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William J. Riley, Fellow, IEEE, and Trudi K. Peppler

Abstract—We describe a method based on the total de-
viation approach whereby we improve the confidence of
the estimation of the Hadamard deviation that is used
primarily in global positioning system (GPS) operations.
The Hadamard-total deviation described in this paper pro-
vides a significant improvement in confidence indicated by
an increase of 1.3 to 3.4 times the one degree of freedom
of the plain Hadamard deviation at the longest averaging
time. The new Hadamard-total deviation is slightly nega-
tively biased with respect to the usual Hadamard devia-
tion, and � values are restricted to less than or equal to
T�3, to be consistent with the usual Hadamard’s defini-
tion. We give a method of automatically removing bias by
a power-law detection scheme. We review the relationship
between Kalman filter parameters and the Hadamard and
Allan variances, illustrate the operational problems asso-
ciated with estimating these parameters, and discuss how
the Hadamard-total variance can improve management of
present and future GPS satellite clocks.

I. Introduction

Using a type of Hadamard variance, the goal of this
paper is to reduce the uncertainty of long-term esti-

mates of frequency stability without increasing the length
of a data run. For measurements of frequency stability, the
two-sample frequency variance known as the Allan vari-
ance was generalized to an N -sample variance weighted
with binomial coefficients by R. A. Baugh [1]. The case of
the three-sample frequency variance that is used here is
the Picinbono variance [2] times 3

2 . However, in this paper
it will be called a Hadamard variance (following Baugh’s
work) that is defined as follows. Given a finite sequence of
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frequency deviates {yn, n = 1, . . . , Nymax}, presumed to
be the measured part of a longer noise sequence and with
a sampling period between adjacent observations given by
τ0, define the τ = mτ0-average frequency deviate as

yn(m) ≡ 1
m

m−1∑
j=0

yn+j . (1)

Let Hn(m) = yn(m) − 2yn+m(m) + yn+2m(m) be the sec-
ond difference of the time-averaged frequencies over three
successive and adjacent time intervals of length τ . Define
the Hadamard variance as

Hσ2
y(τ) =

1
6
〈H2

n(m)〉, (2)

where 〈·〉 denotes an infinite time average over n, and Hσ2
y

depends on m.
The global positioning system (GPS) program office

uses this particular time-series statistic for estimating
Kalman algorithm coefficients according to [3]; these coef-
ficients will be discussed in a later section. The Hadamard
deviation Hσy(τ) is a function that can be interpreted like
the more efficient Allan deviation as a frequency instability
vs. averaging time τ for a range of frequency noises that
cause different slopes on Hσy(τ). This is shown in Fig. 1.
For estimating Kalman drift noise coefficients, Hσy(τ) is
inherently insensitive to linear frequency drift and reports
a residual “noise on drift” as a τ

3
2 slope, or what is com-

monly called random run frequency modulation (RRFM).
This is in contrast to the Allan deviation, which is sensi-
tive to drift and causes a τ+1 slope. If the level of drift
is relatively high, it masks the underlying random noise.
It is customary to estimate and remove overall frequency
drift. Depending on the method of drift removal, this pro-
cedure can significantly alter the Allan deviation in the
longest term τ region of interest, so estimating underlying
noise can be a formidable task for any given data span.
On the other hand, the Hadamard deviation is unaffected
by removing overall frequency drift. For this reason, it is
the preferred statistic in situations in which the frequency
drift may be above the random noise effects, which is the
case with the use of Rb clocks in the GPS Block II satel-
lite program. We do not imply that systematics such as
frequency drift can be ignored. Indeed, satellite clocks are
changed and these systematics must be learned as quickly
as possible to ensure a smooth changeover.
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Fig. 1. The Hadamard deviation (root Hvar) shows FM power-law noises as straight lines in addition to PM sources of noise for τ -domain
power-law exponent µ (that is, Hσ2

y(τ) ∝ τµ) range of −2 ≤ µ ≤ 3. We define a new estimator that can be interpreted identically called
Hadamard-total deviation (root TotHvar) and that has significantly improved confidence at long term. The Hadamard-total deviation is
insensitive to linear frequency drift that can mask characteristic random noise typically encountered here in the region where τ = one week
and longer. The goal is to identify µ even-integer power-law noises and accurately estimate their levels in order to set system parameters
associated with the GPS Kalman filter.

Throughout this writing, we will make comparisons
using the traditional best statistical estimators, denoted
by“Hvar” and “Avar” referring to the maximum-overlap
estimators of the Hadamard and Allan variances. Sec-
tion II reviews the “total” approach to improving statis-
tical estimation. Sections III and IV give two methods of
computing total Hadamard variance, designated as TotH-
var, using measurements first of fractional frequency de-
viations and then of time deviations. Then we quantify
the advantage of TotHvar over Hvar in Section V, giv-
ing formulae for computing bias and equivalent degrees of
freedom (edf)of TotHvar. Section VI gives a method for ef-
ficiently determining the noise type at a given τ value for
automatically correcting the bias and determining confi-
dence intervals for the range of noises considered by TotH-
var. Section VII reviews how an estimate of τ -domain fre-
quency stability is used to set Kalman filter parameters (or
q’s) used in GPS operations, problems associated with the
application of either the traditional Allan variance or Hvar
to the Kalman filter, and how TotHvar serves as a unifying
solution. Finally, Section VIII discusses a past scenario in
GPS operations in which TotHvar is applied to real data
showing the benefit of improved estimation of long-term
frequency stability.

II. The “Total” Approach

The total estimator approach improves confidence by
smoothing the results from time-domain statistics like
Hvar [4]–[10]. Making a total estimator of (2) involves join-
ing each real data subsequence, namely, the subsequence
of yi that goes into each Hn(m) term, at both its end-
points by the same original data subsequence so that it
repeats. This creates a new extended version of each yi

subsequence that may be extended by a forward or back-
ward repetition, with or without sign inversion, thus with
four possible ways to extend. From numerous simulation
studies, we have determined that an extension by even (un-
inverted) mirror reflection of linear-frequency-detrended
Hn(m) subsequences yields the largest edf gain and least
bias for the range of noise types identified by standard
Hvar.

III. Computation Using yn-Series

Hn(m) is computed from a 3m-point data segment or
subsequence {yi}n = {yi, i = n, . . . , n + 3m − 1}. While
the Hadamard variance is not sensitive to linear frequency
drift per se, the total approach, which uses an uninverted,
even reflection, requires that we remove a linear frequency
slope (which, in this case, is drift) from each subsequence.
This will minimize the discontinuities at both ends of each
subsequence when it is extended. Make

◦yi = yi − c1i,

where c1 is a linear slope that is removed and is deter-
mined by minimizing

∑n+3m−1
i=n (◦yi − ◦yi)2 to satisfy a

least-squared-error criterion for the subsequence. In prac-
tice, it is sufficient to compute a background linear fre-
quency slope by averaging the first and last halves of the
subsequence divided by half the interval and subsequently
subtracting the slope. Now extend the “drift-removed”
subsequence {◦yi}n at both ends by an uninverted, even
reflection. Utility index l serves to construct the extensions
as follows. For 1 ≤ l ≤ 3m, let

◦y#
n−1 = ◦yn+l−1,

◦y#
n+3m+l−1 = ◦yn+3m−l, (3)
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to form a new data subsequence denoted as {◦y#
i }n con-

sisting of the drift-removed data in its center portion, plus
the two extensions, and thus having a tripled range of
n − 3m ≤ i ≤ n + 6m − 1 with 9m points. To be clear,
we now have extended subsequence {◦y#

i }n = {◦yi, i =
n − 3m, . . . , n + 6m − 1}. Define

TotalHσ2
y (m, τ0, Nymax) =

1
6 (Nymax − 3m + 1)

×
Nymax−3m+1∑

n=1

(
1

6m

n+3m−1∑
i=n−3m

(
◦H#

i (m)
)2

)
(4)

for 1 ≤ m ≤
⌊

Nymax

3

⌋
, where �c� means the integer part

of c and notation ◦H#
i (m) means that Hn(m) above is

derived from the new triply extended subsequence {◦y#
i }.

The symmetries of the extension allow the computational
effort to be halved. Let k = �3m/2�. We need to calculate
◦y#

i only for n − k ≤ i ≤ n + k + 3m − 1, and ◦H#
i (m)

only for n − k ≤ i ≤ n + k. Then we can apply (5) given
on the following page.

IV. Computation Using xn-Series

The methodology described above can be written in
terms of calculations on residual time differences between
clocks, namely, an xi series (to adhere to usual notation),
recalling that

yi(m) = (xi+m − xi) / (mτ0) .

Thus, in the total approach applied to xi series, the data
extensions on subsequences of xi will be constructed in
such a way that

◦y#
i =

(
◦x#

i+1 − ◦x#
i

)
/τ0,

in agreement with Section III above. This has the ef-
fect of requiring an odd (inverted) mirror extension and
a third-difference operator when considering subsequences
of xi. The Hadamard variance discussed in Section III as
a second-difference operator on τ -averaged yn values can
now be re-expressed in terms of a third-difference opera-
tor on time-error xi values. The sample variance (or mean
square) of these third differences falls neatly into a class
of structure functions, namely, the variance produced by
a difference operator of order three [10]. The modified Al-
lan variance can also be treated as a third-difference vari-
ance [11].

The xi subsequence that corresponds to the yi subse-
quence starting at n is {xi, n ≤ i ≤ n + 3m}, which has
3m + 1 terms. Compute the “frequency-slope-removed”
subsequence ◦xi according to

k =
⌊

3m

2

⌋
, c2 =

xn − xn+k − xn+3m−k + xn+3m

k(3m − k)
,

◦xi = xi − 1
2
c2(i − n)(i − n − 3m), n ≤ i ≤ n + 3m.

TABLE I
Coefficients for Computing (6) and (7), Normalized Bias,

and edf of TotHvar.

Noise Abbrev. α a b0 b1

White FM WHFM 0 −0.005 0.559 1.004
Flicker FM FLFM −1 −0.149 0.868 1.140

Random Walk FM RWFM −2 −0.229 0.938 1.696
Flicker Walk FM FWFM −3 −0.283 0.974 2.554
Random Run FM RRFM −4 −0.321 1.276 3.149

Define the extended subsequence
{

◦x#
i , n−3m≤ i≤n+6m

}
by

◦x#
i = ◦xi, n ≤ i ≤ n + 3m,

◦x#
n−l = 2 (◦xn) − ◦xn+l, 1 ≤ l ≤ 3m,

◦x#
n+3m+l = 2 (◦xn+3m) − ◦xn+3m−l, 1 ≤ l ≤ 3m.

Then

mτ0

(
◦H#

i (m)
)

= −◦x#
i + 3

(
◦x#

i+m

)
− 3

(
◦x#

i+2m

)
+ ◦x#

i+3m,

n − 3m ≤ i ≤ n + 3m − 1,

where ◦H#
i (m) has the same meaning as in Section III.

Now the Hadamard-total variance is computed from (4)
as before with Nymax = Nxmax − 1. Because of symmetry
we need ◦x#

i only for n − k ≤ i ≤ n + k + 3m, and (5)
applies.

V. Bias and Equivalent Degrees of Freedom

We consider the random FM noises since these dominate
at long-term averaging times where we can capitalize on
the improved confidence of using the total approach. To
analyze phase-modulation (PM) noises, one would usually
use Total TDEV [6] rather than the Hadamard deviation.
For brevity, let TotalHσ2

y(m, τ0, Nymax) be TotHvar (τ, T ),
where τ = mτ0, T = Nymaxτ0. The normalized bias and
edf for TotHvar are given by

nbias(τ) =
[
E{TotHvar(τ, T )}

E{Hvar(τ, T )} − 1
]

= a, (6)

edf(τ) = edf [TotHvar(τ, T )] =
T/τ

b0 + b1τ/T
, (7)

where E{·} is expectation of {·}, 0 < τ ≤ T
3 , τ ≥ 16τ0 (to

be explained), and a, b0, and b1 are given in Table I for
the five FM noise types considered by the Hadamard vari-
ance. The term α is the corresponding power-law exponent
of the fractional-frequency noise spectrum Sy(f) ∝ fα.
In the context here, its valid range is −4 ≤ α ≤ 2.
E{TotHvar(τ, T )} relative to E{Hvar(τ, T )} in (6) is inde-
pendent of τ and T , dependent on noise type, and biased
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n+3m−1∑
i=n−3m

(
◦H#

i (m)
)2

= 2
n+k−1∑

i=n−k+1

(
◦H#

i (m)
)2

+
(

◦H#
n−k(m)

)2
+

(
◦H#

n+k(m)
)2

,m even,

= 2
n+k∑

i=n−k

(
◦H#

i (m)
)2

,m odd.

(5)

TABLE II
Exact

edf{TotHvar(T/3,T )}
edf{Hvar(T/3,T )} Gain for τmax = T/3.

Noise edf gain of TotHvar (T/3, T )

WHFM 3.447
FLFM 2.448
RWFM 2.044
FWFM 1.676
RRFM 1.313

low, giving a the negative sign in Table I. The edf formula
(7) is a convenient, empirical or “fitted” approximation
with an observed error below 10% of numerically computed
exact values derived from Monte-Carlo simulation method
using the b0 and b1 coefficients of Table I and with the
error decreasing with averaging factor m = τ/τ0 increas-
ing. In fact, (7) should be used only if data-sampling pe-
riod τ0 is sufficiently short compared to the averaging time
τ by τ/τ0 ≥ 16. Otherwise, there are not enough points
for the data-extension procedure in the total estimator to
have significant advantage over the plain Hadamard esti-
mator. In other words, the τ0-dependence of the total es-
timator of (4) plays a significant role, whereas the weaker
τ0-dependence of the maximum-overlap estimator of plain
Hσ2

y(τ) given by (2) is generally suppressed as in (2). It is
well known that maximum-overlap statistical estimators
will increase edf, hence confidence, and the degree of data
overlap is dependent on sampling interval τ0 relative to τ
[12], [13]. Real data should be sampled as fast as practical
for a given averaging time. This is especially true in order
for the data extension of each subsequence to be effective
in the total approach.

Assuming chi-square distribution properties, edf com-
puted by (7), and the values of Table I, confidence intervals
will be conservative since the distribution is actually nar-
rower than chi-square. Although not quantitatively inves-
tigated, the narrowing of the distribution is proportional
to increasing averaging factor m = τ/τ0. Fortunately with
real data runs, m is, of course, always largest at longest
term. Depending on the noise type, we have seen narrow-
ing by as much as 15% for m ≈ 100, 000.

To show the improvement in estimating the Hadamard
function, Table II lists the exact values of edf from the-
ory for computations using TotHvar vs. plain Hvar for the
longest averaging factor in which τ = T/3. This point is
the last point in the estimate, and the improvement in con-
fidence using TotHvar is substantial, particularly for the
general case of WHFM noise. TotHvar is a significantly

improved estimator that offsets much of the criticized in-
efficiency in using the Hadamard deviation as opposed to
the Allan deviation in the presence of common WHFM
noise in frequency standards.

VI. Power Law Detection

It is important to be able to determine which power-
law noise type is present for a given τ value in the range
−4 ≤ α ≤ 0 so that TotHvar’s bias can be removed,
preferably automatically. Similarly, before the edf can be
determined to establish confidence intervals and set error
bars for a stability measurement, it is necessary to identify
the dominant noise process. This section describes a noise-
identification (noise-ID) algorithm that has been found ef-
fective in actual practice, and that works for a single τ
point over the full range of −4 ≤ α ≤ 2. It is based on
the Barnes B1 function [14], which is the ratio of the N -
sample (standard) variance to the two-sample (Allan) vari-
ance, supplemented by applying this function to frequency
data, and the R(n) function [15], which is the ratio of the
modified Allan to the normal Allan variances.

The B1 function has as arguments the number of fre-
quency data points N , the dead time ratio r (which is set
to 1), and the power-law τ -domain exponent µ. The B1
dependence on µ is used to determine the power-law noise
type for −2 ≤ µ ≤ 2 (WHPM and FLPM to FWFM). For
a B1 that is consistent with a µ = −2 result, the α = 1
or 2 (FLPM or WHPM noise) ambiguity can be resolved
with the R(n) ratio using the modified Allan variance. For
τ > τ0, if m · R(n) < 1.1, the noise is WHPM; otherwise,
it is considered to be FLPM.

For the Hadamard variance, the noise determination
must be extended to µ = 3 (or α = −4, RRFM). This
can be done by applying the B1 ratio to frequency (instead
of the usual phase) data and adding 2 to the resulting µ.
This procedure is called “*B1” herein. Since the *B1 pro-
cedure simply applies the Barnes B1 ratio to frequency
data instead of phase data, its use is as before, but now
its range is effective from WHFM to RRFM noise. (This is
analogous to simulation of RRFM data by treating RWFM
phase data as frequency data.)

The overall noise identification process is as follows:

• Calculate the standard and Allan variances for the ap-
plicable τ averaging factor,

• Calculate B1, B1(N, r = 1, µ) = N(1−Nµ)
2(N−1)(1−2µ) ,
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TABLE III
Formulae for B1(N, r = 1, µ).∗

Noise µ B1 =

FWFM 2 (N)(N+1)
6

RWFM 1 N/2
FLFM 0 N ln N

2(N−1) ln2

WHFM −1 1

WH or FL PM −2 N2−1
1.5(N)(N−1)

∗Substituting frequency data into the usual phase-data measurement
of B1 ratio will shift these formulae to the µ+2 range, thus covering
RRFM.

• Determine the expected B1 ratios for α = −3 through
1 or 2,

• Set boundaries between them and find the best power-
law noise match,

• Resolve an α = 1 or 2 ambiguity with the modified
Allan variance and R(n), or

• Resolve an α = −3 or −4 ambiguity with *B1.

For a data run of length N , Table III gives five specific
formulae for B1 corresponding to µ = −2, −1, 0, 1, and 2.
Table IV summarizes the power-law detection scheme and
gives the boundaries for demarcating each noise type. The
boundaries between the B1, *B1, and R(n) functions are,
in general, set as the geometric means of their expected val-
ues, and the actual measured ratio is tested against those
values downward from the largest applicable µ. For exam-
ple, if, during the testing, the measured B1 ratio is greater
than the square root of the product of the expected B1
values for RWFM and FLFM noise, it is determined to be
the former(α = −2, RWFM).

High levels of frequency drift should be removed to best
identify the underlying noise process by this method. Also,
the R(n) ratio cannot, of course, be used for τ = τ0 aver-
aging factor (in which case it is 1 for all noise types; we use
WHPM as a default noise type for this case). Finally, at
the very longest averaging factor or last τ point, it is better
to use the previous or τ − τ0 point to estimate the noise
type. A similar algorithm has been used in commercial
frequency-stability software (Stable32, Frequency Stabil-
ity Analysis Software, Hamilton Technical Services, Beau-
fort, SC)1 [16] for the past decade with good success. It
allows bias corrections and error bars to be calculated au-
tomatically during an analysis for all of the common time-
domain stability statistics (including the new Hadamard
total variance here) over the full range of noise types and
for essentially all τ averaging times.

VII. The Kalman Noise Model and the GPS

Operations Problem

The time update of clock states in the Master Control
Station (MCS) Kalman prediction algorithm is based on
an average of the most recent measurement of these states

1http://www.wriley.com

for each individual clock, modeled simply by random noise
acting on phase x(t), frequency y(t), and frequency drift
z(t). With this model, the measured power-law α expo-
nents of the frequency-fluctuation noise spectrum take on
only the values 0, −2, and −4, corresponding to WHFM,
RWFM, and RRFM, or µ = −1, 1, and 3 in the τ -domain.
Hence, we want to precisely extract the level of these noises
for each clock using the most efficient method possible,
which heretofore has been the sample Allan variance with
drift removed from the data run, and more recently the
sample Hadamard variance, because of its logical link to
the model. If WHPM is a significant noise component and,
for completeness, the α = 2, µ = −2 case corresponding
to WHPM is included as a separate error.

The parameters used by the MCS within GPS sys-
tem operations are denoted as Kalman filter q’s. By con-
vention, for each filter parameter qi, i = 0, 1, 2, 3 corre-
sponds, respectively, to τ -domain power law exponents
µ = −2,−1, 1, 3. For the Hadamard variance, the rela-
tionship is [3]

Hσ2
y(τ) = σ2

WHPM + σ2
WHFM + σ2

RWFM + σ2
RRFM

=
10
3

q0τ
−2 + q1τ

−1 +
1
6
q2τ +

11
120

q3τ
3. (8)

For the Allan variance, the relationship is [16]

σ2
y(τ) = 3q0τ

−2 + q1τ
−1 +

1
3
q2τ

[
+

1
20

q3τ
3
]

, (9)

where the inclusion of the RRFM noise term as
[
+ 1

20q3τ
3
]

is a point of contention for two reasons. First, estimating
q3 by (9) using real data is unreliable because RRFM is in-
consistent by the definition of the Allan variance. Second,
Chaffee [16], who derived the term, does not compute the
Allan variance; instead, he computes the optimal mean-
square prediction error variance of y(t0, t0 + τ) based on
{x(t), t ≤ t0} for frequency noise spectra with α = 0, −2,
and −4. For these reasons, we advise omitting the RRFM
term entirely from (9). The other terms of (9) happen to
be correct for Allan variance.

The GPS Hadamard variance is defined to be equiva-
lent to the Allan variance for WHFM, which is confirmed
in comparing (8) and (9); however, the variances differ by
a factor of two for RWFM; therefore they cannot be used
interchangeably under normal circumstances and those in-
volving drift-free stochastic processes.

Tuning the Kalman filter depends on the ability to
“q” each individual clock according to estimates of its
noise. The GPS Block IIR satellite program incorporates
Rb atomic oscillators that are characterized by a mix of
various levels and types of random noise and with fre-
quency drift that may be significantly above noise. This
kind of oscillator mix is difficult to manage using Avar
and (9), which must be used based on drift-removed fre-
quency residuals. However, reverting to using “frequency-
drift insensitive” Hvar and using (8), the confidence be-
comes a factor of about one-third less near the last and
crucial long-term τmax = T/3 value owing to the plain
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TABLE IV
Power-Law Noise Identification.

Noise α µ ID by Remarks Decision boundary

RRFM −4 3 B1&*B1 Use *B1 to resolve α = −3 or −4 ambiguity {B1(FWFM) + B1(RWFM)}/2
FWFM −3 2 B1&*B1 Use *B1 to resolve α = −3 or −4 ambiguity {B1(FWFM) + B1(RWFM)}/2
RWFM −2 1 B1 sqrt {B1(RWFM) × B1(FLFM)}
FLFM −1 0 B1 sqrt {B1(FLFM) × B1(WHFM)}
WHFM 0 −1 B1 sqrt {B1(WHFM) × B1(FLPM)}
FLPM 1 −2 B1&R(n) Use R(n) to resolve α = 1 or 2 ambiguity sqrt {B1(FLPM) × B1(WHPM)}
WHPM 2 −2 B1&R(n)

Noise ID methods: B1 = Barnes B1(N, r, m) bias function with r = 1 [14].
∗B1 = B1 applied to frequency data as phase data with µ = µ + 2. R(n) = ratio, mod Allan variance/Allan variance [15].

Fig. 2. Hadamard-deviation frequency stability of individual GPS satellite clocks vs. USNO Master Clock for the period 1 January to 1 July
2000 [17].

sample Hadamard’s edf of one less as compared to Allan’s
edf. The use of TotHvar recoups the loss of confidence of
Hvar. For the proper perspective, note that we are in the
one-week averaging τ -region with a last real-time data run
of about one month, thus edf ≈ 1–2; so estimating filter
q’s is somewhat subjective. Fig. 2 illustrates a summary
of estimates of frequency stability for each GPS satellite
clock as published in reports issued by the Naval Research
Laboratory [17].

Table II shows that the new TotHvar(T/3, T ) edf is mul-
tiplied by a factor of 1.3 to 3.4 over plain Hvar(T/3, T ).
TotHvar can be applied directly and reliably, while retain-
ing the efficiency of the sample Allan variance without the
difficulty associated with real-time drift removal.

The work of this paper has impact on two GPS opera-
tional issues. The first is that the time needed to estimate
the Hadamard variance is substantially reduced. For exam-
ple, to obtain a τ = one-week estimate of the Hadamard
variance with, say, the last 40 days of measured data, the
total approach using TotHvar obtains a one-week estimate
with the same or better confidence in about 26 to 34 days

of measured data. The second issue is that satellite data
are obtained by the linked common-view method [18], and
the delay in receiving the monitor station tracking data is
currently at 2 to 3 days. Thus, it is important to extract
maximum information from data at hand.

VIII. Example

Fig. 3 is data of SV24, a Block IIA GPS satellite. To-
tal Hadamard deviation, plain Hadamard deviation, and
Allan deviation are compared with increasing data spans
starting at 7 days and extending to 28 days; the figure
shows how each of these statistics behaves as it evolves.
As is generally the case, TotHdev performs better at es-
timating the longest-term noise level than plain Hdev for
measured data spans as indicated by estimated levels from
later (longer) data spans.

IX. Conclusion

We have developed a significantly improved estimator of
the three-sample Hadamard frequency variance based on
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Fig. 3. Total Hadamard deviation, plain Hadamard deviation, and Allan deviation for SV24 satellite clock data as the data run increases
from 7 days (front plot) to 28 days (rear plot). The last (rightmost) values of TotHdev for shorter data runs anticipate the underlying noise
level of longer runs compared to plain Hdev (arrowed lines are projected off 28-day data run). The Allan deviation’s response to frequency
drift masks the long-term noise level.

the so-called “total” approach, and denoted as TotHvar,
for use in GPS operations and analysis. Practically speak-
ing, we have reduced the long-term estimation uncertainty
in terms of edf by a factor of 1.3 to 3.4, depending on the
noise type, and we have presented a way to automatically
remove the moderate negative bias of TotHvar by a power-
law detection algorithm. Having confidence greater than
plain Hvar and even equal to or greater than Avar, TotH-
var is a statistic that permits tuning of the MCS Kalman
filter with more accurately chosen clock-estimation param-
eters (or q’s) that are linked to the most recent measure-
ments of frequency stability of each clock. The increased
confidence from TotHvar and shorter data processing de-
lays will play significant roles in adequately managing fu-
ture GPS system events.
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