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Abstract - We introduce a statistic that can be
used for a particularly difficult measurement prob-
lem, namely, determining frequency stability for fre-
quency standards and oscillators for averaging times
longer than those the traditional Allan deviation can
estimate. Theoretical variance #1 (“T̂heo1”) has sta-
tistical properties that are like “Avar” (Allan vari-
ance), with two significant enhancements: (1) it can
evaluate frequency stability at longer averaging times
than given by the definition of Avar, and (2) it has the
highest number of equivalent degrees of freedom (edf)
of any estimator of frequency stability. T̂heo1 is un-
biased relative to Avar for white FM noise, and only
moderately biased for the other noises. Given mea-
surements of the time-error function x(t) between two
clocks, we have a sequence of time-error samples {xn :
n = 1, . . . , Nx} with a sampling period between adja-
cent observations given by τ0. In integer multiples of
τ0, we can obtain an average of fractional-frequency
deviates over time τ = mτ0, 1 ≤ m ≤ Nx − 1. T̂heo1
is given by

T̂heo1(m, τ0, Nx) =
1

0.75(Nx − m)(mτ0)2

Nx−m∑

i=1

m
2 −1∑

δ=0

1
(m

2 − δ)
[
(xi− xi−δ+ m

2
)+ (xi+m− xi+δ+ m

2
)
]2
,

for m even, 10 ≤ m ≤ Nx−1, where frequency stabil-
ity is evaluated at span or stride τs = 0.75mτ0. This
means that the last τs = 0.75(Nx − 1)τ0, or an aver-
aging time corresponding to 3/4 of the duration of a
data run, or 50 % longer than the longest τ -value of
Avar.
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1. Introduction

Having measured the time error between two clocks
or oscillators, say, every couple of hours for one
month, the maximum-overlap Allan variance estima-
tor of frequency stability, or “Avar,” cannot report
frequency stability for intervals longer than half the
month, or two weeks [1–3]. By definition, a zero-
dead-time average frequency difference for averaging
interval τ cannot possibly extend beyond 50 % of the
length of the data run T , that is, beyond τ = T

2 .
Furthermore, this estimate is often too low. This is
because the chi-square distribution function associ-
ated with an estimate comprised of only one sam-
ple at τ = T

2 (representing one degree of freedom) is
so negatively skewed that it is twice as likely to be
lower than the FM noise level’s true value than above
it [4,5]. In addition, if a sample estimate of frequency
drift is removed, Avar is likely to respond with levels
too low at longest-term compared to the expected or
true underlying characteristic level [5]. This overlap-
ping estimator for the Allan variance has sufficiently
good confidence at short- and medium-term τ aver-
aging intervals but, to be conservative in light of the
reasons just stated, it is not recommended for τ be-
yond 10 % of a data run T [3]. In the one-month
example above, this amounts to only a three-day τ -
average. In this situation, the best estimator of the
Allan variance, which is the Total variance, or Tot-
var [3, 5, 6], is recommended. Use of the Total ap-
proach yields improved confidence between 10 % and
50 % of a data run, or up to two weeks in a one-
month data run. At this writing, analysts in our
field are confident of Totvar’s properties. Easy-to-use
32-bit Windows software is commercially distributed
that implements Totvar on large data sets, computes
its confidence intervals, and automatically adjusts for
bias [7].

It would seem preposterous to report a reliable es-
timate of frequency stability at a τ of three weeks,
given a one-month data run, again considering the
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reasons stated, not to mention that this is theoret-
ically impossible with the Allan variance! In this
paper, we introduce a special-purpose statistic that
evaluates very long-term frequency stability at τ be-
tween T

2 and T , is less susceptible to drift removal,
and has a more symmetric distribution function than
that of chi-square [8]. Starting with a sequence of
time-error samples {xn : n = 1, . . . , Nx} with a sam-
pling period between adjacent observations given by
τ0, T̂heo1 is the sample version of a theoretical vari-
ance that averages every permissible squared second-
difference of time errors in a given span or stride
τs = 0.75mτ0 using the following definition:

T̂heo1(m, τ0, Nx) =
1

0.75(Nx − m)(mτ0)2

Nx−m∑

i=1

m
2 −1∑

δ=0

1
(m

2 − δ)
[
(xi− xi−δ+ m

2
)+ (xi+m− xi+δ+ m

2
)
]2
,

(1)
for m even, 10 ≤ m ≤ Nx − 1. At this writing,
the statistic has the highest confidence in estimating
long-term frequency stability. A sample calculation
on a short time series is given in Appendix I.

The development of T̂heo1 involved the following
issues. First, it is common practice to measure sam-
ples of the time-error function x(t) between two oscil-
lators and then derive frequency stability. For exam-
ple, Avar is usually calculated as a normalized second
difference of time-error measurements {xn}. Measur-
ing in this way assures Avar’s statistical requirement
for zero dead-time between average frequency differ-
ences [9]. Of course, one can obtain mτ0-average
fractional-frequency values as

yn(m) ≡ 1
m

∑m−1
j=0 yn−j ,

where yn = 1
τ0

(xn − xn−1) with n = t/τ0 starting
from a designated origin t0 = 0.

Second, it is desirable to maintain Avar’s half-
octave frequency response with peak at reciprocal pe-
riod of fp = 1

2τ . This response efficiently extracts lev-
els of FM power-law noise types [10–15] while retain-
ing simple, distinct straight-line mapping (on log-log
plots) to Sy(f), which is the recommended character-
ization of frequency stability [16]. Third, we want to
maximize equivalent degrees of freedom (edf) while
minimizing bias relative to the conventional Allan
variance. We can accomplish this by using most, if
not all, of the available {xn} data, with small sam-
pling interval τ0 � T , based on the experience gained
from Totvar [5, 17, 18].

τsn (b)

(a)

τs1
= τ1 = T/2

T

(c)

τsN

τ0

τ1

...
...

τn

Figure 1: Sampling using T̂heo1 of fractional-
frequency measurements {yn}, which computes fre-
quency differences in interval T , shows the varying
stride τs1,s2,etc. and corresponding averaging time
τ1,2,etc. given by the inner summation in (1). The
summation’s first term (δ = 0) is the sampling in (a)
which is that of the classical Allan variance. In this
case, stride τs1 equals averaging time τ1, and both
equal T

2 . For 1 < δ ≤ m
2 , intermediate sampling func-

tions are illustrated by (b) in which τs(·) > T
2 . The

summation’s last sampling function is (c) in which
τs(N) = T −τ0. Therefore, the effective τ -value of the
individual frequency differences averaged in T̂heo1 is
between T

2 and T − τ0.

2. Meaning of τ

Oscillator frequency instability, the effect of ran-
dom frequency-modulation (FM) noise, can be re-
garded as an uncertainty on that oscillator’s ex-
pected or predicted average frequency [19]. At long
enough intervals, a frequency error accumulates over
some time span, call it τs. This error is due to
the frequency’s undesirable noise fluctuations char-
acterized as white, flicker, or random walk, or sys-
tematic frequency drift. Given one span, an esti-
mate of error/τs is simply ∆τy(t)

τs
, where ∆τy(t) is a

change or difference in fractional-frequency values,
each obtained from a measurement of a pair of os-
cillators, τ is an averaging interval used to compute
each value of fractional-frequency, and τs is the stride
or span of time over which the change occured [16].
The time-domain characterization of random noise
can be regarded as the rms frequency error over τs

given by the usually-reported Allan deviation σy(τ)
as 1√

2
(∆τy(t))rms [20, 21]. Adjacent values of τy(t)

must be used in the Allan definition, thus making
τs = τ [9]. The point is that the stride τs is not
explicit but implied in the definition, and one could
make the notation for frequency stability read σy(τs).
With Avar, τ can mean averaging time τ or stride τs.
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Response of 
1/2-octave ideal
bandpass filter

Figure 2: A comparison of frequency responses of
T̂heo1 (bold line), Avar, and a passband variance
consisting of a simple cascade of a single-pole high-
pass followed by a low-pass filter with identical break
points at RC = τ/2 (dashed line [10]). T̂heo1’s fre-
quency response with bias removed is a close approxi-
mation to the response of an ideal pass-band filter and
explains why it is so efficient in extracting power-law
noise levels and types.

This is illustrated in Figure 1, in which (a) is the
sampling function of the classical Allan variance.

A major distinction of T̂heo1 is that it evaluates
frequency stability at an effective stride τs given by an
average of all strides between T

2 and T − τ0 as shown
in Figure 1. “Averaging time τ” is not constant for
T̂heo1 in the usual sense. For clarity, τ when used
with T̂heo1 will always mean an average of stride τs,
even if the notation “τs” is not explicitly used.

3. Criteria for τs = 0.75mτ0

Recall that it is desirable to maintain Avar’s half-
octave frequency response with peak at a reciprocal
period of fp = 1

2τ . The dashed line in Figure 2
shows the response of a constant-Q, half-octave pass-
band filter considered to be ideal for extracting typi-
cal power-law noise levels [10–15].

Response of a statistic is the Fourier transform of
its sampling sequence that, in some cases, can be
nearly impossible to interpret in the time domain but
easier to understand in the frequency domain [22].
Frequency-response functions associated with T̂heo1
(with bias removed, see section 5) and Avar are shown
in Figure 2. Prior to (1), we obtained a high-edf, low-
bias prototype variance, whose frequency response
peak was shifted above fp = 1

2τs
. We found that

if τs = 0.75mτ0 and the amplitude of the response is
adjusted by 0.75 (in the denominator of the ampli-
tude coefficient of definition (1)), then the frequency
response could be shifted to be precisely fp = 1

2τs
.

4. Response to Data Periodicity
Avar has deep nulls in its response to periodic or

cyclical variations in {xn} at frequencies f = int
τ , int

= 1, 2, 3, ... , whereas T̂heo1 does not (see Figure 2).
This means that the response of T̂heo1 to a periodic
term in the data with frequency near f = int

τ is going
to be more accurate than if using Avar. In the end,
T̂heo1’s frequency response is closer to the response
of the ideal pass-band filter that Avar attempts to
approximate.

5. Bias
In this writing, “bias” of T̂heo1 refers to the ratio

of its expected value to that of the Allan variance.
Bias for each noise type is listed in Table 1, and also
is listed in terms of the usually reported deviation.

Table 1: Bias of T̂heo1.

Noise Avar = Adev=
White FM T̂heo1 T̂heo1-dev
Flicker FM 1.71T̂heo1 1.31T̂heo1-dev

Rand Walk FM 2.24T̂heo1 1.50T̂heo1-dev

White PM* 0.4T̂heo1 0.63T̂heo1-dev
Flicker PM* 0.6T̂heo1 0.77T̂heo1-dev

*With PM noises, T̂heo1’s slope is slightly less than
Avar’s slope of τ−2 (τ−1 in terms of “deviation”).

Therefore, the bias is approximated.

6. Equivalent Degrees of Freedom
For computing edf, empirical formulae that fit sim-

ulation can be used [1,23]. Here are the edf formulae
corresponding to T̂heo1 for the five noises (with the
condition that τ0 ≤ T

10 , as discussed in section 7 to
follow):

edf︸︷︷︸
WHFM

=
[
4.1Nx + 0.8

τs
− 3.1Nx + 6.5

Nx

](
τ

3/2
s

τ
3/2
s + 5.2

)

edf︸︷︷︸
FLFM

=
(

2N2
x − 1.3Nxτs − 3.5τs

Nxτs

)(
τ3
s

τ3
s + 2.3

)

edf︸︷︷︸
RWFM

=
(

4.4Nx − 2
2.9τs

)
x

(
(4.4Nx − 1)2 − 8.6τs(4.4Nx − 1) + 11.4τ2

s

(4.4Nx − 3)2

)
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edf︸︷︷︸
WHPM

=

(
0.86 (Nx + 1)

(
Nx − 4

3 · τs

)

Nx − τs

)(
τs

τs + 1.14

)

edf︸︷︷︸
FLPM

=
(
4.798N2

x − 6.374Nxτs + 12.387τs

(τs + 36.6)1/2(Nx − τs)

)(
τs

τs + 0.3

)
.

Accuracy of the fit to simulation results is ±10 %.

7. Long-term Frequency Stability Strategy
We want the inner sum in (1) to act on as many

points as possible for a given data run, that is, we
want m to be large for a good evaluation of T̂heo1 at a
particular desired τs. Therefore, it is advantageous to
have a high sample rate in comparison to a desired τs.
In other words, obtain, say, 100 to 1000 points in the
data run for a desired τs by making τ0 small enough
to achieve this end. For example, for a sample period
of τs = 1 week = 7 d = 168 hrs, one would need 9-1/3
d = 224 hrs of data to get the “last point” of T̂heo1,
that is, the point at the longest possible τs. A good
sample rate of xi would be 1 samp / hr, thus τ0= 1 hr,
making Nx = 224. Because τs = 0.75mτ0, T̂heo1 will
estimate frequency stability for the desired range of
τs < 168 hrs. To obtain good confidence, Nx = 224
yields a sufficient number of degrees of freedom in
this range based on formulae in the previous section.
In contrast, one would usually need over 17 days of
data using Avar for the same confidence that T̂heo1
obtains at 9-1/3 d.

8. Determination of Noise Type
Noise identification at a particular τ is needed to

determine confidence intervals (by means of the edf)
and bias. Presently, there exists a noise-identification
algorithm that has been found effective in practice
which estimates noise type vs. τ [24] and has been
used successfully to automatically determine noise
type [6,7]. It is based on the Barnes B1 function [25],
which is the ratio of the N -sample (standard) vari-
ance to the two-sample (Allan) variance.

This ad hoc method works satisfactorily, how-
ever, computations of T̂heo1(τs) are at stride τs =
0.75mτ0, which means that its “last point” is at stride
τs = 0.75(T − τ0), a point beyond which the above
method works. In many cases, one can use the noise
type of the point at τ = T

2 . Alternatively, the noise
type at a τ -value greater than T

2 can often be nar-
rowed down to one based on the overall surrounding
frequency stability function, a technique used with
Avar [19, 26–28]. A final option is to average the
small, expected “range” of answers at very long term.
Since the bias of T̂heo1 is modest, one can average

this range with a confidence interval that represents
the peak spread of the range and still obtain a useful
estimate.

9. Conclusion

• T̂heo1 is effective to arbitrarily large τ -values,
including 3/4 of the entire data run. This means
that longest-term frequency stability can be ob-
tained with only 1/3 more data-collection time.
For example, the three-month stability can be
obtained with four months of data, rather than
the six months of data that is usually required
for such a point.

• T̂heo1 has higher edf than Avar or Totvar. In the
example above, edf is about 2 to 5 times greater
than Avar at τ of three months, depending on
the noise type.

• T̂heo1, like Avar and Totvar, is invariant to an
overall shift in phase and frequency. T̂heo1,
like Avar and Totvar, retains simple straight-line
mapping (on log-log plots) to Sy(f) for easily ex-
tracting the levels of the usual five FM power-law
noise types by a linear-least-squares fit [8].

• Although we have introduced a new statistic
that is designed to report very long-term sta-
bility, T̂heo1-dev can serve as an excellent alter-
native to the Allan deviation in medium term.
It is unbiased relative to the Allan deviation for
WHFM noise, and only moderately biased for
other noises.
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APPENDIX I

Sample Calculation
For the purpose of illustration, we calculate one

value of T̂heo1-dev from a short sequence of num-
bers. The sequence can be used as a basic test of
computer programs. Consider the following sequence
of ten days of equispaced time error measurements
{xn : n = 1, . . . , 10} in units of ns:

x1 = 1.00 x6 = 1.08
x2 = 2.50 x7 = 0.50
x3 = 0.65 x8 = 2.20

x4 = −3.71 x9 = 4.68
x5 = −3.30 x10 = 3.29

Let us calculate T̂heo1-dev for τ = 6 d (5.184×105 s).
From (1), the inner summand terms for the sample

variance T̂heo1(8, 1, 10) for each index i are given by
(for this value of τ , note that m=8):
i = 1 :

i = 2 :

δ=0 : 1
4 [(1 − (−3.3)) + (4.68− (−3.3))]2

δ=1 : + 1
3 [(1 − (−3.71)) + (4.68− 1.08)]2

δ=2 : + 1
2 [(1 − 0.65) + (4.68− 0.5)]2

δ=3 : +1[(1− 2.5) + (4.68− 2.2)]2

= 71.94,
δ=0 : 1

4 [(2.5− 1.08) + (3.29− 1.08)]2

δ=1 : + 1
3 [(2.5 − (−3.3)) + (3.29− 0.5)]2

δ=2 : + 1
2 [(2.5 − (−3.71)) + (3.29− 2.2)]2

δ=3 : +1[(2.5− 0.65) + (3.29− 4.68)]2

= 54.75,

and, for the outer summation, we obtain
∑2

i=1(·) =
126.69. T̂heo1(8, 1, 10) = 1

2(8)2·0.75

∑2
i=1(·) = 1.320,

and T̂heo1-dev(8, 1, 10) =
√

1.320 = 1.149.
Since the original measurements were in units of

ns/day, we obtain 1.149 · 1 ns
86400 s for a sampling pe-

riod of τ0 = 1 d = 86400 s. Therefore, for this set,
T̂heo1-dev(8, 86400 s, 10) = 1.330× 10−14.
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