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Abstroct-TheoBR is a high-confidence statistic that evalu­
ates frequency stability at long T values. However, for real­
world data sets that contain thousands of points or more, the 
calculation of TheoBR can take hours, days, or even weeks on 
a typical PC. To make the calculation of TheoBR faster for 
these data sets, a method of averaging points together within 
the data set is developed. The error introduced by this tech­
nique is analyzed and compared with the exact value, and a 
correction formula is developed to minimize this error for FM 
noise types. Finally, the technique is applied to real data sets 
and determines stability at the longest T values in seconds as 
opposed to weeks. 

I. INTRODUCTION 

T HEORETICAL variance #1 (Theo1) is a time domain 
statistic with the ability to evaluate frequency stabil­

ity for a longer portion of a data run with greater con­
fidence than the similar Allan variance (Avar) [1]-[3]. 
However, because of its novel sampling, Theo1 is biased 
with respect to Avar, where the bias is the ratio of the 
expected values of Avar and Theo1 for all mutual I values 
[1]-[4]. This can be corrected by using the bias functions 
if the noise type is known and there is only one noise 
type present [2]-[4]. Typically, however, the noise types 
affecting the data are not known or there are mixed noise 
types. In this case, an estimate bias value is computed 
from the data run. Theo1 with bias removed (TheoBR) 
can be used effectively to estimate Avar at very long-term 
I, even where Avar cannot be _calculated [2]-[4]. For a 
data run of Nx closely spaced measurements with a sam­
pling period between adjacent observations given by 10, 

TheoBR is defined as 

TheoBR(m"Q,N x) 

1 ~ Avar(m = 9 + 3i,TQ,Nx) I 
= [n + 1£:0' Theo1(m = 12 + 4i,TQ,Nx ) (1) 

x Theo1(m,TQ,N x ) , 

where m is the averaging factor and n = L(0.lNx/3) - 3J 
(L·J denotes the floor function, which returns the integer 
part of a number) [2]-[4]. TheoBR removes a computed 
bias between Theo1 and Avar by multiplying Theo1 by 
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the value of the computed bias. The accuracy of the re­
moved bias is proportional to the number of points Nx. 

Theo hybrid (TheoH) is a hybrid statistic that combines 
Avar and TheoBR to obtain, respectively, short-term and 
long-term frequency stability information with high con­
fidence. 

Although this is an effective method of removing the bias 
between Theo1 and Avar and creating a useful frequency 
stability plot, the computation time of TheoBR increases 
dramatically with increasing NT Using individually coded 
algorithms or commercially available software, the time for 
a calculation of TheoBR can range from a few seconds for 
1000 points to nearly one hour for 16 000 points. Often, 
data sets with over 1.00000 points need to be analyzed; 
however, using this method would tie up computer resourc­
es and might take weeks to complete. This effectively makes 
the exact TheoBR algorithm in (1) too time-consuming for 
long-term, closely spaced measurements. 

II. A PRACTICAL AVERAGING TECHNIQUE 

To expand the usefulness of TheoBR and TheoH to 
these large data runs, we investigated ways of speeding up 
the calculation. One way to calculate TheoBR for a long 
data set in a reasonable time is to decrease the number of 
Nx phase points while still keeping the general properties 
of the noise process; we find that this can be achieved by 
averaging. For instance, if one has a set of 1000 points and 
takes the average of the first 100 consecutive points, one 
now has a single number representing those 100 points. 
The same can be done for the remaining sets of 100 num­
bers until a final data set of 10 numbers is generated. 
Then the TheoBR algorithm can be applied and a result 
for the bias value achieved almost instantaneously. The 
number of points that can be averaged together, which we 
call the bias average or BA, ranges from BA = N, result ­
ing in one single value, to BA = 2, resulting in a run of 
half the original length. BA = 1 returns the entire original 
data set and produces the actual value of the bias. 

This averaging technique dramatically improves in the 
speed of the bias calculation, which is the main goal of 
this study. For example, calculating the actual bias for 
16384 points takes nearly an hour on commercially avail­
able software. Averaging five numbers at a time, however, 
reduces the data set length to 3277 points and the calcu­
lation time to 20 s with an estimate bias value, discussed 
in the next section, that differs by less than 1% from the 
original value. 

III. CORRECTION FORMULA FOR FM NOISE TYPES 

As one might expect, the value of this estimated bias 
approaches the actual value when fewer numbers of points 
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Fig. 1. A plot of bias calculated at various BA for simulated white FM, 
flicker FM, and random walk FM. A linear trend line (noted by the 
dashed line) can be fitted to each noise type, and an empirical formula 
for prediction of the bias can be determined by examining the slopes of 
the fits to these simulations of noise. 

are averaged together. Fig. 1 shows the bias, calculated 
using a commercially available software program with a 
built-in TheoBR and bias algorithm, plotted as a function 
of the number of averages, BA. Again, the actual bias 
value is given at BA = 1. 

For the FM noise types of random walk, flicker, and 
white, the divergence of the bias from the actual value is 
approximately linear, as shown in Fig. 1, so a best-fit lin­
ear trend line with a slope of Obias can be drawn through 
the points. By finding Obias, one can calculate Bias(BA), 
the bias calculated with BA points averaged together, and 
apply a correction term to obtain Biasest, the estimate of 
the actual unaveraged bias, or Biasactual' Using the defini­
tion of slope, rise over run, 

rise Bias(BA) - Biasest 
8bias = - = (2) 

run . BA-1 

This yields the correction formula for Bias(BA): 

Biasest = Bias(BA) - 8bias· (BA -1). (3) 

Because they have a different characteristic slope, PM 
noise types must be considered separately; however, unless 
white PM and flicker PM are dominant at long-term T, we 
can ignore their effect because FM noises will dominate 
in most cases. An identical study may be done focused on 
PM noises. 

The slope of this trend line, Obias, was recorded for 
many data sets of varying single and mixed white, flicker, 
and random walk FM noise types of different sizes. An 
average value of these slopes was determined and then 
adjusted to minimize the error between the calculated and 
exact bias. A Obias value of -0.00055 was found to be 
optimal for estimating the bias from the linear fit. Thus, 
our correction formula is 

0.04 +---------------------=.....,:::; 

..().06 +----.----,...---,...---,...---,---..,-------; 
o ro ~ ~ ~ ~,oo m 

Number of points averaged, BA 

Fig. 2. The linear correction formula is used to calculate the bias from 
Bias(BA), and the departure from the actual bias value is plotted as a 
function of number of points averaged, BA. Approximate calculation 
speed is also indicated at select values of BA. 

Biasest = Bias(BA) + 0.00055· (BA -1). (4) 

IV. COMPARISON OF ACTUAL AND ESTIMATED BIAS 

Fig. 2 shows the error, that is, how much the predicted 
value of the bias from .the formula differs from the actual 
value: 

(Biasactual - Biasest) 
error = (5) 

.. Bias actual 

The plot shows that as BA increases, the error increases in 
magnitude and the calculation time decreases. But even a 

.small average of BA = 5 for a 16384-sample data set turns 
an hour-long calculation into a 20-s one with an error of 
less than 1%. 

Table I compares the actual bias to corrected bias on 
various segments of generated mixed-FM noise sets of dif­
ferent lengths. It also shows the error between the two. BA 
was chosen for each data set so that the calculation lasted 
less than one minute on a typical PC. 

We can also compute the adjusted and actual TheoBR 
values and compare the difference between them relative 
to the width of the one-sigma confidence interval associ­
ated with that point [5], [6]. One way to analyze this is to 
calculate what percentage of the total confidence width 
is the difference between these two TheoBR values, or 
.6.TheoBR. This is shown in Table II for the same gener­
ated FM-noise sets in Table 1. As shown in the table, any 
error associated with estimating the bias for TheoBR is so 
small as to be negligible when compared with the allowed 
confidence interval. 

V. FAST THEoBR FOR REAL DATA SETS 

The benefit of this method is that it reduces the time 
it takes to analyze real data. For example, Fig. 3(a) shows 
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TABLE I. ERROR BETWEEN ACTUAL AND ESTIMATED BIAS. 

Number of BA for 
points Biasest 

8000 3 
10000 4 
15000 4 
20000 7 

TABLE II. COMPARISON TO WIDTH OF CONFIDENCE INTERVAL. 

Confidence 
interval 

Number of spanned by 
points nTheoBR (%) 

8000 0.053 
10000 0.063 
15000 0.818 
20000 0.008 

the plot of 15 octave-7 levels of the Allan deviation (Adev) 
for preliminary data from a high-quality space-qualified 
hydrogen maser (TEMEX, Sophia-Antipolis, France).! 
This data run has 223130 points, representing one second 
time-error data taken for 2.57095 d. A calculation of Adev 
takes only a few seconds; however, because of the proper­
ties of Adev, the longest 7 averaging time of the clock's 
stability is limited to less than half of the length of the 
data set for ample confidence [7]. Using TheoH, we would 
be able to see the stability up to 3/4 of the length of the 
data set; however, a calculation of the actual bias on over 
200000 points would take weeks to compute on a present­
day PC. 

The fast TheoBR method allows us to calculate TheoH 
for this data set in minutes, not weeks, on the same PC. 
Fig. 3(b) shows a plot of TheoH using this method for the 
bias calculation. The onset of a different noise type is vis­
ible at the expanded averaging time with the addition of 
two very large 7 values. 

Fig. 4 shows another example of the benefit of a us­
able TheoH method for any data length with agreement 
between the exact and fast methods. The plot shows the 
frequency stability of a free-running 563-nm laser ulti­
mately locked to a mechanically stable optical cavity [3]. 
The presence of steep 7+1 slope in short-term might be 
interpreted as frequency drift; however, systematic drift is 
not indicated in the raw frequency data. Byusing Theoll, 
we can see a long-term slope change toward apparent ran­
dom walk FM whose level can be estimated, even for this 
limited data run. 

VI. CONCLUSION 

The properties of TheoBR and Theoll are particularly 
useful for evaluating frequency stability at large 7 values. 

1No endorsement is implied. Products are available from other manu­
facturers. 
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Fig. 3. (a) Plot of the Allan deviation for a compact, space-qualified 
H-maser. (b) Plot of TheoH using the Fast-TheoBR method showing its 
additional calculations of long-term stability. 

This is advantageous for large data sets; however, calcu­
lating the bias for these data sets takes a very long time. 
We have shown a method of averaging data points that 
dramatically decreases this calculation time and makes 
TheoBR, and hence TheoH, practical for long data runs. 
A correction formula was also introduced that estimates 
the actual bias value by an error of less than 1%, well 
within the typical one-sigma confidence interval. Although 
not exact, the benefit of dramatically decreasing the cal­
culation time using fast TheoBR outweighs the small, es­
sentially negligible introduced difference. 
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Fig. 4. TheoH plot using the Fast TheoBR technique of a laser frequency 
that is locked to a stable optical cavity (below); the raw frequency data 
are shown above. Courtesy of J. Bergquist and S. Diddarns, June 2006. 
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