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Abstract—XNAV is a technology demonstration involv-
ing many organizations that will use photons from X-ray
pulsars for navigation and spacecraft attitude determi-
nation. This paper summarizes relativistic effects in the
context of XNAV. It also characterizes the primary task
in the time domain of realizing an on-board master clock
that time-tags detected X-ray photons with sufficient ac-
curacy to permit meaningful navigation solutions. XNAV
must first estimate the periods of uncatalogued X-ray
pulsars to determine suitable candidate pulsars for navi-
gation. This task will use an efficient search algorithm to
determine the pulsar period from a sensor aimed at the
pulsar.

As a part of this search and catalogue task, an accumu-
lator that integrates photon counts will compute average
counts per sampling time interval, in time bins that are
small compared to the pulsar’s period. This operation
is dubbed the pulsar profiler function. It is intended to
build a reference or standard profile of a chosen pulsar
for later use. The search and catalogue need to be suf-
ficient for navigation based on times-of-arrival of pulsar
signals in real time vs. the on-board reference clock. Op-
erationally, the timing module locates in time the high-
est peak (or other defined phase center) in the group
velocity of received, periodic plane-wave pulses from cat-
alogued pulsars. The goal is to permit navigation accu-
racy approaching 100 m. This will be accomplished by
cross-correlation of catalogued profiles to incoming pro-
files based on X-ray sensor data collected in real time.

1. Introduction

In deep space where GPS is not available, studies of
navigation scenarios using periodic signals from pulsars
are of great interest [1],[2],[3]. XNAV is a project in-
tended to demonstrate that spacecraft attitude, posi-
tion and velocity can be determined to about 100 m ac-
curacy with X-ray signals from distant pulsars. In the
X-ray region of the spectrum, pulsar signals are usually
quite weak. Long observation times may be required
and that entails disentangling spacecraft motion during
the observations from the measurements themselves in
order to perform accurate navigation. Time stability
over these long times together with Poisson statistics of
photon counting of weak signals impose restrictions on
navigation accuracy. In contrast, pulsar radio signals do
not usually suffer from such counting noise.

In Section 2 we discuss the processes involved in nav-
igation using pulsar signals. Section 3 discusses the ef-
fect of white frequency clock noise, modeled in terms of
random walk in time, on time-tagging and subsequent
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time-binning for on-board processing of photon times-of-
arrival data. It is shown that if a good atomic clock such
as a Rubidium Atomic Frequency Standard (RAFS), or
a Cesium standard, is used to time-tag the individual
arriving photons, then, for most pulsars, errors arising
from intrinsic clock noise are substantially lower than er-
rors arising from Poisson counting statistics. In Section
4 we discuss some of the relativistic effects that must be
accounted for.

2. Navigation with pulsar signals

X-rays are useful for navigation for many reasons.
First, they do not suffer interstellar dispersion so the
electron content along the photon path does not need
to be known. Secondly, X-ray detectors can be made
small compared to radio telescopes and so could poten-
tially be useful in a space vehicle. Central to this project
is the fact that the periods of pulsars have very good sta-
bility (except for occasional anomalies due to starquakes
and other events), and predictable higher period deriva-
tives. For example, Figure 1 compares the fractional
frequency stability σz (or equivalently MODσy(τ)) for
pulsars 1937+21, 1855+09, and J0437-4715 with that
of a typical atomic clock that would contribute to TAI.
Over timescales of a few years, J0437-4715 may be more
stable than an atomic clock [4],[5],[6].

Fig. 1. Timing stability of radio signals from pulsars B1937+21,
B1855+09, and J0437-4715, compared with that of an atomic
clock.

To compare the stability of rotation-powered pulsar
timing with other clocks, we give a plot of clock frac-
tional frequency stabilities and compare them with the
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frequency stability of pulsar B1937+21 in Figure 2. The
stability of this pulsar is comparable to that of a com-
mercial Cs clock after about 107 s of averaging. The
good frequency stability provides a determination of po-
sition and velocity of the spacecraft better than by star
tracking alone.

Fig. 2. Comparison of the frequency stability of pulsar PSR
1937+21 to other typical clock sources.

Pulsar signal shapes called ‘profiles’ are obtained by
creating a data file of time-tagged, detected photons.
Figure 3 shows the profile of X-ray signals detected by
the USA satellite from the Crab pulsar, binned into time
slots, and summed for about 10 minutes, assuming the
detector is at the solar system barycenter. In practice
the detector is in motion so the pulse period at the de-
tector is Doppler shifted. For long integration times, a
stable atomic clock is required for time-tagging. A pulse
period is assumed and the time tags are folded into a
single time interval equal to the period, with each pho-
ton being put into one of the bins into which the period
has been divided. If the period is correct, one or more
strong peaks will appear. If the Doppler frequency shift
has not been correctly accounted for, the peaks in the
pulse profile will be smeared into neighboring bins. De-
termining the period for which the peak-to-background
counts are largest gives the detector’s velocity relative
to the assumed origin.

The phase of the peaks relative to the phase of the
“true” profile at the barycenter then gives information
about the component of the detector’s displacement
from the barycenter along the line of sight to the pul-
sar. Let n be a unit vector along the line of sight from
the solar system barycenter to the pulsar, and r be the
displacement of the detector from the barycenter. Then
to a first approximation,

td − tb = −n · r
c

, (1)

where td is the arrival time of the pulse at the detec-
tor and tb is the arrival time of the same pulse at the
barycenter. This equation shows the origin of an im-
portant source of error: if the celestial position n has

too much uncertainty, an uncertainty in r will ensue no
matter how good the timing is.

Figure 3 shows the profile of the Crab pulsar. The
Crab is a young pulsar and one of the most powerful
of the rotation-powered pulsars, and so tends to display
frequency anomalies as the stellar material settles. This
pulsar has the following characteristics:

• Right Ascension: 05:34:31.973 hr:min:sec;
• Declination: +22:00:52.06 deg:min:sec;
• period P = 33.08471603 ms;
•

dP
dt

= −4.22765× 10−13;
• Pulse Profile: strong source with lots of background

from the nebula.

Fig. 3. Profile of the Crab pulsar.

In sum, a measurement consists of: time-tagging pho-
ton times of arrival; binning the data stream and mea-
suring period (gives velocity); determining phase of ar-
riving pulse relative to arrival phase at reference frame
origin (gives position). In addition, the direction of the
line of sight to the pulsar relative to spacecraft-fixed
axes gives information about spacecraft attitude.

The pulse profile of the signal from the Crab is shown
in Figure 3 in terms of the probability of receiving a
count in one of the 1024 bins. One sees from this plot
that the pulses do not show up strongly against the in-
tense background. Also the noise in the profile is not
intrinsic to the pulsar but arises from Poisson counting
statistics. Time-tagged data for over a million photons
were used to construct the profile in Figure 3.

3. Intrinsic Local Clock Noise

A model for uncertainty contributions to x-ray naviga-
tion, arising from local clock noise, has been developed
under the following assumptions:

• The frequency noise is white; time noise is modelled
by random walk with Gaussian statistics;

• The apparent pulsar period P is known at the local
on-board clock (if not, then no pulse profile can be
seen);

• The clock divides P up into Nb bins of size ∆ (sec);
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• Observations are conducted for N periods and
counts are folded into the Nb bins;

• In each bin, the average count rate is described by
a known pulse profile R(t), with R(t + P ) = R(t);

• The edges of each bin during each cycle P wander
due to random walk of the local clock;

• The intrinsic clock noise initializes at t = 0 and is
modeled as white frequency noise, which is equiva-
lent to random walk in phase or time.

In terms of this model of random walk in phase, it can
be shown that the stability measure, Allan deviation,
can be expressed as

σy(τ) =
σ0√
τ∆

, (2)

where σ2
0

is the variance of the steps in the random walk
that occur every ∆ seconds, and τ is the averaging time.

Figure 4 illustrates the effect of white frequency noise.
κ labels the bins: κ = 1,2, ...Nb.

Fig. 4. White frequency noise of the on-board clock causes time
random-walk of the edges of each κ time bin.

3.1 Intrinsic Clock Noise Analysis

The random walk in time affects the beginning and
end of each κth time slot. Here w is a random walk in
time of mean zero and variance σ0 that occurs every ∆.
Let the counting rate be

R(t) = R(t + P ). (3)

The times at the beginning and end of the (n,k) bin are
respectively denoted by tb, te. Then

tb = (n−1)P +(κ−1)∆+

n−1,Nn−1∑
m=1,τ=1

wm,τ +

κ−1∑
τ=1

wn,τ ; (4)

te = (n − 1)P + κ∆ +

n−1,Nn−1∑
m=1,τ=1

wm,τ +

κ∑
τ=1

wn,τ . (5)

Then the main contribution to the error in the counts
Cκ in the κth bin, after performing appropriate ensemble

averages, can be shown to be

〈
δC2

κ

〉
=

Nbσ
2
0

3
N3[R(κ∆)−R((κ−1)∆)]2+O(N2). (6)

The result can be compared to the estimated error in
the κth bin from the Poisson statistics of the counts;
that is, the counting statistics error is〈

δC2

κ

〉
Poisson

= NR(κ∆)∆ . (7)

The difference R(κ∆)−R((κ−1)∆) is simply related to

Fig. 5. Estimating the maximum slope of a pulse profile.

the slope of the pulse profile. We can obtain a crude es-
timate of the maximum slope–and hence the maximum
intrinsic clock noise error–by examining the Gaussian
pulse profile shown in Figure 5. If the maximum count
rate is Rmax and the half-width of the pulse is S, then
the slope at the half-width is approximately Rmax/S.
This estimate could easily be off by a factor of 2 or so,
which is however not significant in this analysis.

3.2 White Frequency Noise Errors

The ratio of error due to white frequency noise to
error due to counting statistics is then approximately

rκ =

√
〈δC2

κ〉
〈δC2

κ〉Poisson

=

√
2

3

σ0

√
NbRmax∆

S
N. (8)

As an example, use 1024 bins and the information about
the Crab pulsar given above. Assume the pulse half-
width is 1

6
of the period, P = 33 ms, the average count

rate = 130 counts/cycle, and N = T
P

, where T is the
total observation time. The result is expressed as a ratio
of count error in a bin to count error arising from Poisson
statistics:

rκ(max) �
√

2

3

σ0

S

√
Rmax

P
T ≈ (1.3 × 10−8sec−1) × T.

(9)
The main result from this ratio is that for a reasonably
stable clock, photon count errors arising from intrinsic
clock noise are negligible compared to count errors aris-
ing from counting statistics (Poisson statistics). This
shows that Poisson counting statistics are much more
important than random walk in phase of a good atomic-
clock signal source. Random walk in frequency can also
be analyzed analytically but is not reported here.
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4. Relativistic effects on clocks in space

Clocks in space are influenced by numerous relativis-
tic effects. Fortunately most relativistic effects are very
small and can be summed or superposed. At current
levels of accuracy for space-qualified atomic clocks the
effects can be grouped into three main types: second-
order Doppler shifts, gravitational frequency shifts, and
coordinate slowing (Shapiro time delay)[7] of the speed
of electromagnetic waves that pass near a massive body.
Doppler and gravitational frequency shifts are of order
1/c2 while the Shapiro time delay is of order 1/c3. Ef-
fects of order 1/c4 are negligible.

An imaginary atomic clock at the solar system
barycenter, running at a conventional rate, is usually
taken as a reference; such a clock is assumed to have
zero velocity even though the velocity of the solar sys-
tem relative to the cosmic microwave background radia-
tion is known to be nearly 400 km/s. The second-order
Doppler fractional frequency shift of a clock in space is
then −v2/2c2 where v is the magnitude of the clock’s
velocity. If Φ0 is the gravitational potential at the refer-
ence point and Φ the potential at the atomic clock, then
the gravitational frequency shift is

∆f

f
=

Φ − Φ0

c2
. (10)

The Shapiro time delay requires corrections to Eq. 1;
such corrections are currently only approximately in-
cluded in many barycentering codes.

Atomic clocks in earth-bound orbit suffer from similar
relativistic effects, but the reference point is then taken
to be on earth’s geoid. The average fractional frequency
shift relative to such a reference is

∆f

f
= −3GME

2ac2
+

GME

a1c2
+

GMEJ2

2a1c2
+

ω2

Ea2
1

2c2
(11)

where a is the orbit semimajor axis, e is the orbit eccen-
tricity, a1 is earth’s equatorial radius, G is the Newto-
nian gravitational constant, and ME is the earth’s mass.
For an orbit comparable to that of the space station,
∆f/f ≈ −3× 10−10. The frequency shift is dominated
by time dilation, or the second-order Doppler shift. The
effect on satellite clock time due to orbit eccentricity is

∆t =
2
√

GMEa

c2
e sin E + const. (12)

Most of these effects are well-known in the context
of GPS satellite clocks. For GPS satellite clocks, the
first term in Eq. 11 (∼ 10−10) is the actual effect on
the clock of gravity and motion. The appearance of the
semi-major axis of the orbit (a in the first term) reflects
the dependence of the atomic clock frequency on orbital
position. The second term affects the reference clocks
on earth’s surface (∼ 10−10 due to earth’s mass). The
third term (∼ 10−13) arises from earth’s oblateness and
affects earth-bound reference clocks. The last term is
due to earth’s rotation and also affects reference clocks.

An orbiting atomic clock provides proper time. There
is a significant difference between proper time and the
coordinate time provided by the reference. The differ-
ence must be carefully considered in establishing the
times-of-arrival of pulsar photons.

The proper time of clock in low earth orbit could be
converted with the aid of a GPS receiver, to GPS coor-
dinate time, then to Terrestrial Time, then to Barycen-
tric Coordinate Time if desired. Such transformations
involve additional relativistic effects. For example, be-
cause earth’s orbit about the sun is eccentric, conversion
of Terrestrial Time to Barycentric time involves a cor-
rection of the form of Eq. 12 with Me replaced by M�,
and with a and e representing the semimajor axis and
eccentricity of earth’s orbit and E the earth’s eccentric
anomaly.

5. Conclusion–Current Status

Navigation accuracies of the order of 102 meters may
ultimately be possible, but a number of issues must be
addressed. Reducing uncertainties that arise from ce-
lestial pulsar position errors is critical. Other clock
noise and frequency drift errors, and clock time and
synchronization errors affect the measurement of photon
times-of-arrival and the transformations from terrestrial
time to barycentric coordinate time. Instrumental noise
and jitter also affect the time-of-arrival tags and require
development of fast detectors and associated electron-
ics. Additional relativistic clock effects from solar sys-
tem bodies are important. Reducing uncertainties that
arise from celestial pulsar position errors is critical. In-
creased counting rates are required before intrinsic ref-
erence clock noise becomes the cause of precision and
accuracy limitations for x-ray navigation.

In sum, XNAV is an extremely challenging and in-
teresting idea and promises to exploit the remarkable
timing stability of the many rotation-powered pulsars
that have been intensively studied by astronomers in
the past three or four decades.
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