
Jointly with the 17th European Frequency and Time Forum
Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition

U.S. Government work not protected by U.S. copyright

Clock Jitter Estimation based on PM Noise Measurements∗

by

D. A. Howe† and T. N. Tasset‡

National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305

ABSTRACT - “Jitter” is the noise modulation due
to random time shifts on an otherwise ideal, or per-
fectly on-time, signal transition. In the absence of
ultra-high-speed jitter analyzers, spectrum analysis
is an alternate noise measurement for timing jitter.
Conventionally, jitter has been defined as a the in-
tegral of the phase noise. This paper presents a
modified way of calculating timing jitter using phase-
modulation (PM) noise measurements of high-speed
digital clocks, which considers the frequency response
of the jitter analyzer, providing a more accurate map.
Measurements of phase noise are typically much more
sensitive to phase (or time) fluctuations than a jitter
analyzer. A summary table is provided for mapping
the results of these measurements in the Fourier fre-
quency domain to jitter in the τ domain for various
random (specifically, power-law) noise types, spurs,
vibration, and power-supply ripple. In general, one
cannot unambiguously map back, that is, translate
from jitter measurements to phase noise.

1. INTRODUCTION AND SUMMARY

A widely used method of characterizing jitter is
histogram statistics associated with a photograph of
an “eye” pattern. While histograms are useful, near-
instantaneous sampling of a high-rate reference clock
operating at, say, 100 GHz as an example, implies
the need for many hundreds of gigahertz of band-
width in a jitter analyzer. Therefore, this rate is
prone to several pitfalls associated with high-speed
digital sampling: trigger errors, resolution, and time
base distortions [1–4]. Second, a histogram misses
an important piece of information for nonstationary
kinds of noise, namely, how its width varies with de-
lay, called τ in this writing. At what rate does width
get larger vs. τ? These questions arise from the fact
that most jitter measurements assume that a mean
value of τ exists when in most cases one does not.

∗Contribution of an agency of the U.S. Government, not
subject to copyright.

†NIST Time and Frequency Division; E-mail:
dhowe@nist.gov

‡University of Colorado, Boulder, CO

The primary motivation for this writing is that non-
stationary noise will occur at some level and that a
proper statistic must be used. In particular, this pa-
per suggests the use of measurements of phase noise
that provide clues into the origin of clock jitter in
general. Two definitions of jitter are explored. The
fundamental measurement performed by most jitter
analyzers is based on a first difference of time er-
rors. However, when this first difference operates on
time errors that are not white, there is an unreliable
functional dependence on the τ . In these cases, a
second-difference operator is employed.

We explain the methods and reasons for calcu-
lating clock jitter vs. τ using measurements of the
clock’s phase-modulation (PM) spectral noise based
upon common definitions of the two. This discussion
derives from comprehensive work done in frequency
standards, characterization of noise, and state-of-the-
art methods of measuring time errors [5–10]. This pa-
per is a quick guide to estimating clock jitter from PM
noise measurements. In section 2, generic definitions
of jitter are introduced. Section 3 introduces the con-
cept of spectral density of phase fluctuations, defines
L(f), and categorizes the five noise types. Section 4
presents tables that map PM noise measurements to
two definitions of jitter.

2. JITTER DEFINITION

Clock jitter from a reference clock sets the baseline
performance for those digital components using that
clock. A jitter analyzer is an oscilloscope that dis-
plays time-error noise after an arbitrary trigger time
t at time t + τ . The horizontal axis is running time
(the “sweep” signal). Generically, the “transition” is
that portion of an oscillating signal in the neighbor-
hood of its zero-crossings or other defined crossings.
The transition’s timing error is subjectively measured
with what is called an “eye” diagram that shows in-
teger “half-period” transition errors. Here, a major
goal of a good statistic is prediction of some para-
meter of interest based on past statistics. A jitter
analyzer quantifies the statistical noise on a predic-



tion that
delay error︷ ︸︸ ︷
x̂(t + τ) =

trig. error︷︸︸︷
x(t) +

timing error︷︸︸︷
ε(τ) , (1)

where x(t) is a timing error at trigger-point t (often
assumed to be 0), x̂(t+τ) is the prediction of a future
timing error viewed at time τ later, and ε(τ) is the
observed difference between a zero-crossing or tran-
sition and a delay (subject to an instrument-related
delay error) from the trigger-point claimed by the
analyzer. Note that τ can be only a multiple of a
minimum sample interval τ0 = T

2 , the half-period of
the clock signal itself. Figure 1 illustrates the tran-
sition errors with respect to t and τ . For example,
if the trigger-point timing error x(t) = 0, and tran-
sitions occur every τ0 = 1 ns in the clock signal (a
half-period corresponding to a 500 MHz clock), and
τ= 10 ns, we expect zero error at x̂(t+10 ns), but it
is in fact perturbed by a noise burst, say, ε(10 ns)=
+2 ps. Rewriting, we obtain

ε(τ)︸︷︷︸
timing error

= x̂(t + τ) − x(t), (2)

whose form is called a “first difference” in terms of
x(t) because ε(τ) is the difference of two time errors
as shown in (2). Let < · > designate an average
(more precisely, “expectation,” if an infinite ensemble
average is calculated). Then the mean square (or
variance) of ε(τ) is

< ε2(τ) >=< (x̂(t + τ) − x(t))2 >, (3)

after squaring =< x̂2(t+τ) > + < x2(t) >, (4)

or the sum of the delay-error variance plus trigger-
error variance. (4) assumes values of x(t) are inde-
pendent for given discrete or sampling intervals of t,
which is the case for white PM noise only.

Figure 1: Sampling ’scope display. Jitter is the rms
of time-delay errors, each given by x(t + τ), relative
to a trigger-point whose single-shot error is x(t). See
eqn. (2) and (5) in text. To suppress the effects of
phase drift and/or to measure “jitter walk,” a second
definition (eqn. (6) and (7)) is recommended.

There are a variety of ways that jitter has been
defined based on the sampling oscilloscope and its
limitations [11–14]. For this discussion, many ana-
lyzers provide at least a root-mean-square (rms) of
timing errors based on (2), or

Jitter (vs. τ) ≡ < ε2(τ) >
1
2 . (5)

This does not encompass a full model, but is sufficient
for the goal of this writing of converting from PM
noise to jitter as defined above and later in (7).

Because of the fact that real clocks seldom satisfy
the stationary criteria, it is preferable to define jit-
ter as the “second difference” of time-error measure-
ments x(t). The preferred definition is based on

ε2nd(τ)︸ ︷︷ ︸
timing error

= −x̂(t + τ) + 2x(t) − x(t − τ). (6)

Jitter-2 (vs. τ) ≡ < ε2
2nd(τ) >

1
2 . (7)

This second-difference definition differs from (5) by
the factor 1√

3
for white PM as will be shown later,

but handles the problem of a nonstationary, moving
average such as a phase drift or random-walk behav-
ior in x(t + τ)−x(t), appropriately dubbed a “jitter-
walk” behavior. As first pointed out by Barnes in [8]
and revisited by Walls in [15], jitter-2 can be used
as a measure of time dispersion and permits mod-
els of noise (mainly power-law noises) that extend to
virtually any device or signal under test, such as free-
running oscillators, filters, multipliers and dividers, rf
synthesizers, amplifiers, flip-flops, and logic gates.

At this point, an important clarification needs to
be made. A clock reference is a repeating signal with
period T that precisely defines the timing in synchro-
nous digital systems by when clock transitions oc-
cur. This paper addresses the fundamental noise limit
given by the clock reference noise and translates this
to clock jitter. Jitter on data transitions (those that
are not reference-clock transitions) are not the sub-
ject of this paper. Data jitter contains the cumulative
effects of noise from digital logic, digital modulation
schemes, filters, component linearity, amplifiers, ad-
ditive and multiplicative noise, crosstalk, etc., and
cannot be easily calculated from the PM noise mea-
surement methods described here.

The measurement of jitter given by (5) or (7) will
estimate the statistical standard deviation of clock-
timing errors. The standard deviation is the 1σ his-
togram width regarded as the jitter level measured at
integer half-period increments mT

2 , m = 1, 2, 3, ... .

3. PHASE NOISE MEASUREMENTS

We want to measure the time when a transition
occurs in the neighborhood of an idealized on-time



point. Noise occurs on an ideal fundamental fre-
quency of 1

T . The rf power spectrum is regarded
as the ideal carrier plus “total baseband modulation
power noise” due to PM + AM noise on an other-
wise perfect carrier. An rf power spectrum measure-
ment cannot distinguish PM from AM noise, so we of-
ten measure both independently, or just PM noise in
cases where the AM noise contribution is considerably
lower or not of concern. This noise spectrum appears
above and below the frequency of the fundamental.
The single-sideband power of the noise relative to car-
rier power is comprised of phase and amplitude spec-
tral densities Sφ(f) and SAM (f). In particular, Sφ(f)
is the power spectral density of phase fluctuations
measured in a bandwidth of 1 Hz at a Fourier sepa-
ration of f Hz. The units are radians2/Hz. However,
single-sideband PM noise L(f) is defined as 1

2Sφ(f).
Typically, its expression in a logarithmic form is

L(f) = 10 log

(
1
2
Sφ(f)

)
, in units of dBc/Hz. (8)

Time fluctuations on zero-crossings or transitions
are phase fluctuations, or phase noise, on a sine-
wave signal generator. Phase fluctuation spectral
density is measured by passing such a signal through
a phase comparator and measuring the detector’s out-
put power spectrum. A common technique is to use

Figure 2: The five power-law noise processes create
five different slopes on a phase noise plot (a log-log
scale). β is the integer value of the slope correspond-
ing to a specific model of noise.

a loose phase-locked loop (PLL) as described in [6,7].
The measurement of φ(t) uses a phase-locked loop
and makes use of the relation that for small devia-
tions (δφ � 1 radian) between the oscillator under
test and a reference locked oscillator,

L(f) =
1
2
Sφ(f) =

1
2

[
Vrms(f)

Kd

]2

, (9)

where Vrms(f) is measured on a spectrum analyzer
as the root-mean-square noise voltage per

√
Hz at

Fourier frequency “f”, and Kd is the sensitivity (volts
per radian) at the phase quadrature output of a phase
detector that is comparing the test to a reference os-
cillator.

Jitter-2 vs. τ can be used for a range of five com-
mon power-law, or bβfβ, types of noise, where β is
an integer exponent corresponding to five different
slopes as shown in the log-log plots of figure 2. For
commonly encountered high-speed digital clocks and
oscillators, Sφ(f) is modeled by

Sφ(f) = b−4
1
f4

+ b−3
1
f3

+ b−2
1
f2

+b−1
1
f

+ b0 =
0∑

β=−4

bβfβ, (10)

where bβ are the levels of the noise types for slopes

Figure 3: Frequency response H(f) of a jitter an-
alyzer with -1,+1 τ -spaced sampling coefficients,
shown in the upper left. The transfer characteristic
corresponds to a high-pass filter with a 10 dB/decade
low-frequency skirt, which is sufficient to measure
only jitter that does not drift or “walk” with a mov-
ing, non-stationary mean value. (This condition is
seldom satisfied in real clocks.)



β = 0,−1,−2,−3,−4, identified respectively as
White PM (WHPM), Flicker PM (FLPM), Random-
Walk PM (RWPM, also known as White FM
(WHFM)), Random-Run PM (RRPM, also known
as Flicker FM (FLFM)), and Random Walk FM
(RWFM).

Jitter measurements do not readily distinguish
the effects of spurs and sensitivity to vibration and
power-supply ripple. For these, conventional narrow-
band measurements of phase noise that use a phase
detection scheme and spectrum analyzer are superior
for quickly identifying these noise sources. In gen-
eral, measurements of phase noise reveal substantially
more than measurements of jitter.

4. MAPPING PHASE NOISE TO JITTER

In general, any given jitter measurement is es-
sentially a broadband phase noise measurement, so
it is possible to calculate jitter from a conven-
tional narrow-band phase-noise measurement passed
through an equivalent jitter analyzer “filter.” A jit-
ter analyzer can be regarded as measuring first differ-
ences of time deviations as a function of time-delay-
from-trigger (function of τ). The equivalent filter
in this case, the Fourier transform of the jitter ana-
lyzer’s first-difference sampling function (given by -1
and +1 separated by τ as shown in (2)), turns out to
be a high-pass filter, so the high-cutoff frequency fh

directly affects the level of jitter for common white

Figure 4: Frequency response H(f) of jitter definition
2 of eqn. (6) and (7). This transfer characteristic cor-
responds to -1,+2,-1 τ -spaced sampling coefficients of
eqn. (6), shown in the upper left. The steeper 20
dB/decade low-frequency skirt is sufficient to mea-
sure jitter with a moving average carrier frequency
(dubbed “jitter-walk”) or phase drift.

phase noise. The sampling function and equivalent
frequency-response is shown in figure 3. Figure 4
shows the equivalent frequency response H(f) of the
-1,+2,-1 τ -spaced sampling coefficients of (6), shown
in the upper left.

Using Parceval’s equality (a conservation principle)
stating that total power over all time must equal total
power over all frequencies, we can write

σξ
2(t) =

∫ ∞

−∞
Sξ(f)df, (11)

and we derive a useful formula for an actual data run
of running-time phase deviations ∆φ(t) as

σ2
∆φ(t)|τt0 = 2

∫ fh

1
2τ

Sφ(f)[H(f)]2df, (12)

where τ is a time interval in spacings of mT
2 , m =

1, 2, 3, ... and [H(f)] is our analysis filter transfer
function. The factor of 2 comes in because the lim-
its of integration consider only a one-sided spectrum.
Converting ∆φ(t) to x(t) by the basic relationships,
the mean squared error σ2

∆φ with respect to x(t) is
the finite-time variance version of (3) given by

σx
2(t)|τto

=
1

2(πν0)2

∫ fh

1
2τ

Sφ(f)[H(f)]2df =< ε2(τ) >,

(13)

Figure 5: Mapping from phase noise to jitter. L(f)
passes through a high-pass filter (figure 4) to create
a jitter vs. τ plot. The plot transposes L(f), that is,
high offset frequencies map to short-τ time intervals,
and vice versa. Jitter histogram 1σ-width equals jit-
ter level at a given delay, or τ -value.



Table 1: Jitter is calculated from Sφ(f) noise type
and level, which are determined by a slope β and am-
plitude bβ . Vrms

Kd
of the last row is spur level divided

by the PM measurement sensitivity Kd.

Sφ(f) = bβfβ Jitter vs. τ

b0 (WHPM)
√

b0
(πν0)2

(
fh − 1

2τ

)

b−1f
−1 (FLPM)

√
b−1

(πν0)2×√
ln(2πτfh)−1.0711+ 1

(2πfhτ)2

b−2f
−2 (RWPM)

√
2b−2

(πν0)2

(
1.1168τ − 1

2fh

)

Spur or Sinusoid

with level Vrms

√
2Vrmssin2(πfmτ)

Kd(πν0)2

*fh is a high-freq. cutoff

and jitter is the usual square root, given by (5).
To illustrate, if L(f) is constant = b0, a white pm

(WHPM) process, and H(f) is the high-pass of figure
3, then from (13),

σx
2(t)|τt0 =< ε2(τ) >=

1
2(πν0)2

∫ fh

1
2τ

b04 sin2(πfτ)df

.=
(fh − 1

2τ )b0

(πν0)2
. (14)

Hence, jitter =< ε2(τ) >
1
2 =

√
(fh − 1

2τ )b0

(πν0)2
, (15)

and is determined essentially by the square root of
b0 times upper cutoff frequency fh (lower cutoff fre-
quency 1

2τ is a small contribution to the final value
of jitter).

A high-frequency cutoff must be specified; however,
it plays a significant contribution only for the first two
rows, corresponding to WHPM and FLPM. With a
spur or sine-wave modulation at frequency fm, Table
1 includes its conversion to jitter. Vrms

Kd
of the last

row is measured spur level divided by the PM mea-
surement sensitivity. Vrms

Kd
is the usual peak height of

the spur in dBc.
If the usual jitter analyzer is assumed using a first

difference (see (2) and (5)), then only the first three
noise types (WHPM, FLPM, and RWPM) can be
used to calculate jitter. Table 1 shows the conver-
sion to jitter of these three power-law noises. FLFM
and RWFM do not converge under this definition of
jitter, and jitter level is not calculable.

Jitter-2 using a second-difference approach (see (6)
and (7)) can be calculated for all five noise types,

Table 2: Jitter-2 can be calculated for all five noises.
If FLFM and RWFM are predominant noise types
over any range of f , conventional jitter cannot be
calculated. Use this table in these cases.

Sφ(f) = bβfβ Jitter-2 vs. τ

b0 (WHPM)
√

3b0
(πν0)2

(
fh − 1

2τ

)

b−1f
−1 (FLPM)

√
b−1

(πν0)2×√
3ln(2πτfh)−3.11696+ 3.4288

(2πfhτ)2

b−2f
−2 (RWPM)

√
2b−2

(πν0)2

(
3.50808τ − 3

2fh

)

b−3f
−3 (FLFM)

√
2b−3

ν2
0

(
0.4256τ2 − 3

(2πfh)2

)

b−4f
−4 (RWFM)

√
13.034b−4

(πν0)2

(
τ3 − 1

2f3
h

)

Spur or Sinusoid

with level Vrms 2
√

2Vrms

Kd
·
(

sin2(πfmτ)
πν0

)

*fh is a high-freq. cutoff

including FLFM and RWFM. For spectra containing
FLFM and RWFM, you must use Table 2 and must
note the use of a different definition of jitter suggested
in this writing, namely (6) and (7).

The shape of near-carrier (low-frequency) PM noise
is what determines clock jitter level for long averaging
times. Likewise, the shape of far-from-carrier (high-
frequency) PM noise is what determines clock jitter
level for short averaging times. The delay is denoted
by τ and the mapping from phase noise to jitter is
illustrated by figure 5.
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