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Diamagnetic correction to the 9Be+ ground-state hyperfine constant
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We report an experimental determination of the diamagnetic correction to the 9Be+ ground state hyperfine
constant A. We measured A = −625 008 837.371(11) Hz at a magnetic field B of 4.4609 T. Comparison with
previous results, obtained at lower values of B (0.68 T and 0.82 T), yields the diamagnetic shift coefficient
k = 2.63(18) × 10−11 T−2, where A(B) = A0(1 + kB2). The zero-field hyperfine constant A0 is determined to
be −625 008 837.044(12) Hz. The g-factor ratio gI

′/gJ is determined to be 2.134 779 852 7(10) × 10−4, which
is equal to the value measured at lower B to within experimental error. Upper limits are placed on some other
corrections to the Breit-Rabi formula. The measured value of k agrees with theoretical estimates.
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I. INTRODUCTION

Transition frequencies between hyperfine-Zeeman sub-
levels of ground or metastable electronic states of atoms can in
some cases be measured extremely accurately. One example
is the ground-state hyperfine transition of 133Cs, which is
currently the basis of the International System of Units (SI)
second [1]. Its frequency can be measured with a relative
accuracy of better than 5 × 10−16 [2]. Because of the accuracy
with which the energy separations can be made in the ground
states of Cs and other atoms, various small contributions to the
energies can be observed and compared with calculations.

The relative energies of the sublevels of an atom with
electronic angular momentum J and nuclear spin I, in a fixed
magnetic field B, are, to a good approximation, determined by
the effective Hamiltonian

H = hAI · J − μI · B − μJ · B

= hAI · J + gI
′μBI · B + gJ μBJ · B. (1)

On the right-hand side of Eq. (1), the first term is the magnetic
dipole hyperfine interaction, the second is the nuclear Zeeman
interaction, and the third is the electronic Zeeman interaction.
Here, h is the Planck constant, A is the magnetic dipole hy-
perfine constant, and μI and μJ are the nuclear and electronic
magnetic moment operators, respectively. The g factors are
defined by gJ = −μJ /(JμB) and gI

′ = −μI/(IμB), where
μB is the Bohr magneton. The prime in gI

′ is to distinguish
it from the alternative definition gI = μI/(IμN ), where μN is
the nuclear magneton. For I � 1 and J � 1, other terms, such
as the electric quadrupole hyperfine interaction, should also be
included on the right-hand side of Eq. (1).

For J = 1
2 , the eigenvalues of H are given analytically by

the solutions of quadratic equations. The expression for the
energy eigenvalues is known as the Breit-Rabi formula [3,4].
(In its original form, the Breit-Rabi formula did not include
the nuclear Zeeman interaction, since it was considered to be
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negligible [3].) The Breit-Rabi formula for the energies of the
(F , mF ) sublevels in a state with J = 1

2 and I � 1
2 is
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(
− 1

4
+ gI

′mF μBB

hA

± 2I + 1

4

√
1 + 4mF

2I + 1
X + X2

)

= hA

(
− 1

4
+ 2γ

1 − γ
mF X

± 2I + 1

4

√
1 + 4mF

2I + 1
X + X2

)
. (2)

For the special case F = I + 1
2 , mF = ±(I + 1

2 ),
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Here, F = J + I, and mF is the eigenvalue of Fz. At finite B,
the energy eigenstates are not eigenstates of F2, except for
the F = I + 1

2 , mF = ±(I + 1
2 ) states. Nonetheless, we label

them by the value of F that is valid at B = 0. Here X ≡
μBB(gJ − gI

′)/[(I + 1/2)hA] is a dimensionless quantity
proportional to B, and γ ≡ gI

′/gJ is the g-factor ratio.
The ± sign in Eq. (2) corresponds to the states labeled
by F = I ± 1

2 . For the 1s22s 2S1/2 ground electronic state
of 9Be+, which was the subject of this study, I = 3

2 . The
value of gJ for the ground electronic state of 9Be+ has been
determined by measuring the 9Be+ cyclotron frequency and a
hyperfine-Zeeman transition frequency at the same magnetic
field [5]. The value is gJ = 2.002 262 39(31), calculated with
the use of the best current value of the proton-electron mass
ratio [6]. For 9Be+, X ≈ −22.414B(T).

There are several ways in which the experimental energy
separations can deviate from those predicted by the Breit-Rabi
formula. For I > 1

2 , it is possible that, at a fixed value of B,
no values of the parameters A, gI

′/gJ , X can be found that
are consistent with all of the measured energy separations. It
is also possible that the values of the parameters determined
at one value of B are not consistent with those determined at
another value.
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There are several possible sources of deviations from the
Breit-Rabi formula. If there is another electronic energy level
that is close in energy, hyperfine or Zeeman interactions can
mix the electronic states. For the ground state of an alkali-metal
atom or an alkali-like ion, there are no nearby electronic states,
so such effects are small. More important are diamagnetic
contributions to the interaction between the atom and the
magnetic field that are neglected in the effective Hamiltonian
given by Eq. (1). Diamagnetic corrections to the Breit-Rabi
formula were first considered by Bender [7]. He calculated
the size of the deviation in the ground state of 133Cs to be
equivalent to a fractional shift in A of δA/A = 3.9 × 10−10 B2,
where B is expressed in teslas. This effect, called the dipole
diamagnetic shift in atomic hyperfine structure, is due mainly
to a magnetic-field-induced change in the electronic spin
density at the nucleus.

Measurements of magnetic-field-dependent deviations
from the Breit-Rabi formula in the ground state of Rb were
made by Larson and coworkers [8–10]. The dipole diamagnetic
shift was observed experimentally in the hyperfine structure
of 85Rb [8] and later in 87Rb [9]. A quadrupole diamagnetic
shift was observed in 85Rb and 87Rb [9]. In contrast to the
dipole shift, the quadrupole shift can be thought of as a
magnetically induced electric quadrupole hyperfine interac-
tion, which would be absent in a pure J = 1

2 state. The
diamagnetic potential, which contains a rank-2 spherical tensor
part, breaks the spherical symmetry, so that the electronic state
is no longer an exact eigenvalue of J2. The signature of the
quadrupole diamagnetic term is an energy shift proportional
to [I (I + 1) − 3m2

I ]QB2/[I (2I − 1)], where Q is the nuclear
quadrupole moment. In Rb, the quadrupole shift is smaller
than the dipole shift by about three orders of magnitude.
Another magnetic-field-dependent energy term was observed
in 85Rb and 87Rb [10]. The term was explained by Fortson [11]
and is called the hyperfine-assisted Zeeman shift [12]. The
shift of a level is proportional to [mI

2mJ − I (I + 1)mJ +
mI/2](gI

′)2B and is due to mixing of higher electronic states
with reversed electronic spin into the ground electronic state
by the magnetic dipole hyperfine interaction.

The ground-state hyperfine constant of 9Be+, A, was
measured with a fractional uncertainty of 2.4 × 10−6 by
Vetter et al. by rf-optical double resonance [13]. The frac-
tional uncertainty of A was decreased to 1.6 × 10−11 by
Wineland et al., in measurements made with laser-cooled ions
in a Penning trap [5]. The low uncertainty was due mainly
to the use of transitions for which the first derivative of the
frequency with respect to B is zero. Nakamura et al. measured
A with a fractional uncertainty of 1.2 × 10−9 in laser-cooled
ions in a linear rf trap, at B = 0.47 T [14]. Their value of A

differed from that of Ref. [5] by about two standard deviations.
Okada et al. [15] have measured A for 7Be+ in a linear rf trap.

Based on theoretical considerations and the experimental
results for Rb, the ground-state hyperfine constant of 9Be+, A,
is assumed to have a weak quadratic dependence on B such that
A(B) = A0 × (1 + kB2). Transition frequencies measured at
different values of B are used to determine the diamagnetic
shift coefficient k.

The present experiment, on the measurement of the
hyperfine-Zeeman transition frequencies in the ground elec-
tronic state of 9Be+ in a high-magnetic field (B = 4.4609 T),

is described in Sec. II. In Sec. III, the high-field results are
combined with the previous, lower-magnetic-field measure-
ments to obtain a value for k. A theoretical estimate of k is
given in Sec. IV.

II. HIGH-FIELD EXPERIMENT

A. Atomic energy levels and transitions

There are three unknown variables (A, gI
′/gJ , and X) in

Eq. (2), and the measurement of three transition frequencies in
the ground state at a fixed value of B will determine these three
variables. We experimentally determined the value of A and
gI

′/gJ at B ≈ 4.4609 T by measuring the three transition
frequencies labeled fe, f1, and f2 in Fig. 1. While three
frequencies are enough to determine A and gI

′/gJ , we also
measured a fourth frequency f3, to check for consistency.
The typical period required for a complete set of frequency
measurements needed to determine A, gI

′/gJ , and X was 30
to 40 min.

We trapped fewer than or approximately 103 ions in a
Penning-Malmberg trap and cooled them to approximately
1 mK by Doppler laser cooling. The cooling laser also optically
pumped the ions into the (mI , mJ ) = ( 3

2 , 1
2 ) state, labeled as

the initial state |i〉 in Fig. 1. [Here the states are labeled by
the (mI , mJ ) quantum numbers of their largest components.]
The basic experimental procedure for measuring the different
transition frequencies was to (1) turn off the cooling laser,
(2) probe the desired transition with the appropriate rf or
microwave radiation, (3) measure the population of the ions
remaining in |i〉 with the fluorescence induced by the cooling
laser, (4) repump all ions to |i〉 with the cooling laser and an
additional repumping laser. We used the same ions repetitively
to measure all transition frequencies. We first discuss the basic
experimental setup and the 124 GHz microwave system. We

FIG. 1. Energy level structure of 9Be+ at B ≈ 4.4609 T. fe ≈
124 GHz, f1 ≈ 340 MHz, f2 ≈ 288 MHz, and f3 ≈ 287 MHz.
The frequency tuning of the repump laser is shown for fast
repumping of the electron spin-flip transition. For the nuclear spin-flip
measurements the repump laser was tuned approximately 500 MHz
lower than the cooling transition.
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then discuss in more detail the measurements of the different
transition frequencies and the determination of A and gI

′/gJ

at high-magnetic field.

B. Experimental setup

1. Penning trap

Figure 2 shows a sketch of the Penning trap used for the
high-B measurements. The trap and the basic experimental
setup have been described previously [16–18]. The 4.4609 T
magnetic field of a superconducting solenoid with a 125 mm
room-temperature bore produces a 9Be+ cyclotron frequency
of �c = 2π × 7.602 MHz. The long-term drift of the magnetic
field was less than one part in 109 per hour, resulting in an
average drift of fe of less than 3 kHz per hour. Magnetic
field shifts due to changes in the magnetic environment (due,
for example, to movement of Dewars or to other activity in
neighboring laboratories) were reduced by collecting data
during the night. We did not stabilize the pressure in the
magnet Dewar or actively cancel external magnetic field noise,
which likely would have improved the long-term magnetic
field stability [19]. The field of the superconducting magnet
was found to have fluctuations which were fast compared
to 20 Hz, superimposed on the slow magnetic field drift
and noise. The frequency spectrum of the fast fluctuations
contained a continuous part and narrow peaks between 30
and 300 Hz [18]. The integrated noise of the fast fluctuations
produced δB/B ≈ 10−9 variation in the magnetic field for
measurements separated by greater than 0.1 s. The fast
fluctuations contributed to the linewidth and coherence of the
electron spin-flip measurement, but had no significant impact
on the nuclear spin-flip measurements (f1, f2, and f3). (The
fast fluctuations only produce a phase modulation of a few
milliradians on the nuclear spin-flip transitions.) Recent work,
which will be discussed in a separate publication, indicates
that the fast fluctuations are fluctuations in the homogeneous
field produced by the superconducting magnet, which can be
mitigated through vibration isolation of the magnet.

side-view
camera

axial cooling and
repump beam

-500V

perpendicular
cooling beam

FIG. 2. Schematic diagram of setup. Figure is not to scale. The
trap diameter is 4 cm. The electrodes used to apply the rotating wall
field are not shown. The direction of the side-view light collection
and the direction of the perpendicular cooling beam form a 60◦ angle
in a plane perpendicular to the magnetic field axis. A side-view image
of a plasma with approximately 500 ions is shown. The diameter of
the fluorescing Be+ ion plasma is 400 μm. Heavier-mass impurity
ions are located at larger radii than the 9Be+ ions [16].

The Penning trap electrode structure consists of a stack
of four cylindrical electrodes. The inner diameters of the
cylinders are 4.1 cm, and the combined length of the four
cylinders is 12.7 cm. We typically operated the trap with the
central cylindrical electrodes (the “ring” electrodes) biased at
−500 V and the outer cylindrical electrodes (the “endcap”
electrodes) grounded, which resulted in 9Be+ single-particle
axial and magnetron frequencies of, respectively, ωz = 2π ×
565 kHz and ωm = 2π × 21.1 kHz.

Due to the crossed electric and magnetic fields in a Penning
trap, an ion plasma undergoes a rotation about the magnetic
field axis. In thermal equilibrium this rotation is rigid [20], and
we use ωr to denote the plasma rotation frequency. The rotation
frequency ωr of the 9Be+ plasma was precisely controlled
with a rotating electric field (a rotating wall) [17,21]. A
rotation frequency ωr of 2π× 30 kHz or less was used, which
produced planar plasmas (oblate spheroids) like that shown in
Fig. 2 with ion densities of approximately 8 × 107 cm−3.
The measurements presented here were obtained on small
ion plasmas of fewer than 103 9Be+ ions. The small axial
extent of the plasmas (typically less than 50 μm) reduced
the effect of axial gradients in the magnetic field. Axial
magnetic field gradients were shimmed to be less than two
parts in 108 per mm, which resulted in an axial magnetic field
inhomogeneity of less than one part in 109 over a 50 μm
axial extent. We found no evidence for any inhomogeneous
broadening of the different resonance curves discussed in
Secs. II C and II D.

2. Laser cooling, state preparation, and detection

Doppler laser-cooling was carried out on the 313 nm
2S1/2 (mI = 3

2 ,mJ = 1
2 ) → 2P3/2 (mI = 3

2 ,mJ = 3
2 ) transition

(see Fig. 1). The 313 nm light was generated by frequency-
doubling the output of a dye laser at 626 nm. The axial and
perpendicular cooling beams cooled the motion parallel and
perpendicular, respectively, to the magnetic-field axis [16,22].
The axial cooling beam had a 1 mm waist diameter, a
power of approximately 1 mW, and a polarization that was
either linear or circular (σ+). The axial cooling beam was
aligned with the magnetic field axis to better than 0.01◦.
The perpendicular cooling beam was linearly polarized in
a direction perpendicular to B, focused to a waist diameter
of approximately 50 μm, and had a power of approximately
1 μW. A double-pass acousto-optic modulator was used to
rapidly switch the cooling beams off (in less than 1 μs)
before applying rf or microwave radiation to drive the desired
ground-state transitions. The cooling beams were switched
back on after the rf or microwave radiation was switched off.

The population of the 2S1/2 (mI = 3
2 ,mJ = 1

2 ) state (the
initial state |i〉 in Fig. 1) was measured through the cooling-
laser-induced resonance fluorescence. An f/5 imaging system
was used to image the 9Be+ ion fluorescence onto the
photocathode of a photon-counting imaging tube (quantum
efficiency was approximately 5%). The total imaging tube
count rate was proportional to the |i〉 state population. The
total photon count rate was recorded for 0.5 s both before and
after applying the rf or microwave radiation. The ratio of these
two count rates (with small corrections for repumping effects)
measured the fraction of the ions remaining in the |i〉 state.
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The cooling radiation optically pumped more than 94%
of the ions into the 2S1/2 ( 3

2 , 1
2 ) state, i.e., the lower level of

the cooling transition [23,24]. This was a nonresonant optical
pumping process with a time constant of approximately 5 s for
the cooling laser parameters in this experiment. The repumping
time on the electron spin-flip transition (fe) was reduced
to less than 1 ms by a second frequency-doubled dye laser
(labeled the repump laser in Fig. 1). The repump laser was
turned on after the second 0.5 s detection period (the detection
period after the applied rf or microwave radiation). The f1, f2,
and f3 transitions involve a change in the 9Be+ nuclear spin
orientation. For example, in f2 the nuclear spin changes from
mI = 3

2 to mI = 1
2 . Optical repumping back to |i〉 occurred

through the 2S1/2 ( 1
2 , 1

2 ) →2P3/2 ( 1
2 , 3

2 ) transition and the
small admixture of different (mI , mJ ) states in the 2p 2P3/2

manifold [24]. We reduced this repumping time somewhat
by tuning the repump laser frequency between 400 MHz and
600 MHz below that of the cooling transition. This had the
added benefit of maintaining a cold-ion plasma when most of
the ions are driven to the (mI = 1

2 ,mJ = 1
2 ) state. Presumably

this was because the frequency of the repump laser was now
below that of the 2S1/2 ( 1

2 , 1
2 ) →2P3/2 ( 1

2 , 3
2 ) transition. A similar

improvement in the repumping and plasma stability was also
observed for the f1 and f3 transitions with a “far-detuned” laser
tuned 400 MHz to 600 MHz below the cooling transition. The
repump or far-detuned beam was directed along the magnetic
field axis of the trap, as shown in Fig. 2. The beam waist
diameter was approximately 0.5 mm; the power was a few
milliwatts.

3. Microwave apparatus

A sketch of the 124 GHz microwave system used to
measure fe is shown in Fig. 3. Ref. [18] further discusses
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FIG. 3. Schematic diagram of the 124 GHz microwave source. A
Gunn diode oscillator generates 30 mW of microwave power that was
transmitted through WR-8 wave guide (shown in gray) and emitted
to free space via a pyramidal microwave horn. The frequency of the
Gunn diode oscillator was phase-locked to a signal derived from a
hydrogen-maser frequency standard.

the microwave system and its use in quantum information
experiments. A Gunn diode oscillator generated 30 mW of
microwave power, and its frequency was coarsely set to
approximately 124 GHz by a manually tuned microwave
cavity. The microwave radiation was transmitted through
WR-8 wave guides and launched to free space through a
pyramidal rectangular microwave horn. A small fraction of
the microwave power (−10 dB) was mixed with the eighth
harmonic of a 15.5 GHz dielectric resonator oscillator (DRO).
The intermediate frequency (IF) signal from the harmonic
mixer was sent to a phase-locked loop (PLL) controller and
phase-locked to a 76 MHz reference frequency generated by
direct digital synthesis (DDS). The microwave frequency and
phase were controlled by changing the frequency and phase of
the DDS signal. The DDS was controlled by computer through
a parallel interface. All of the frequency synthesizers used in
the experiment were referenced to the same passive hydrogen
maser, including the DRO and the DDS. The frequency of the
passive hydrogen maser was calibrated relative to that of the
NIST atomic time scale.

The microwave radiation emitted from the horn was rapidly
switched on and off with a reflective PIN diode switch. The
ratio of the high and low power states was 26.5 ± 0.9 dB.
Switching between the high- and low-power states could
cause the PLL to lose phase-lock because of the change in
the reflected signal. To avoid losing phase-lock, we added a
phase shifter between the Gunn diode oscillator and the PIN
diode switch. (The large fringing field of the magnet made
use of an isolator impractical.) The phase shifter required
careful adjustment to achieve a condition where the Gunn
diode oscillator would not lose lock when the microwave
power was switched.

We used quasioptical techniques (with a horn and Teflon1

lens) to couple the microwave radiation to the ions, as
schematically shown in Fig. 4. The pyramidal horn coupled
mainly to the Gaussian TEM00 mode with an initial waist
diameter of approximately 0.7 cm. The waist diameter w is
defined by P (r)/P (0) = e−2(r/w)2

, where P (r) is the power
per unit area at a radius r . The waist diameter of the Gaussian
beam increases as it propagates. The beam was focused to a
waist of about 0.7 cm at the ions by the hyperbolic surfaces of
the lens [25], which was 29 cm below the horn and 28 cm above
the ions. The lens had a cut near the side for the f/5 side-view
optics and a 4.8 mm diameter hole near center to pass laser
beams (see Fig. 4). The horn was shifted off axis to avoid the
laser beams, and the lens was shifted accordingly to center
the microwave focus on the ions. The microwave system was
on an x-y mechanical stage, and the position of the horn was
adjusted to maximize the coupling of the microwave radiation
with the ions.

Electron spin-flip π -pulse periods as short as 100 μs were
obtained with this microwave system. π -pulse fidelities of
better than 99.9% were measured with random benchmarking
on plasmas consisting of a single plane [18]. The Ramsey

1Teflon is a registered trademark of the Dupont Company. Mention
of this material should in no way be construed as indicating that this
material is endorsed by NIST or that it is necessarily the best material
for the purpose.
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FIG. 4. Schematic diagram of the quasioptical coupling of
124 GHz microwave radiation to the ions. Figures are not to scale.
(a) Side view. (b) Top view. The inner diameter of the super-
conducting magnet was 12.5 cm, the distance from the horn to the
lens was 29 cm, and from the lens to the ions is 28 cm. The horn
was shifted off-axis in order to avoid hitting the horn with the axial
laser beams. The lens was also shifted about half this amount to focus
on the ions. The lens diameter was 10.2 cm. It had a cut on the side
to make a room for the f/5 optics used for the side-view camera.
Electron spin-flip π -pulse periods of 100 μs were obtained with this
setup. The position of the rf antenna is also shown.

free-induction decay (that is, the free-precession period in a
Ramsey experiment where the fringe contrast has decayed
by 1/e) was measured to be T2 ≈ 2.4 ms, limited by the fast
magnetic field fluctuations.

C. Electron spin-flip measurement

Figure 5 shows an electron spin-flip resonance obtained
with a 600 μs square Rabi pulse. The data were fitted to the
expected Rabi resonance curve [4],

Pi = 1 − (2b)2

(fe − f )2 + (2b)2
sin(πt

√
(f e − f )2 + (2b)2).

(4)
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microwave switch 600
s

microwave frequency - 124 076 857 500 (Hz)
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tnuoc
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FIG. 5. Electron spin-flip Rabi resonance. The microwave power
is adjusted to produce a π pulse on resonance in 600 μs. The solid
line is a fit to the expected Rabi resonance, as discussed in the text.
All experimental measurements were equally weighted in the fit.

Here Pi is the probability of an ion to be in state |i〉, b ≡ �/2π ,
where � is the Rabi frequency, t = 600μs is the microwave
pulse duration, f is the microwave frequency, and fe is the
electron spin-flip resonance frequency. From the fit to the
data in Fig. 5, we determine a value for the electron spin-flip
frequency fe = 124 076 860 036 ± 15 Hz. The uncertainty
obtained from the fit we define to be the internal error, and
for electron spin-flip resonance curves taken under conditions
similar to that shown in Fig. 5, the internal error was typically
less than 20 Hz. Because fe is roughly proportional to B, 20 Hz
corresponds to a 1.6 × 10−10 fractional measurement of B, a
reduction by about a factor of five, due to averaging, from the
shot-to-shot variation in B.

The resonance curve in Fig. 5 took a few minutes to obtain.
If we took many resonance curves over a longer period, the
scatter in the fitted values for fe was larger than the internal
error of an individual fit, due to slow drift and fluctuations in
B. We define the external error to be the standard deviation of
fe, determined from many separate scans. The typical external
error for data taken over a 30-min period was greater than
40 Hz. We found the external error to be smallest between
10 PM and midnight local time. Since the measurement of fe

was limited by the stability of B, reducing the internal error
by narrowing the line width with longer Rabi pulses would not
have benefited us.

To determine the hyperfine constant A, we cycled between
measurements of fe and measurements of the nuclear spin-flip
frequencies discussed in the next section. To minimize the
effect of drift and slow fluctuations in B, it was important to
complete one cycle of measurements as rapidly as conveniently
possible. We found that we could complete a cycle of
measurements more rapidly if we did not change the frequency
of the repump laser to the repumping transition (see Fig. 1) for
the fe measurements. Therefore, we set the frequency of the
repump laser to the far-detuned position (400 MHz to 600 MHz
lower than the cooling transition) for all measurements of fe,
f1, f2, and f3.

D. Nuclear spin-flip measurements

The rf radiation used to drive the nuclear spin-flip transi-
tions was generated by mixing the output of an 80 MHz synthe-
sizer having 1 mHz resolution with a higher-frequency synthe-
sizer that had lower frequency resolution. For measurements
of f2 and f3 (approximately 290 MHz), the higher-frequency
synthesizer was set to 220 MHz. For measurements of f1

(approximately 340 MHz) the higher-frequency synthesizer
was set to 280 MHz. Switching of the rf was done with a
switch having approximately 90 dB isolation. The rf radiation
was coupled to the ions through a two-turn rf loop antenna,
placed near ions, outside the vacuum envelope (see Fig. 4).

Figure 6 shows an f2 resonance curve obtained with the
Ramsey method. The rf power was adjusted to achieve a
π/2 pulse in 0.5 s. The two π/2 pulses were separated by
4 s. After the Ramsey sequence, both the cooling laser and the
far-detuned laser were turned on simultaneously. The power
of the far-detuned beam was adjusted so that the dark state
repumped with a 1/e time constant of approximately 2 s.
To avoid any significant ac Zeeman shifts due to the finite
isolation (26 dB) of the microwave switch, the microwave
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FIG. 6. f2 resonance obtained with a 4 s Ramsey free-precession
period. The rf power was adjusted to apply a π /2 pulse in 0.5 s.

frequency was detuned from resonance with fe by 1 MHz
during the f2 measurement. Fitting the data of Fig. 6 to a
sinusoidal curve gives f2 = 288 172 932.435 3(7) Hz. The
typical external error from measurements taken over a 30 to
40 minute measurement cycle was approximately 5 mHz. A
5 mHz external error with the 6.5 kHz/mT sensitivity of this
transition implies a fractional magnetic field stability of 2 ×
10−10 over a typical 30 to 40 min period, which is comparable
to what was observed on the electron spin-flip transition.

Figure 7 shows an f1 resonance curve obtained with the
Ramsey method. We first transferred the population in |i〉 to
the (mI = 3

2 ,mJ = − 1
2 ) state with a 600 μs π pulse. This was

followed by the Ramsey interrogation, as shown in Fig. 7.
We then used a second 600 μs microwave π pulse to transfer
any ions remaining in the (mI = 3

2 ,mJ = − 1
2 ) state to |i〉. The

Doppler cooling laser

rf switch

rf frequency - 339 961 281.72 (Hz)

tnuoc
dezila

mron

0.5 s 0.5 s

4 s

600 s
microwave switch

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

+100kHz
+100kHz
-100kHz
-100kHz

FIG. 7. An f1 resonance obtained with a 4 s Ramsey free-
precession period. The rf power was adjusted to apply a π/2 pulse
in 0.5 s. The microwave frequency was shifted by ±100 kHz during
Ramsey sequence.
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0.8

1.0

Doppler cooling laser

286 MHz rf

rf frequency - 286 586 653.95 (Hz)
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dezila

mron

0.5 s

0.5 s 0.5 s

0.5 s
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FIG. 8. An f3 resonance obtained with the Ramsey method. The
power of the rf was adjusted to apply a π /2 pulse in 0.5 s.

ion population in |i〉 was then detected by the laser-induced
fluorescence.

We shifted the microwave frequency by ±100 kHz from
resonance during the Ramsey interrogation of f1. This pre-
vented driving the fe transition with microwave radiation that
leaked through the microwave switch. The DDS frequency
could be switched by as much as 100 kHz, and we could still
keep the Gunn diode oscillator phase-locked. A 100 kHz offset
produced a 2 mHz ac Zeeman shift due to the microwave
leakage through the switch. A measurement of f1 consisted
of taking two scans with alternate signs of the microwave
detuning. The f1 transition frequency was determined by
fitting the average of the two scans. A fit to the data in Fig. 7
provides f1 = 339 961 281.917 0(8) Hz. The external error
from measurements taken over a 30 to 40 min period was
typically 5 mHz, about the same as for the f2 measurements.

Figure 8 shows an f3 resonance curve obtained with a
4 s Ramsey free-precession period. The pulse sequence was
very similar to the one for f1. The microwave π pulse in
the f1 measurement was replaced with a 0.5 s rf π pulse to
transfer the population from |i〉 to the (mI = 1

2 ,mJ = 1
2 ) state.

Then the rf frequency and amplitude were changed, and we
applied a Ramsey sequence with a 4 s free-precession period.
The frequency of the microwave radiation was detuned from
resonance by 1 MHz during the f3 measurement. A fit to the
data in Fig. 8 gives f3 = 286 586 654.158 5(14) Hz.

The length of the Ramsey free-precession periods in the
nuclear spin-flip measurements (4 s) was limited by the heat-
ing, presumably due to collisions with residual gas molecules,
that occurred when the cooling laser was turned off [16]. For
free precession periods longer than 4 s, the ion fluorescence
decreased, due to the increase in the Doppler width of the
cooling transition. This added noise and complicated the
signal analysis. Longer free-precession periods (20 s to 100 s)
have been used with sympathetic cooling in previous low-B
measurements [26,27]. The nuclear spin-flip measurements
at 4.4609 T were limited by magnetic-field instabilities, so
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FIG. 9. (Color online) Summary of measurements taken during
a 4 h run at night. The measured electron and nuclear spin-flip
frequencies (relative to fixed frequencies fe0 = 124 076 861 270 Hz,
f10 = 339 961 281.922 Hz, f20 = 288 172 932.440 Hz, and f30 =
286 586 654.160 Hz) are plotted against the time the measurement
was made. The measurements are grouped into cycles, labeled 1–6
on the graph. Each cycle was used to determine a value of A and
gI

′/gJ . The error bars are the internal errors obtained from the fits
to the resonance curves. Due to magnetic field drift, fe drifted down
by about 100 Hz during this run. This is consistent with the drifts
observed with f1 and f2, where f1 decreases and f2 increases with
decreasing magnetic field.

there was no compelling reason to use longer free-precession
periods.

E. Experimental results

To determine the hyperfine constant A, resonance curves
such as those shown in Figs. 5–7 were taken in succession,
as shown in Fig. 9, and fits to the resonance curves were
used to determine fe, f1, and f2. A typical measurement
cycle consisted of an fe measurement, followed by an f1

measurement, followed by another fe measurement, followed
by an f2 measurement, followed by a final fe measurement.
One measurement cycle took 30 to 40 min to complete. The
average of the three fe measurements in one cycle was used to
determine fe. The uncertainty in fe was taken to be the external
error from the scatter in the three measurements, which was
typically about 40 Hz. The uncertainties assigned to f1 and
f2 were the external errors from the scatter in the f1 and f2

measurements from consecutive measurement cycles, which
was typically about 5 mHz.

All known systematic errors in the nuclear spin-flip reso-
nance frequency measurements, other than those due to the
magnetic field instability, were less than 1 mHz. The largest
systematic error is due to microwave radiation leaking through
the microwave switch. As discussed in Sec. II D, this produced
a 2 mHz shift in the f1 resonance curve. However, by taking
data with the microwave frequency shifted off resonance by
both +100 kHz and −100 kHz, this shift could effectively
be canceled. During a 4 s nuclear spin-flip measurement,
the ion temperature increased due to collisions with the
room temperature residual background gas. Previous studies
indicated that the temperature increase over a 4 s period
is limited to a few kelvins [16,22]. However even a 10 K

temperature would produce only an approximately −0.1 mHz
time-dilation shift in the measured 9Be+ nuclear spin-flip
frequency. We performed some simple checks for unknown
systematic errors by varying the length of the Rabi pulse in the
fe measurement and the length of the free-precession period
in the nuclear spin-flip measurements. In addition, we took
some f1 and f2 measurements with an 8 s Rabi pulse. No
systematic dependencies were observed at the level permitted
by the magnetic field stability.

For each measurement cycle, the Breit-Rabi formula
[Eq. (2)] was used to solve for values of A, gI

′/gJ , and X.
The uncertainties in these values were determined by using
the Breit-Rabi formula to solve again for A, gI

′/gJ , and X,
but with fe, f1, and f2 set to the limits of their uncertainties.
We conservatively assigned the largest uncertainty that could
be obtained from the different combinations of limits. For
example, if δfe, δf1, and δf2 are the uncertainties in fe, f1,
and f2, solving the Breit-Rabi formula with the frequency
values fe + δfe, f1 + δf1, and f2 + δf2 gives the largest
uncertainty for A, while solving the Breit-Rabi formula with
the frequency values fe + δfe, f1 − δf1, and f2 + δf2 gives
the largest uncertainty for gI

′/gJ .
Figure 10 summarizes the measurements of A at high

magnetic field. Four different sets of data were taken on
four different dates over a period of two months. Each
set of data consisted of at least two and as many as six
measurement cycles. The consistency of the data is good.
The standard deviation from the scatter of the 15 different
measurements of A is 7 mHz, which is slightly less than the
average 11 mHz uncertainty of an individual measurement.
For the determination of A we use a weighted average of
the data shown in Fig. 10 and conservatively assign an
11 mHz uncertainty, the average uncertainty for a single
measurement cycle. An 11 mHz uncertainty corresponds to
about a 3 × 10−10 fractional magnetic field instability, about
a factor of three below the shot-to-shot fluctuations in the
magnetic field. We believe that an assignment of a smaller

A
 +

 6
25

 0
08

 8
37

 (
H

z)

-0.34

-0.35

-0.36

-0.37

-0.38

-0.39

-0.40

-0.41
Run 1
Run 2
Run 3
Run 4
Weighted mean

FIG. 10. Summary of the measurements of the high-field hyper-
fine constant A. Each of the four runs is a series of determinations
of A made on the same date. Each A value is determined from the
Breit-Rabi formula and one cycle of fe, f1, and f2 measurements.
The assignment of uncertainties is described in the text.
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TABLE I. Measured values of f3 and values of f3 predicted from the Breit-Rabi formula. All frequencies are in Hz.

f2 (measured) f3 (predicted from f2) f3 (measured) f3 (predicted) − f3 (measured)

288 172 931.651 0 286 586 653.404 9 286 586 653.400 3 0.0046
288 172 931.609 7 286 586 653.365 8 286 586 653.372 7 −0.0069
288 172 932.447 0 286 586 654.156 8 286 586 654.167 1 −0.0103
288 172 932.453 5 286 586 654.162 9 286 586 654.157 8 0.0051

uncertainty would require a careful study of the statistics of
the magnetic field fluctuations. The result is

A(4.4609T) = −625 008 837.371(11)Hz. (5)

Although A was the main focus of this study, a value of the
g-factor ratio is also obtained from the same analysis:

gI
′/gJ = 2.134 779 852 7(10) × 10−4. (6)

In four of the data cycles shown in Fig. 10, the fourth
frequency f3 was measured in addition to fe, f1, and f2. These
measurements were used to place upper limits on corrections
to the Breit-Rabi formula at a fixed value of B. The results are
listed in Table I. If the Breit-Rabi formula is assumed to be
correct, and A and gI

′/gJ are fixed at the values given by the
complete set of 15 data cycles [Eqs. (5) and (6)], then any of
the three frequencies fe, f1, or f2 can be be used to determine
X for a given data cycle. This value of X can then be used to
predict f3 for that data cycle. In practice f2 tended to yield
the most consistent values of X. The rms difference between
the measured value of f3 and the value predicted from the
measurement of f2 was 7 mHz. This is consistent with the
noise expected from magnetic field fluctuations. We use these
results to place an upper limit of 10 mHz on any shifts of f3 at
B = 4.4609 T due to corrections to the Breit-Rabi formula.
More specifically, we can set limits on corrections to the Breit-
Rabi formula having the form of the quadrupole diamagnetic
shift or of the hyperfine-assisted Zeeman shift. Since all of the
measurements were made at nearly the same value of B, this
test is not sensitive to modifications to the Breit-Rabi formula
that amount to a dependence of either A or gI

′/gJ on B.
The energy shift of an (mI ,mJ ) state due to the quadrupole

diamagnetic shift, at a fixed value of B, has the form [9]

EQ = hfQB2

[
I (I + 1) − 3m2

I

]
I (2I − 1)

. (7)

If the only correction to the Breit-Rabi formula is given by
Eq. (7), then agreement of the measured and predicted values
of f3 to less than 10 mHz sets a limit |fQ|B2 < 5 mHz at B =
4.4609 T, or |fQ| < 2.5 × 10−4 Hz T−2.

The hyperfine-assisted Zeeman shift of an (mI ,mJ ) state
has the form [11]

EHZ = 2hβHZB
[
m2

ImJ − I (I + 1)mJ + mI/2
]
. (8)

If the only correction to the Breit-Rabi formula is given by
Eq. (8), then agreement of the measured and predicted values
of f3 to ±10 mHz sets a limit |2βHZB| < 6.7 mHz at B =
4.4609 T, or |βHZ| < 7.5 × 10−4 Hz T−1.

III. DETERMINATION OF k FROM HIGH-FIELD
MEASUREMENTS AND PREVIOUS LOW-FIELD

MEASUREMENTS

The present experimental results can be combined with
previous measurements made by some of the present authors
at lower values of B to determine the B dependence of A

or gI
′/gJ . Preliminary values of A and gI

′/gJ were given
in Ref. [5] but not the transition frequencies on which they
were based. We now supplement Ref. [5] with the transition
frequencies and a final determination of A and gI

′/gJ . Two
nuclear spin-flip frequencies, labeled 1 and 3 in Table II,
were measured near two particular values of B where the
first derivatives of the frequencies are zero. Electron spin-flip
frequencies, labeled 2 and 4 in Table II, were measured at
the same two values of B. The experimental methods have
been described in detail [5,26–28]. Transition 3 is known
better than transition 1 because it was studied for use as a
frequency standard [27,28]. The value we report for transition
3 in Table II is slightly different than that reported in [28]
because it includes additional measurements made in 1988
and 1989 as well as an evaluation of the background pressure
shift.

If no account is taken of any B dependence of A or
gI

′/gJ , the four frequency measurements, together with the
Breit-Rabi formula, yield a system of four equations with
four unknowns, A, gI

′/gJ , X1, and X2, where X1 is the
value of X for transitions 1 and 2, and X2 is the value
of X for transitions 3 and 4. The frequencies given in
Table II yield A = −625 008 837.053(11) Hz and gI

′/gJ =
2.134 779 851 8(23) × 10−4. The precise values of X1 and X2

are not important, since they reflect only the value of B at which

TABLE II. Low-B resonance frequencies used to determine A and gI
′/gJ .

Label (mI ,mJ ) ↔ (mI
′,mJ

′) B(T) Frequency (Hz) Uncertainty (Hz)

1 ( 1
2 , − 1

2 ) ↔ ( 3
2 , − 1

2 ) 0.677395 321 168 429.685 0.010
2 ( 3

2 , − 1
2 ) ↔ ( 3

2 , 1
2 ) 0.677395 18 061 876 000 150 000

3 (− 1
2 , 1

2 ) ↔ (− 3
2 , 1

2 ) 0.819439 303 016 377.265 20 0.000 11
4 (− 3

2 , − 1
2 ) ↔ (− 3

2 , 1
2 ) 0.819439 23 914 008 800 150 000
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the experiment was performed, not any intrinsic property of
the 9Be+ ion. Comparing these results to Eqs. (5) and (6), we
see that there is clear evidence for B dependence of A, but that
gI

′/gJ is independent of B to within experimental error.
From theoretical considerations and from experimental

results with Rb, a quadratic B dependence of A is expected.
If we assume that A(B) = A0 × (1 + kB2), then there are five
unknowns to solve for: A0, k, gI

′/gJ , X1, and X2. In addition
to the four equations for the low magnetic field measurements,
derived from the Breit-Rabi formula, a fifth equation is given
by the expression for the high-B value of A:

A0 × (
1 + kB3

2
) = −625 008 837.371 Hz, (9)

where B3 = 4.4609 T. Solving the set of five equations gives

A0 = −625 008 837.044(12) Hz, (10a)
k = 2.63(18) × 10−11 T−2, (10b)

gI
′/gJ = 2.134 779 852 0(23) × 10−4. (10c)

The uncertainties of the parameters are obtained by varying
the experimental frequencies through their uncertainties. The
value of gI

′/gJ given by Eq. (10c) is consistent with, but less
precise than, that obtained from the high-B data alone [Eq. (6)].

IV. CALCULATION OF DIAMAGNETIC HYPERFINE
SHIFT COEFFICIENT k

In nonrelativistic atomic theory, the diamagnetic shift in
hyperfine structure arises as a cross term involving both
the diamagnetic interaction and the hyperfine interaction
in second-order perturbation theory. Let the unperturbed
Hamiltonian for an N -electron atom with nuclear charge
Ze be

H0 =
N∑

i=1

p2
i

2m
−

N∑
i=1

Ze2

4πε0ri

+
∑
i<j

e2

4πε0|ri − rj | , (11)

where m is the electron mass, −e is the electron charge, and ri

and pi are the position and momentum of the ith electron. The
interaction with an external magnetic field B = B ẑ is taken into
account by the minimal coupling prescription, i.e., making the
replacement pi → pi + eA(ri), where A is the vector potential
function, ∇ × A = B. Nuclear Zeeman, electron spin Zeeman,
and hyperfine interactions are also added as perturbations to
H0. The kinetic energy term for the ith electron in Eq. (11)
undergoes the change

p2
i

2m
→ [pi + eA(ri)]2

2m
(12a)

= p2
i

2m
+ e[pi · A(ri) + A(ri) · pi]

2m

+ e2A2(ri)

2m
(12b)

= p2
i

2m
+ H

p
i + H d

i . (12c)

The term containing the first power of A is called the
paramagnetic interaction H

p
i , while the one containing A2

is called the diamagnetic interaction H d
i . The division into

paramagnetic and diamagnetic parts is gauge dependent, but
the choice of gauge,

A(r) = 1
2 r × B, (13)

is particularly convenient. With that choice, the paramagnetic
term becomes

H
p
i = e

2m
[pi · A(ri) + A(ri) · pi] (14a)

= e

4m
(pi · ri × B + ri × B · pi) (14b)

= e

2m
ri × pi · B = e

2m
�i · B = e(
i)zB

2m
, (14c)

where �i = ri × pi is the orbital angular momentum of the ith
electron. The diamagnetic term becomes

H d
i = e2A2(ri)

2m
= e2

8m
(ri × B)2 = e2

8m

(
x2

i + y2
i

)
B2. (15)

H d
i can be divided into a spherically symmetric (scalar) part

and a rank-2 spherical tensor part:

H d
i = e2B2r2

i

12m
+ e2B2r2

i

24m
(1 − 3 cos2 θi)

≡ H d0
i + H d2

i . (16)

The total paramagnetic interaction is obtained by summing
H

p
i over all electrons:

H p =
N∑

i=1

H
p
i = eB

2m

N∑
i=1

(
i)z = eB

2m
Lz, (17)

where Lz is the z component of the total electronic orbital
angular momentum. To a very good approximation, the ground
electronic state is an S state, that is, an eigenstate of L2 with
L = 0, so H p can be neglected.

The total scalar part of the diamagnetic interaction is

H d0 =
N∑

i=1

H d0
i =

N∑
i=1

e2B2r2
i

12m
. (18)

In first-order perturbation theory, this leads to a common
shift of all of the hyperfine-Zeeman sublevels of the ground
electronic state. In second-order perturbation theory, there is a
cross term that is first order in both H d0 and the Fermi contact
hyperfine interaction. This leads to an effective interaction
that appears as a shift in the hyperfine A value, proportional to
B2 [7,8,29–31]. Evaluation of the second-order perturbation
term yields the constant k.

Unpublished calculations by Lipson, similar to those
done for Rb [9,31], yielded k = 2.52 × 10−11 T−2 for Be+.
These calculations used Hartree-Fock-Slater wave functions
[32]. The inclusion of all intermediate states, including
the continuum, was done by solving an inhomogeneous
differential equation for the perturbed wave function [33,34].
Similar calculations were done by one of the present authors
(W.M.I.), but using a parametric potential for Be+ that
reproduces the experimental energy levels [35]. This yielded
k = 2.68 × 10−11 T−2. The estimate given in Ref. [5] of
�A = −0.017 Hz T−2 (equivalent to k = 2.7 × 10−11 T−2)
was based on these calculations.
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Another method of obtaining k to the same order in
perturbation theory is to calculate an approximate electronic
wave function that is accurate to first order in H d0 and then
to calculate the mean value of the hyperfine interaction with
these wave functions. A simple way to do this is to use the mul-
ticonfiguration Hartree-Fock (MCHF) or multiconfiguration
Dirac-Hartree-Fock (MCDHF) method, where an additional
term, br2

i is added to each single-electron Hamiltonian.
Unlike model potential methods, MCHF and MCDHF are
ab initio in the sense that they require no experimental input,
such as observed energy levels, only values of fundamental
constants.

The GRASP set of MCDHF programs [36–39] were used
to calculate correlated wave functions for Be+ with and
without the br2

i term and to calculate hyperfine constants with
these wave functions [40]. The calculation of the unperturbed
hyperfine constant A0 for 9Be+ was similar to that done
by Bieroń et al., [41] but less extensive, leaving out for
example nuclear recoil and the Breit interaction. The result,
A0 = −624.19 MHz, is within 0.13% of the experimental
value. The calculation was then modified by including the
br2

i terms in the Hamiltonian. In Hartree atomic units (e =
m = h̄ = 1), b is dimensionless. It was varied from 1 × 10−5

to 2 × 10−3. The change in A, relative to A0, was found
to be proportional to b for b � 1 × 10−4. Evaluating the
constant of proportionality yields k = 2.645(2) × 10−11 T−2,
where the uncertainty here reflects only numerical error,
not error due to physical approximations, such as neglect
of the Breit interaction. However, given the good agreement of
the calculated and experimental values of A0, we estimate the
error of the calculated value of k to be no more than 1%. All
of the calculated values of k, including Hartree-Fock-Slater,
parametric potential, and MCDHF, are in good agreement
with the experimental result within the experimental error
of 7%.

The use of the diamagnetic potential in a relativistic
calculation requires some justification, since the minimal
coupling prescription does not yield a term proportional to
A2 in the Dirac Hamiltonian [42]. Instead of Eq. (12a) we
have, for the kinetic energy term in the single-electron Dirac
Hamiltonian:

cα · pi → cα · [pi + eA(ri)]

= cα · pi + ecα · A(ri), (19)

where

α =
(

0 σ

σ 0

)
, (20)

and σ = (σ 1,σ 2,σ 3) is defined in terms of the Pauli matrices
σ i . Since the field-dependent perturbation only contains B

to the first power, calculation of k with Eq. (19) requires
third-order perturbation theory (two orders in the magnetic
field interaction and one order in the hyperfine interaction),
unlike the nonrelativistic case, which requires only second-
order perturbation theory.

Kutzelnigg [43] showed that a unitary transformation of
the Dirac Hamiltonian in the presence of a magnetic field
yields terms resembling the nonrelativistic paramagnetic and
diamagnetic terms, plus another term which is first order in

A and whose effect goes to zero in the nonrelativistic limit.
This justifies the use of second-order perturbation theory to
calculate k in the relativistic case. The relativistic form of the
single-electron diamagnetic interaction is [42,43]

H d
i (rel) = β

e2A2(ri)

2m
, (21)

which differs from the nonrelativistic form [Eq. (15)] only by
the factor of β, where β is the 4 × 4 matrix

β =
(

I 0

0 −I

)
, (22)

where I is a 2 × 2 identity matrix. The factor of β was found
also by Szmytkowski by a different method [44]. The effect of
β on a matrix element of H d

i (rel) is to reverse the sign of the
integral involving the product of the small components of the
Dirac orbitals. Thus, the relative error incurred by ignoring β

should be less than (Zα)2, where α here is the fine-structure
constant e2/(4πε0h̄c). This error can be neglected for Be+
(Z = 4) but may amount to a few percent for Rb (Z = 37).

The total tensor part of the nonrelativistic diamagnetic
interaction is

H d2 =
N∑

i=1

H d2
i =

N∑
i=1

e2B2r2
i

24m
(1 − 3 cos2 θi). (23)

In first-order perturbation theory, this leads to no energy shifts
in the ground electronic state. In second-order perturbation
theory, there is a cross term that is first order in both H d2 and the
electric quadrupole hyperfine interaction. This leads to an ef-
fective interaction called the magnetically induced quadrupole
hyperfine interaction [9,31]. Comparison of the second-order
perturbation expression for the induced quadrupole interaction
and the expression for the quadrupole antishielding factor γ∞
defined by Sternheimer [45] yields

fQ = e2Qγ∞
24mh

, (24)

where fQ is the coefficient of the induced quadrupole
interaction defined in Eq. (7). This form is useful because
values of γ∞ have already been calculated for many atoms
and ions. The value γ∞ = 0.7088 for Be+ has been cal-
culated in a Hartree-Fock approximation [46]. The most
recent experimental value of the 9Be nuclear quadrupole
moment is 5.288(38) × 10−30 m2 [47]. These values of the
constants yield the estimate fQ = 6.64 × 10−6 Hz T−2, which
is much smaller than the experimental upper limit set in
Sec. II E.

The hyperfine-assisted Zeeman shift can be estimated by
the same method as that used for the rubidium atom [11]. In
this approximation, the hyperfine matrix elements are given
by the Fermi-Segrè formula [48], the ns-state energies are
obtained from a hydrogenic (quantum defect) approximation,
and the continuum s-state wave functions are obtained from a
Coulomb approximation. In this approximation, the coefficient
βHZ for 9Be+ is equal to 2.61 × 10−4 Hz T−1, which is smaller
than the experimental upper limit set in Sec. II E.

Some other B-dependent shifts are in principle present,
such as a magnetic-field-induced spin-dipole hyperfine term,
but based on calculations done for Rb [31] they are likely
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to be much smaller than the terms already considered.
Various corrections to gJ and to gI

′ (e.g., nuclear diamagnetic
shielding) are calculable but are beyond the scope of this paper.
For recent calculations of gJ for Be+ and other three-electron
atoms, see Refs. [49–52]. For a recent calculation of the nuclear
diamagnetic shielding of Be+, see Ref. [53].
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[47] P. Pyykkö, Mol. Phys. 106, 1965 (2008).
[48] E. Fermi and E. Segrè, Z. Phys. 82, 729 (1933).
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