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Abstract - This writing discusses the appearance of 
peaks and valleys in Allan deviation plots (also known as 
sigma-tau, root Avar, or Adev plots). This distinctly os- 
cillatory pattern, especially at long-term T-values, usually 
means the presence of quasi-sinusoidal frequency modu- 
lation of an oscillator’s signal. However, quasi-sinusoidal 
oscillatory behavior in sigma-tau plots at long 7 may be 
due t o  statistical sampling and not to  actual oscillator 
or clock data. Periodic variations in sigma-tau plots are 
often used as an indicator of periodic environmental per- 
turbations such as a diurnal or other external influence, 
and it is important to  know whether these variations are 
an analytical artifact or not. 

Removal of drift can make the oscillatory pattern 
worse. Samples of clock data for a dispersive noise process 
look like a portion of a sinusoid because the sample dura- 
tion is less than the inverse of the data’s inherent low fre- 
quency extent. Drift removal also removes low frequency 
components of noise, which causes negative bias of root 
Avar a t  long tau. The root Avar and drift-removal trans- 
fer functions have peaks and nulls that interfere with each 
other and can cause an oscillatory pattern in the resulting 
sigma-tau plot. 

The best way t o  determine whether sigma-tau periodic 
variations at  long term are real or not is by substituting 
statistics such as root Totvar or the newer Theol, which, 
in particular, shows no anomolous oscillatory behavior. 

I. INTRODUCTION 

One of the biggest problems of interpreting a plot of 
frequency stability, sigma us. tau, or Allan deviation, is 
trying t o  determine whether a given feature is real and 
has physical cause, is an aberrant behavior of the statis- 
tic used to  estimate frequency stability, or is an interac- 
tion of the data and statistical processing. For example, 
processing that removes one or more systematics, such 
as frequency drift when using the Allan deviation, causes 
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known significant variability in sigma at  long-term values 
of T .  This is not to  say that this sigma us. tau plot is 
“biased” but rather that a particular realization of it con- 
tains a pattern or kind of error which looks like a feature 
of the data. Various errors occur at long term due to  a 
limit on the length of the data  run with combinations of 
noise when in reality the feature disappears if one were 
able to  take more data. In a similar context, patterns and 
errors occur at low frequencies when applying a Fourier 
transform operator to a finite block of data. 

This writing focuses on the appearance of peaks and 
valleys, or a distinctly oscillatory pattern, especially for 
large 7, whose interpretation usually means the presence 
of quasi-sinusoidal data. The appearance of an oscilla- 
tory pattern at long-term .r may not mean the presence 
of quasi-sinusoidal data but may be a property similar 
to what is called “side lobe leakage,” an artifact of sam- 
pling in frequency-domain spectrum analysis. I show how 
particular data sampling can cause an oscillatory pattern 
in, for example, the Allan deviation, and how removal 
of drift can accentuate this pattern. Unfortunately, sep- 
arating this statistical artifact from that due to  actual 
quasi-sinusoidal data  with period T is not easy, and I 
illustrate how samples of noise often look like one sinu- 
soidal cycle over T .  This appearance is real and is itself 
random whose distribution properties in terms of Fourier 
frequency is chi-square distributed with 1 or 2 degrees of 
freedom. Thus the level of the lowest Fourier frequency 
component when considering the frequency domain has 
a significantly asymmetric probability distribution that 
creates a familiar oscillatory pattern. “Smoothing” is a 
process by which an estimate of some sequence of pa- 
rameters includes the neighboring values to  reduce the 
variability in the result. I discuss how smoothing at the 
largest .r-values is accomplished in Total frequency stabil- 
ity estimators (Totdev, Total MDEV, Total TDEV, Total 
Hadamard) and substantially reduces oscillatory patterns 
that are anomalous in a plot of sigma us. tau, while the 
oscillatory pattern is retained if quasi-sinusoidal data ac- 
tually is present. This property of all Total estimators 
yields a way to  determine whether or not the data are 
actually quasi-sinusoidal near the last .r values. Long- 
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term frequency stability can also be calculated using a 
new statistic called “Theol” that shows virtually none of 
the oscillatory behavior inherent in the Allan deviation. 

11. THE ALLAN VARIANCE 

Where narrow band processing is not required for 
determining the characteristic noise level of broadband 
processes such as power-law processes, the Allan variance 
is used instead of the inherently narrow band, windowed 
discrete Fourier Transform, or DFT.’ This variance can 
be used to  form a broadband spectral estimate using well 
known conversion schemes discussed elsewhere [l-31. The 
presence of nearly sinusoidal (or quasi-sinusoidal) data  
simply means that the data  have at least one periodic 
component added to  an otherwise random-noise process 
having no particular periodicity. This mixture makes nar- 
rowband spectral analysis more suitable than the Allan 
variance for characterizing levels of quasi-sinusoidal data  
components in the noise, but the Allan variance is still 
preferred for quantifying long-term frequency stability in 
the 7-domain where FLFM and RWFM may dominate. 
So we are often faced with having t o  interpret quasi- 
sinusoidal components using the Allan variance. 
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Figure 1: Sample root Allan variance gv (7) (referred to 
as Avar the best, or maximum-overlap estimator) of a 
commercial Cs frequency standard vs. NIST’s AT1 time 
scale. In the long-term 7-region, we see variations which 
may be interpreted as having a quasi-sinusoidal modula- 
tion in the data  a t  long term (note the existence of peaks 
and dips near the longest term values). 

’The DFT is also highly variable across frequencies, making 
interpretation of conventional DFT-based spectral estimates 
problematic. 

5 (seconds) 

Figure 2: Note the apparent presence of quasi-sinusoidal 
data indicated by the oscillatory response at  long-term 
of the sample Allan variance ni(7) due to  sampling er- 
rors (the noise simulation represents the linear addition 
of three power-law noise types and should result in the 
“composite” solid curve) [6]. 

A. Quasi-sinusoidal Allan Variance 

As the averaging interval approaches the total interval 
T ,  even the best sample Allan variance (Avar) can show 
considerable variability and apparent negative bias that 
is dependent on known pathologies [4]. Total variance 
(Totvar), to  be discussed later, has indicated more accu- 
rate estimates of characteristic long-term noise level [5] .  
This writing attempts to isolate errors associated with a 
less-known undesirable behavior that shows up  as an os- 
cillatory pattern at  long term in the 7-domain using Avar. 
For example, Figure 1 is root Avar of data  from a commer- 
cial Cs frequency standard vs. NIST’s AT1 time scale. In 
a ?--region of pure WHFM with no quasi-sinusoidal mod- 
ulation, a quasi-sinusoidal modulation appears in Avar. 
At long term, note the existence of alternating peaks and 
dips in the last four 7-values. Figure 2 shows the re- 
sponse at all 7-values of Avar to  pure FM noise simula- 
tion involving the linear addition of frequency-fluctuation 
spectral density (S,(f)) slopes fo,f-’, and f - 2 ,  whose 
expected Avar result should be the line indicated as 

pears, this interpretation at long-term T (the end of data 
error) would be incorrect. An oscillatory pattern occurs 
randomly as shown in Figure 3. In 100 simulations of 
pure WHFM, we see similar patterns in many of those 
trials. In the case of the simulations, figures 2 and 3, we 
know by design that there is no quasi-sinusoidal modu- 
lation at  the level indicated by Avar. Since there are no 
correlation artifacts known in Avar itself that might ac- 
count for this response, what is happening? Furthermore, 

~ c o m p o s t t e  2 (T) [6]. While quasi-sinusoidal modulation a p  
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Figure 3: Oscillatory response at long term shows up fre- 
quently in the classical sample root Allan variance cy(r) 
with 100 simulation trials of WHFM noise. 

root Totvar is recommended over root Allan variance as a 
measure for accurate long-term frequency stability char- 
acterization (see figure 4 simulation results). We find that 
the circularization of the data  defined in Totvar and de- 
scribed later makes it less subject t o  these errors. But 
why? 

The key for developing interpretations of sigma vs. tau 
at  long-term is found in the relation of the Allan variance 
expressed in the frequency-domain model. The Allan vari- 
ance f-t0-7. transform can be written as: 

where T is the averaging time, lag or correlation time 
T = 27. by definition, and Sy(f) is the Power Spectral 
Density (PSD) of y ( t ) ,  the fractional frequency devia- 

tion function. Note that is a filter response 

(squared) whose first and largest maximum is at f~ = f .  
A plot of the overall filter response is shown as the solid 
curve in figure 5 .  Data runs have finite duration, T ,  so the 
integral in (1) has an operational lower limit frequency of 
+. At r = T/2,  fro,,, = has a high-pass charxteris- 
tic for f < and a low-pass stage followed by a (and this 
is important) periodic filter response on the right side of 
the plot in figure 5 (of form sin z/z). More specifically, 
we can separate Avar’s filter response into two pieces, a 
high-pass ( h p )  to  the left and a low-pass ( I p )  to  the right, 
as: 

Figure 4: Not only is root Totvar less variable, but its 
response is smoother with fewer oscillations a t  long-term 
with the same 100 simulation trials of WHFM noise as in 
figure 3. 

The Allan variance can be interpreted as the standard 
variance of an Fhl noise process having passed through 
a constant-Q bandpass filter [7]. A close approximation 
is cascaded high-pass and low-pass single-pole filters with 
RC time-constant T / 2 ,  also shown in figure 5 [8]. 

B. Problems of Sampling and Processing 

At the end of a data  run the last possible r-value using 
Avar is T / 2  computed as half the squared subtraction of 
average frequency jjl for the first half of T and j j 2  for the 
second half. The maximum-lag response is a t  T = T / 2 ,  
and furthermore only one sample value exists at T / 2 ,  
which means only one value, hence a degree of freedom 
of 1, and it is used in Avar’s estimate of the “true” Allan 
variance. 

Before proceeding, it is somewhat enlightening to  keep 
in mind that  noisy phenomena can tend to  oscillate by 
randomness alone. For example, let X 1 ,  X 2 ,  X 3  be in- 
dependent and have the same probability density. What 
is the probability that they are monotonic: X1 < X 2  < 
X 3  or X 1  > X 2  > X3? All 3! possible orders of 
X 1 ,  X 2 ,  X 3  have probability 1/6, so the answer is 1/3. 
Thus the probability that they “oscillate”, i.e., are not 
monotonic, is 2/3. In contrast, neighboring values of Avar 
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Figure 5 :  A comparison of frequency responses acting on 
y ( t )  of Avar, Totvar, and a passband variance considered 
to  be ideal consisting of a simple cascade of a single-pole 
high-pass followed by a low-pass filter with identical break 
points at RC = 7 /2  (dashed curve). Totvar side lobes 
are flatter and closer to ideal without Avar's deep nulls 
a t  large 7 .  The dark solid line is the frequency response 
of a new statistic called "Theol" and which exhibits the 
lowest passband ripple. 

are not independent, so this example isn't entirely a p p n  
priate to a root Avar plot. 

Regarding the issue of finite sampling and process- 
ing, there are three basic concepts involving sampling 
of data. First, a finite-observation period given by T 
always acts as a high-pass filter because we cannot be 
sensitive to any change taking longer than T .  Low- 
frequency catastrophic divergence, a property of non- 
stationary models of processes with "red" spectra such 
as FLFM and RWFM, is never realized because of finite 
time limits [9]. For this reason, & is widely used as the 
usual sample low frequency fsl and as the lower limit in 
frequency-domain analysis even though the real charac- 
teristic !ow frequency frl of the process being investigated 
may be far lower. 

Note that one sample of data  for a dispersive process 
(having a "red" spectrum) such as random walk does not 
look like noise about a nearly flat line in the time do- 
main but will more apparently look like a complete, or a 
portion of, a sinusoidal cycle. This is because the sam- 
pling duration T is shorter than the inverse of the real 
minimum frequency of the flicker and random walk FM 
processes. Figure 6 shows 100 segments of {z t }  as simula- 
tions of random walk FM. The Allan variance responds to 
this sample data as we would visually, namely as having 
sizeable power concentrated in one low frequency compo- 
nent in the vicinity + < fo < &. The appearance of 
a sinusoidal cycle is a random occurrence whose distribu- 
tion properties in terms of Fourier frequency is a skewed 
chi-square distribution if there are only 1 or 2 degrees 
of freedom. Thus the values at lower Fourier frequency 

Figure 6: 100 segments of {z t}  as simulations of random 
walk FM in which a slope is removed so that the ends 
are matched. Note that  the random shape often appears 
as about one-half or one sinusoidal cycle over the entire 
sample interval. 

components have an abnormally high probability of be- 
ing indicated in the frequency-domain. This is consis- 
tent with 7-domain uncertainties in which lower values of 
oy(.) have a higher probability of occurrence at  the last 
few points. 

Second, part of the statistical process or oscillator sys- 
tem (such as in a Cs frequency servo or disciplined oscilla- 
tor) involves the routine matter of removing estimates of 
trends in frequency, usually modeled as functions of low 
order, most notably linear frequency drift. Avar charac- 
terizes residual noise measurements very well but not in 
the presence of systematics such as drift that mask the un- 
derlying stochastic process. But removing low-frequency 
drift also removes some of the stochastic noise. Drift 
removal suppresses, sometimes dramatically, the Fourier 
frequency components near f = &. This is because an 
underlying quadratic function contained in z ( t )  over in- 
terval T (that is, the usual model of linear drift in y ( t ) )  
is hard to  distinguish from an underlying real half-cosine 
function over the same interval with other imposed noise. 
Estimates that  remove one invariably remove the other 
and cause negative bias (depressed response) in Avar at 
long-term values of T in the remaining residuals. I t  can 
also cause an oscillatory pattern in long-term Avar in the 
following way. Drift removers can be modeled as classes of 
Fourier filters with approximate lag T.  At 7 = T/2,  we 
are thus left with noise residuals having been processed 
by a notch filter whose center frequency is approximately 
the maximum center peak in Avar's frequency response 
(shown as the solid curve in figure 5) and its odd har- 
monics. Indeed the response of i\var using a common 
estimator of drift is exactly zero at 7 = T / 2  [lo]. Odd 
Fourier components a t  7 = T / 4  do not coincide with 
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Avar’s nulls; however, a t  7 = T/8  odd higher f com- 
ponents again end up in many of the in Avar’s 
response. Multiplying the transfer function of the drift 
remover with Avar’s transfer function reveals a picket- 
fence pattern between the two. This pattern results from 
an interaction between Avar’s frequency response, whose 
center frequency depends on the value of 7, and a drift 
remover, whose notch frequency does not. The result is 
that Avar exhibits oscillations us. 7. 

C .  Leakage 

It is clear that a large contributor to long-term behavior 
of frequency stability identifies with the periodic notches 
between the lobes in the bandpass characteristics of Avar. 
These side lobes have always been regarded as an unde- 
sirable property of narrow-band spectrum analysis. Spec- 
trum analyzers typically compute a power spectrum for a 
time series {yt} by windowing, that is, tapering the se- 
ries at both the beginning and end by m e a n  of tapering 
sequence {ht} and then taking the squared modulus of 
the DFT of the windowed series {htyt}. The purpose of 
windowing is to  reduce a potential bias known as leakage, 
in which power “leaks” from high power portions into low 
power portions of the spectrum. This author speculates 
that leakage from high-level short-term noise accounts for 
the error approximately over the region shown in figure 2. 

Avar does not include a window series {h t} ,  which 
tapers the original data because side lobe leakage is ar- 
guably a feature of the definition (if we regard a constant- 
Q bandpass as an idealized variance response as in the 
dashed curve of figure 5). Unfortunately Avar’s response 
at long term depends more critically on the nulls be- 
tween the side lobes than its short-term response because 
Avar has only 1 or 2 terms in its summand, meaning 
virtually no smoothing. Tapering would modify the high- 
frequency (low-pass) response, in particular its slope, and 
additionally would shorten the maximum averaging time 
to achieve the same confidence as the presently-used un- 
tapered series. Also a windowed version of the Allan vari- 
ance naturally calls for wavelet-based variances as a more 
reasonable approach to  analysis considering the vast lit- 
erature on the subject of wavelet analysis. One ratio- 
nale for the wavelet variance is that higher-order wavelets 
address the leakage problem [ll]. Lastly, windowing of 
Avar is partially done using the modified Allan variance 
(Mvar) [12]; more windowing could overly complicate oth- 
erwise simple formulas. Nevertheless Allan variance leak- 
age is a concern in common situations in which the short- 
term FM and PM noise level is higher than the long-term 
(usually FM only) noise level is low, but it is a contribut- 
ing error in any situation in which high-power components 
can leak to low-power regions in the 7-domain. 

D. How Leakage Creates an E n d - o f - D a t a  Error 

Allan variance leakage originates from side lobe frequency 
response due to  the window of observation of data  in 
process, a consequence of starting a measurement at to 
and stopping it a t  T. The solid curve of figure 5 with 
the downshoots (deep nulls) is the frequency response 
of Avar; the high-frequency response to  the right of the 
main peak are the side lobe responses. Avar leakage er- 
ror often shows up as a slight positive change in Avar’s 
slope and is usually attributed to  power from the noise 
at high frequency (short 7-values). This is because the 
Allan variance’s bandpass filtering on frequency noise is 
equivalent to  high-pass filtering on phase noise, so side 
lobe leakage is more pronounced in the presence of wide 
band (short-term) P M  noise, a likely occurrence. For 
example, in figure 2, leakage error from high-frequency 
noise augments the oscillatory response in Avar which, 
in short- t o  mid-term, averages to a smooth change of 
positive slope in the response as possibly attributable to  
the indicated “leakage error” region in figure 2 except 
a t  the longest-term 7-values, where the number of av- 
erageable frequency deviates goes from a large number 
to  only 1. At the longest 7-values, an oscillatory leak- 
age error becomes indistinguishable from, and combines 
randomly with, other sampling errors attributable to  an 
end-of-data. 

The start and stop of a measurement from its non- 
measured state (assumed to  be zero everywhere), some- 
times introduces an artifact of sampling of a particular 
random shape in the data  run which artifact appears as 
a non-negligible power localized at frequency f31 = l ~ .  

Regarding & as itself a functional “frequency” declares 
that it is periodic (though it may not be) with harmonics 
arross a wide spectrum; thus we have an end-of-data error 
attributable to  an assumption about the state of the data  
outside the actual measurement run. (The same behavior 
occurs starting from zero at to.) 

For “red” processes, does the power below f s l  “leak” 
into the sample Allan variance in the same way as high- 
frequency noise? In a sense it does, but not because of its 
highly variable property alone. If frl < f s l ,  then stop- 
ping the measurement (and likewise its abrupt turn-on 
at commencement) is likely to  introduce a non-zero con- 
stant into Avar, which constant is indistinguishable from 
a pulse of excitation that produces a “ringing” damped 
oscillatory response out of Avar and whose period is 
roughly the reciprocal bandwidth of Avar’s main one- 
octave, constant-Q frequency-domain filtering action in- 
dicated in (2)  and shown as the solid curve of figure 5. 
Leakage described in this way causes the appearance of 
what looks like quasi-sinusoidal noise in the data  itself. 
To make matters worse, the oscillatory Avar response is 
further accentuated by the deep nulls that, from a sig- 
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nal processing point of view, represent a highly dispersive 
filter-response at harmonics, one characterized by large 
phase-shifts us. f-r. The power in the harmonics of the 
pulse pass through the dispersive side lobe leakage re- 
sponse and are phase-shifted by a full 7~ radians (or lag 
of T/2)  at the nulls, which enhance Avar’s oscillations. 
As mentioned, tapering the time-series data  controls the 
power in these harmonics (or conversely, the Avar fre- 
quency response, the argument in the integral of (2)) but 
it compromises our basic objective, namely estimating 
long-term noise level. 

In short, if an oscillatory pattern at  long-term 7-values 
is observed in root Avar, is there real underlying quasi- 
sinusoidal noise in the processed data, or is the cause as- 
sociated with sampling errors due to  an end-of-data sam- 
pling artifact, only one of which might be leakage? In 
toto, it is the fact of the abrupt halt of the measurement 
of data that causes rather sizeable errors and particular 
patterns in the last few points (longest averaging times), 
which patterns combine with possible underlying quasi- 
sinusoidal noise in the data  and confound a clean inter- 
pretation of root Allan variance. 

111. THE TOTAL VARIANCE 

Considerable recent work has been done to improve es- 
timates of oscillator noise level even at  the full extent 
of the data, and for intervals approaching the total data 
length, a new variance called “Total Variance” or Tot- 
var has demonstrated less variability with only modest 
bias relative to the Allan variance. Totvar is a statistic 
whose strategy eliminates the abrupt halt of the mea- 
surement but without the use of tapering. I t  thereby re- 
duces the deep nulls in the frequency response associated 
with Avar, while still characterizing long-term noise out 
to  T = T / 2  (see figure 5). Totvar incorporates a simple, 
but worthwhile, procedure before the application of the 
max-overlap sample Allan variance. In terms of phase 
(or time) deviates zt, Totvar is Avar that is processing 
a larger, virtual set of phase or time data, which set is 
an odd, or reflected, extension at  the beginning and end 
(left and right) of the original real set. Figure 7 illus- 
trates the ~ ( t )  double-sided mirror-reflection extension 
and, hence, the resulting circular or repeating represen- 
tation of the original time series. The Totvar estimator 
is based upon the hypothesis that reasonable surrogates 
for unobserved frequency deviates yt, t < t o  or t > T ,  
can be formed by tacking on reversed versions of {yt} at 
the beginning and end of the original series. The Totvar 
estimator makes use of certain of these surrogate values 
in order to extend the usual smoothing of the best Allan 
variance estimator (Avar) a t  the largest sampling times 

(4 

Figure 7: Circular extension of the original s(t) data  set 
for computation of Total variance. 

approaching T = T/2  [5]. 

A. Smoothing 

“Smoothing” is a process by which an estimate of some 
sequence of parameters incorporates in some manner, usu- 
ally by a weighted average, the neighboring values to 
reduce the variability in a result. In the case of the 
power spectrum, estimates are less variable (smoother) 
when computing overlapped ensemble averages of DFT’s. 
Unfortunately these estimators lack the ability to  be 
smoothed when we are concerned with the very lowest 
Fourier frequencies. The smoothing procedure is occa- 
sionally biased using a periodic extension, an inherent 
property of using the DFT. Nevertheless, smoothing is an 
accepted way of improving the confidence of spectral es- 
timators. Often the bias is known or can be calculated 
under a certain set of conditions. 

The root Allan variance vs. T can incorporate neigh- 
boring 7-value estimates to  reduce the variability in the 
statistical result. This was first pointed out by Howe, Al- 
lan, and Barnes [3] in what was called the “ma-overlap 
estimator” and which has become the standard estimator. 
The procedure simply computes every possible estimator 
of the root Allan variance and overlaps them in an equally 
weighted average to  the maximum extent possible. Root 
Totvar, as a sigma-tau plot, extends this smoothing to  the 
longest -r-values by its periodic extension of the original 
dataset. 

Since the frequency-error function y(t) is always sam- 
pled for data  duration T to realize series {yt} used in 
estimating (Z), Totvar applies the usual niax-overlap sam- 
ple Allan variance so that it treats {yt} as periodic much 
in the same way that the DFT, for example, would in- 
terpret {yt} as periodic (by the convolution theorem), as 
contrasted with the continuous FT of continuous y ( t ) .  
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Why not use evaluations of Totvar a t  7 > T? Sam- 
pling theory dictates that there is no advantage to start- 
ing the integral in ( 2 )  with a lower limit that is less than 
the Nyquist frequency f, = & since there are an infinite 
number of reproductions of the integral’s argument which 
extend to  f = 0. In other words, there is no new infor- 
mation below fs. The lower limit to  the integral in ( 2 )  
is usually written as 0 but because the first sampled fre- 
quency can’t be 0 (implying infinite T), it ends up  being + as a practical matter since we must resort to  a sample 
(finite T )  Allan variance estimate and find the available 
range Of 7 to be TO 5 7 5 T / 2  [13]. This is also verified in 
simulation. Evaluations of frequency stability at T > 5 
have been demonstrated by a statistic called “Theol” and 
are discussed in the last section [14]. 

There is some evidence that Totvar responds more 
smoothly when estimates of systematics such as frequency 
drift have been removed from the data. Common estima- 
tors, which cause severely depressed values of Avar a t  
long-term 7, do not adversely depress the characteristic 
noise at long term reported by Totvar [15]. This prop- 
erty may manifest as reduced oscillatory behavior using 
Totvar, but this has not been investigated beyond the 
discussion here. 

With regard to  side lobe frequency response, figure 5 
shows frequency responses of Totvar and Avar as the 
shaded curves. The frequency response of Total variance 
as a function of r is calculated by averaging the squares of 
the Fourier transforms of the many (Total) sampling func- 
tions and find that it resembles the frequency response of 
the Allan variance but without its deep nulls. Total vari- 
ance has a smoother approximation to a constant-Q filter 
response. This indicates that Total variance has an in- 
terpretation like that of the Allan variance but has lower 
uncertainty at and near the total time interval of a mea- 
sured data  set [5,13]. For the discussion at hand, Totvar 
more accurately represents a constant-& bandpass filter 
with flatter side lobes in the r-region of interest as shown 
in figure 5. In particular, root Totvar responds with less 
oscillatory ripple in the last .r-values, without the p r e  
nounced, alternating peaks and dips occurring as often. 
This is evidenced by the same 100 WHFM simulation tri- 
als of figure 3 but using root Totvar as shown in figure 4. 

In light of the smoother long-term 7 response of Tot- 
var to  random noise, an obvious question is whether it 
will respond properly, like Avar, with an expected oscil- 
latory pattern in the presence of actual quasi-sinusoidal 
data. As mentioned, a finite-observation period given by 
T always acts as a high-pass filter because we become 
increasingly insensitive to  gradual changes slower than 
T .  The periodic data  extension introduced into Totvar 
does not alter this fact, but does assume that any overall 
change is periodic with minimum frequency of f l  = $. 
Given data that actually contain a periodic function, the 

methodology in Totvar will extend this periodicity, al- 
though there will likely be a phase shift at the extension 
points t o  and T ,  which phase shift doesn’t seriously al- 
ter the result. Even though Totvar, like Avar, analyzes 
broadband spectra such as power-law noise processes, it 
naturally approaches narrow-band spectrum analysis in 
long-term .r-values because of its constant-Q frequency 
response. Totvar’s periodic extension is likely to  be a 
valid assumption for characterizing real quasi-sinusoidal 
data  of any Fourier frequency including components at 
very low Fourier frequency. This feature is added incen- 
tive to use Totvar for more accurate interpretations of 
long-term frequency stability, particularly if oscillatory 
patterns show up with the use of Avar. 
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Figure 8: Long-term frequency stability can also be cal- 
culated using a new statistic called “Theol,” which shows 
virtually none of the oscillatory behavior inherent in the 
Allan deviation. Shown above is a plot of Theol (inter- 
preted exactly as the usual sigma-tau, or Allan deviation, 
plot) that uses the same data  used to  compute the Allan 
deviation, or root Avar, in figure 1. 

B. THEO1, Evaluations at Long-term 

Avar and Totvar have useable properties as an estimator 
of frequency stability only to  a longest-term 7-value of 
T/2. A new statistic has been tested that  extracts fre- 
quency stability beyond T = T / 2 .  This statistic, dubbed 
“Theol,” computes selected linear combinations of fre- 
quencies a t  every possible averaging time 7, but in a fixed 
interval T [14]. T in the sense of Theol has an equiva- 
lence to  r in the sense of Avar and Totvar. While Theol 
is a species unlike Avar and Totvar, it retains all of their 
desirable properties, plus, by its definition, can report 
frequency stability up to the full duration of a data  run. 
Central t o  this discussion, Theol has very low ripple in 
its transfer function, as shown by the solid dark line in 
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figure 5 ,  and has shown virtually no anomalous oscillatory 
behavior in simulation trials. 

Figure 8 is a plot of Theol (interpreted exactly as the 
usual sigma-tau, or Allan deviation, plot) that uses the 
same data  used to  compute the Allan deviation, or root 
Avar, in figure 1. The confidence intervals in the indicated 
7-range are significantly smaller than those in figure 1. 
Also, one notes the absence of an oscillatory pattern. 

IV. CONCLUSION 

This writing has shown that the problem of interpret- 
ing oscillatory patterns in root Avar (an Allan deviation 
plot) is not straightforward. The best way to determine 
whether periodic variations at long-term using root Avar 
are real or not is t o  use new statistics such as root Totvar 
(known as Totdev) or Theol, which, in particular, shows 
no oscillatory behavior. 
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