmost 

column yields a solution for uy2(r) given frequency 

domain data Se(f) and a calculation of the appro- 

priate "b" coefficient. 

SyU) = Hof 
a= 

sym 
a 

=a 
= 

EXAMPLE: 

In the phase spectral density plot of figure 

11.1, there are two power-law noise processes for 

oscillators being compared at 1 MHz. For region 

1, we see that when f increases by one decade 

(that is, from 10 Hz to 100 Hz), So(f) goes down 

by three decades (that is, from lo-" to 10-l'). 

Thus, Se(f) goes as l/f3 = f-l. For region 1. we 

up up = b Se(f) 
b= 

(white'phase) 
3 fh 

-) 
2 23 

'( "0 

(flicka: noise) -iY36%%+ 

11.038 + 3 ln(whr)]f 

(2n)Z T2 "'0 

(white ffequency) 

(flicker-:requency) 

2r 

(random way: frequency) 
6 

(tin>2 T ff 

TABLE 11.1 
Conversion table from time domain to frequency domain and from frequency 

domain to time domain for comR)on kinds of interger power law spectral densities; 
f (= III /2x) is the measurement system bandwidth. Measurement reponse should be 
w!thinh3 dB from O.C. to fh (3 dB down high-frequency cutoff is at fh). 

identify this noise process as flicker FM. The 

rightmost column of table 11.1 relates U;(T) to 

sp. The row designating flicker frequency 

noise yields: 

u;w = ,w Se(f) 
0 

One can pick (arbitrarily) a convenient Fourier 

frequency f and determine the corresponding values 

of Se(f) given by the plot of figure 11.1. Say, 

f 

-w1 

= 10, thus Se(10) = lo-". Solving for u;(t), 

a 
1 

given v. = 1 MHz, we obtain: 

FIGURE 11.1 

therefore, uy(r) = 1.18 x lo-lo. For region 2, we 

have white PM. The relationship between u;(t) and 

36 

TN-49 



So(f) for white PM is: 

3fh 
up = %)Z T* " 

0 
*S*(f) 

Again, we choose a Fourier frequency, say f = 100, 

and see that 5 (100) = 10-l'. 
0 Assuming fh = 10' 

Hz. we thus obtain: 

1 u;(T) = 7.59 x 10-24. 72 

therefore, 

uyw = 2.76 x lo-'* 3. 

The resultant time domain characterization is 

shown in figure 11.2. 

FIGURE 11.2 

The translation of So(f) of figure 1Llyields this 
Uy(T) plot. 

FIGURE 11.4 

Figures 11.3 and 11.4 show plots of time- 

domain stability and a translation to frequency 

domain. Since table 11.1 has the coefficients 

which connect both the frequency and time domains, 

it may be used for translation to and from either 

domain. 

XII. CAUSES OF NOISE PROPERTlES IN A SIGNAL SOURCE 

12.1 Power-law Noise Processes 

Section IX pointed out the five commonly used 

power-law models of noise. With respect to So(f), 

one can estimate a staight line slope (on a log-log 

scale) which corresponds to a particular noise 

type. This is shown in figure l2,l (also fig.9.1). 

FIGURE 11.3 FIGURE 12.1 
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We can make the following general remarks about 

power-law noise processes: 

1. Random walk FM (l/f') noise is difficult 

to measure since it is usually very 

close to the carrier. Random walk FM 

usually relates to the OSCILLATOR'S 

PHYSICAL ENVIRONMENT. If random walk FM 

is a predominant feature of the spectral 
density plot then MECHANICAL SHOCK, 

VIBRATION, TEMPERATURE, or other envi- 

ronmental effects may be causing "random" * 

shifts in the carrier frequency. 

2. Flicker FM (l/f3) is a noise whose 

physical cause is usually not fully 

understood but may typically be related 

to the PHYSICAL RESONANCE MECHANISM OF 

AN ACTIVE OSCILLATOR or the DESIGN OR 

CHOICE OF PARTS USED FOR THE ELECTRONICS, 

or ENVIRONMENTAL PROPERTIES. Flicker FM 

is common in high-quality oscillators, 

but may be masked by white FM (l/f*) or 

flicker PM (l/f) in lower-quality oscil- 

lators. 

3. White FM (l/f*) noise is a common type 

found in PASSIVE-RESONATOR FREQUENCY 

STANDARDS. These contain a slave oscil- 

lator, often quartz, which is locked to 

a resonance feature of another device 

which behaves much like a high-q filter. 

Cesium and rubidium standards have white 

FM noise characteristics. 

4. Flicker PM (l/f) noise may relate to a 

physical resonance mechanism in an 

oscillator, but it usually is added by 

NOISY ELECTRONICS. This type of noise 

is comnon, even in the highest quality 

oscillators, because in order to bring 

the signal amplitude up to a usable 

level, amplifiers are used after the 

signal source. Flicker PM noise may be 

introduced in these stages. It may also 

be introduced in a frequency multiplier. 

* See Appendix Note # 7 

5. 

Flicker PM can be reduced with good 

low-noise amplifier design (e.g., using 

rf negative feedback) and hand-selecting 

transistors and other electronic com- 

ponents. 

White PM (f') noise is broadband phase 

noise and has little to do with the 

resonance mechanism. It is probably 

produced by similar phenomena as flicker 

PM (l/f) noise. STAGES OF AMPLIFICATION 

are usually responsible for white PM 

noise. This noise can be kept at a very 

low value with good .amplifier design, 

hand-selected components, the addition 

of narrowband filtering at the output, 

or increasing, if feasible, the power of 

the primary frequency source.13 

12.2 Other types of noise 

A commonly encountered type of noise from a 

signal source or measurement apparatus is the 

presance of 60 Hz A.C. line noise. Shown in 

figure 12.2 is a constant white PM noise source 

with 60 Hz, 120 Hz and 180 Hz components added. 

This kind of noise is usually caused by AC power 

getting into the measurement system or the.source 
under test. In the plot of So(f), one observes 

discrete line spectra. Although So(f) is a measure 

of spectral density, one can interpret the line 

spectra with no loss of generality, although one 

usually does not refer to spectral densities when 

characterizing discrete lines. Figure 12.3 is the 

time domain representation of the same white phase 

modulation level with 60 Hz noise. Note that the 

amplitude of u,(t) varies up and down depending on 

sampling time. This is because in the time domain 

the sensitivity to a periodic wave varies directly 

as the sampling interval. This effect (which is 

an alias effect) is a very powerful tool for 

filtering out a periodic wave imposed on a signal 

source. By sampling in the time domain at integer 

periods, one is virtually insensitive to the 

periodic (discrete line) term. 

38 
TN-51 

Notes and Errata
See item 7 on page TN-337 of the Appendix for further information.  Click on the link for this paragraph to go there.



FM behavior masks 

imposed vibration 

aging times. 

the white PM (with the super 

characteristic) for long aver- 

FIGURE 12.2 

FIGURE 12.4 

FIGURE 12.3 

For example, diurnal variations in data due to day 

to day temperature, pressure, and other environ- 

mental effects can be eliminated by sampling the 

data once per day. This approach is useful for 

data with only one periodic term. 

Figure 12.4 shows the kind of plot one might 

see of S (f) 
Q 

with vibration and acoustic sen- 

sitivity in the signal source with the device 

under vibration. Figure 12.5 shows the transla- 

tion to the time domain of this effect. Also 

noted in figure 12.4 is a (typical) flicker FM 

behavior in the low frequency region. In the 
translation to time domain (fig. l2.5), the flicker 

FIGURE 12.5 

Figure 12.6 shows examples of plots of two 

power law processes (Se(f)) with a change in the 

flicker FM level. (Example 1 is identical to the 

example given in sec. XI.) Figure 12.7 indi- 

cates the effect of a lower flicker FM level as 

translated to the time 'domain. Note again the 

existence of both power law noise processes. 

However for a given averaging time (or Fourier 

frequency) one noise process may dominate over the 

other; 
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FIGURE 12.8 

FIGURE 12.9 

Excess device noise from transistors, capa- 

citors, resistors, and the like can introduce a 

low frequency noise which has been referred to as 

"popcorn" noise because of its sonic qualities. 

Figure 12.8 shows a plot of So(f) from a signal 

source having such excess low frequency noise. 

Figure 12.9 is the time domain representation. 

The rise in amplitude of uy for long averaging 

times is particularly aggravating. The solution 

to this kind of problem if it is introduced by 

devices is to carefully grade the devices in the 

assembly and testing process. 

Stages of amplification following a signal 

source many times rely on local degenerate or 

overall negative feedback schemes in order to 

minimize the excess noise from active gain elements 

(such as transistors). This is the recommended 

design approach. However, phase shift in the 

negative feedback circuit or poor bandwidth in the 

gain elements can result in poor high frequency 

noise behavior. Figure 12.10 shows a kind of 

result one might see as a gradual rise in So(f) 

because of insufficient negative feed back at 

high Fourier frequencies. 

Section X discussed aliasing in the frequency 

domain. Figure 12.11 shows the resultant measure- 

ment anomaly due to digital sampling of a poorly 

bandlimited (anti-aliased) white noise source. 

Noise voltage above the sampling frequency fS is 

folded into the analysis region of interest. Note 

also that the stopband ripple characteristics are 

folded into the high-frequency portion of the 

passband. For a given sampling frequency, a 

compromise exists between increasing the high- 
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frequency extent of the analysis band and improving 

the anti-aliasing filter's stopband rejection. 

Section X has an example of the filter requirements 

for a particular case. 

XIII. CONCLUSION 

This writing highlights major aspects of 

time-domain and frequency-domain oscillator signal 

measurements. The contents are patterned after 

lectures presented by the authors. The authors 

have tried to be general in the treatment of 

topics,. and bibliography is attached for readers 

who would like details about specific items. 
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