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Abstract—The Total variance approach has been developed for
increasing the confidence of the estimation of the classical Allan
variance, particularly for large integration times. This method is
based on a procedure involving extension of the original data. Re-
cently, we showed how this approach may be applied to all classes
of structure functions (i. e. variances) relevant to the time and fre-
quency community.

In particular, we obtained an improvement in the confidence of
the estimation of the Hadamard variance. The utility of this vari-
ance is its insensitivity to linear frequency drifts and its conver-
gence for very low frequency noises ( FM). As a consequence,
the Hadamard variance is often used for estimating low frequency
noises without significant influence from drift.

As an example, this variance has a primary use in GPS and its
master control operations. Parameters of the Hadamard function
are used to estimate coefficients in the GPS Kalman algorithm. In
this paper, we propose applying this method to clock steering in a
more general context. The total approach increases the equivalent
degrees of freedom (edf) of the estimates. We give simple formulae
for computing the edf and removing the bias induced by the total
approach.

1. INTRODUCTION

Using a type of Hadamard variance, the goal of this pa-
per is to reduce the uncertainty of long-term estimates of
frequency stability without increasing the length of a data
run. For measurements of frequency stability, the two-
sample frequency variance known as the Allan variance
was generalized to an -sample variance weighted with
binomial coefficients by R. A. Baugh (Ref. 1). The case
of the three-sample frequency variance that is used here is
the Picinbono variance (Ref. 2) times . However, in this
paper, it will be called a Hadamard variance (following
Baugh’s work) that is defined as follows. Given a finite
sequence of frequency deviates ,
presumed to be the measured part of a longer noise se-
quence and with a sampling period between adjacent ob-
servations given by , define the -average fre-
quency deviate as

(1)

Let be the
second difference of the time-averaged frequencies over
three successive and adjacent time intervals of length .

Define the Hadamard variance as

(2)

where denotes an infinite time average over , and
depends on .

The GPS program office uses this particular time-series
statistic for estimating Kalman algorithm coefficients ac-
cording to (Ref. 3), which coefficients will be discussed
in a later section. The Hadamard deviation is a
function that can be interpreted like the more efficient
Allan deviation as a frequency instability averaging
time for a range of frequency noises that cause differ-
ent slopes on . This is shown in figure 1. For
estimating Kalman drift noise coefficients, is in-
herently insensitive to linear frequency drift and reports
a residual “noise on drift” as a slope, or what is com-
monly called random run FM (RRFM). This is in con-
trast to the Allan deviation, which is sensitive to drift and
causes a slope. If the level of drift is relatively high,
it masks the underlying random noise. It is customary to
estimate and remove overall frequency drift. Depending
on the method of drift removal, this procedure can sig-
nificantly alter the Allan deviation in the longest term
region of interest, so estimating underlying noise can be
a formidable task for any given data span. On the other
hand, the Hadamard deviation is unaffected by removing
overall frequency drift. For this reason, it is the preferred
statistic in situations in which the frequency drift may be
above the random noise effects, which is the case with the
use of Rb clocks in the GPS Block II satellite program.
We do not imply that systematics such as frequency drift
can be ignored. Indeed, satellite clocks are changed and
these systematics must be learned as quickly as possible
to ensure a smooth changeover.

Throughout this writing, we will make comparisons
using the traditional best statistical estimators, denoted
by “Hvar” and “Avar” referring to the maximum-overlap
estimators of the Hadamard and Allan variances. Section
2 reviews the “total” approach to improving statistical es-
timation. Sections 3 and 4 give two methods of comput-
ing total Hadamard variance, designated as , us-
ing measurements first of fractional frequency deviations
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Fig. 1. The Hadamard deviation (root Hvar) shows FM power-law
noises as straight lines in addition to PM sources of noise for -domain
power-law exponent (that is, ) range of .
We define a new estimator that can be interpreted identically called
Hadamard-total deviation (root TotHvar) and that has significantly im-
proved confidence at long term. The Hadamard-total deviation is insen-
sitive to linear frequency drift that can mask characteristic random noise
typically encountered here in the region where = one-week and longer.
The goal is to identify even-integer power-law noises and accurately
estimate their levels in order to set system parameters associated with
the GPS Kalman filter.

and then of time deviations. Then we quantify the advan-
tage of over Hvar in Section 5, giving formu-
lae for computing bias and equivalent degrees of freedom
(edf) of . Section 6 reviews how an estimate of

-domain frequency stability is used to set Kalman fil-
ter parameters (or ’s) used in GPS operations. Finally,
Section 7 discusses the application of the total Hadamard
variance in the more general context of clock steering.

2. THE “TOTAL” APPROACH

The total estimator approach has been developed to im-
prove confidence of major statistical tools used in ana-
lyzing and characterizing instabilities in phase and fre-
quency of oscillators and synchronization systems (Refs
4, 5, 6, 7, 8, 9, 10). Making a “total” estimator of eqn. (2)
involves joining each real data subsequence, namely the
subsequence of that goes into each term, at
both its endpoints by the same original data subsequence
so that it repeats. This creates a new extended version
of each subsequence that may be extended by a for-
ward or backward repetition, with or without sign in-
version, thus with four possible ways to extend. From
numerous simulation studies, we have determined that
an extension by even (uninverted) mirror reflection of
linear-frequency-detrended subsequences yields
the largest edf gain and least bias for the range of noise
types identified by standard Hvar. This is described in the
next section.

3. COMPUTATION USING -SERIES

is computed from a -point data segment or
subsequence . Before
applying any data extensions, we must remove a linear

frequency trend (drift) from each subsequence by making

where is a frequency offset that is removed to mini-
mize , to satisfy a least-squared-
error criterion for the subsequence. In practice, it is suffi-
cient to compute this background linear frequency slope
by averaging the first and last halves of the subsequence
divided by half the interval and subsequently subtracting
the value. Now extend the “drift-removed” subsequence

at both ends by an uninverted, even reflection.
Utility index serves to construct the extensions as fol-
lows. For , let

(3)

to form a new data subsequence denoted as con-
sisting of the drift-removed data in its center portion, plus
the two extensions, and thus having a tripled range of

with points. To be clear, we
now have

. Define

(4)

for , where means the integer part

of and notation means that above
is derived from the new triply-extended subsequence

. The symmetries of the extension and the Hvar
filter allow the computational effort to be halved as fol-
lows. Let . We need to calculate only
for , and only for

. Then

(5)

even,

odd.

4. COMPUTATION USING -SERIES

The methodology described above can be written in
terms of calculations on residual time differences be-
tween clocks, namely an -series (to adhere to usual no-
tation), recalling that
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Thus in the total approach applied to -series, the data
extensions on subsequences of will be constructed in
such a way that

in agreement with section 3 above. This has the effect of
requiring an odd mirror extension and a third-difference
operator when considering subsequences of . The
Hadamard variance discussed in section 3 as a second-
difference operator on -averaged values can now
be re-expressed in terms of a third-difference operator
on time-error -values. The sample variance (or mean
square) of these third differences falls neatly into a class
of structure functions, namely the variance produced by a
difference operator of order three (Ref. 10). The modified
Allan variance can also be treated as a third-difference
variance (Ref. 11).

The -subsequence that corresponds to the -
subsequence starting at is ,
which has terms. Compute the detrended sub-
sequence according to

Define the extended subsequence

by

Then

where has the same meaning as in Section 3.
Now the Hadamard-total variance is computed from (4)
as before with . Because of symme-
try we need only for , and
(5) applies.

5. BIAS AND EQUIVALENT DEGREES OF FREEDOM

We consider the random frequency-modulation (FM)
noises since these dominate at long-term averaging times
where we can capitalize on the improved confidence of
using the total approach. To analyze phase-modulation
(PM) noises, one would usually use Total TDEV(Ref.
6) rather than the Hadamard deviation. For brevity, let

be , where

TABLE I

COEFFICIENTS FOR COMPUTING (6) AND (7), NORMALIZED BIAS

AND EDF OF TOTHVAR.

Noise Abbrev.
White FM WHFM 0 -0.005 0.559 1.004
Flicker FM FLFM -1 -0.149 0.868 1.140

Random Walk FM RWFM -2 -0.229 0.938 1.696
Flicker Walk FM FWFM -3 -0.283 0.974 2.554
Random Run FM RRFM -4 -0.321 1.276 3.149

. The normalized bias and edf for
are given by

(6)

(7)

where is expectation of , ,
(to be explained), and , , and are given in Table I
for the five FM noise types considered by the Hadamard
variance. is the corresponding power-law exponent
of the fractional-frequency noise spectrum .
In the context here, its valid range is .

relative to in (6) is
independent of and , dependent on noise type, and
biased low, giving the negative sign in Table I. The
edf formula (7) is a convenient, empirical or “fitted” ap-
proximation with an observed error below 10% of numer-
ically computed exact values derived from Monte-Carlo
simulation method using the and coefficients of Ta-
ble I and with the error decreasing with averaging factor

increasing.
To show the improvement in estimating the Hadamard

function, Table II lists the exact values of edf from theory
for computations using plain for the
longest averaging factor in which . This point is
the last point in the estimate, and the improvement in con-
fidence using is substantial, particularly for the
general case of WHFM noise. is a significantly
improved estimator that offsets much of the criticized in-
efficiency in using the sample Hadamard deviation as op-
posed to the sample Allan deviation in the presence of
common WHFM noise in frequency standards.

6. THE KALMAN NOISE MODEL AND THE GPS
OPERATIONS PROBLEM

The time update of clock states in the Master Control
Station (MCS) Kalman prediction algorithm is based on
an average of the the most recent measurement of these
states for each individual clock, modeled simply by ran-
dom noise acting on phase , frequency , and fre-
quency drift . With this model, the measured power-
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TABLE II

EXACT GAIN FOR .

Noise edf gain of
WHFM 3.447
FLFM 2.448
RWFM 2.044
FWFM 1.676
RRFM 1.313

law exponents of the frequency-fluctuation noise spec-
trum take on only the values 0,-2, and -4, corresponding
to WHFM, RWFM, and RRFM, or -1, 1, and 3 in the

-domain. Hence, we want to precisely extract the level
of these noises for each clock using the most efficient
method possible, which heretofore has been the sample
Allan variance with drift removed from the data run, and
more recently the sample Hadamard variance, because of
its logical link to the model. If white PM (WHPM) is
a significant noise component, and for completeness, the

case corresponding to WHPM is included
as a separate error.

The parameters used by the MCS within GPS sys-
tem operations are denoted as Kalman filter ’s. By
convention, each filter parameter corre-
sponds respectively to -domain power law exponents

. For the Hadamard variance, the rela-
tionship is (Ref. 3)

(8)

Tuning the Kalman filter depends on the ability to
“ ” each individual clock according to estimates of its
noise. The GPS Block IIR satellite program incorporates
Rb atomic oscillators that are characterized by a mix of
various levels and types of random noise and with fre-
quency drift that may be significantly above noise. Using
“frequency-drift insensitive” Hvar and using (8), the con-
fidence becomes a factor of about less than using Avar
near the last and crucial long-term value.
This is because the plain sample Hadamard’s edf is one
less than Allan’s edf. For the proper perspective, note
that we are in the one-week averaging -region with a
last real-time data run of about one month, thus edf 1–
2; so estimating filter ’s is somewhat subjective. Figure
2 illustrates a summary of estimates of frequency stability
for each GPS satellite clock as published in reports issued
by the Naval Research Laboratory (Ref. 13).

Table II shows that the new edf
is multiplied by a factor of 1.3 to 3.4 over plain

. can be applied directly and re-
liably, while retaining the efficiency of the sample Allan
variance without the difficulty associated with real-time
drift removal.

Fig. 2. Hadamard-deviation frequency stability of individual GPS satel-
lite clocks USNO Master Clock for the period 1 January to 1 July,
2000 (Ref. 18).

The work of this paper has impact on two GPS op-
erational issues. The first is that the time needed to es-
timate the Hadamard variance is substantially reduced.
For example, to obtain a one-week estimate of the
Hadamard variance with, say, the last 40 days of mea-
sured data, the Total approach using obtains
a one-week estimate with the same or better confidence
in about 26 to 34 days of measured data (see figure 3).
The second issue is that satellite data are obtained by the
linked common-view method (Ref. 14), and the delay in
receiving the monitor station tracking data is currently at
2 to 3 days. Thus, it is important to extract maximum
information from data at hand.

7. APPLICATION TO CLOCK STEERING

In many applications, the time given by an oscillator
must be modeled and predicted. As a consequence, the
time prediction performance of this clock has to be char-
acterized.

In order to estimate the time uncertainty given by an
oscillator, a linear or parabolic fit may be performed over
a sequence of observed time deviations and extrapolated
during a prediction period. Thus, the requirements of
synchronization are specified by the maximum error of
the time deviation prediction from the extrapolated fit.

The question is then, “How is this maximum error re-
lated to the noise levels of the clock ?” Let us call Time
Interval Error (TIE) the differences between the extrap-
olated parabola and the real time deviation. The TIE is
due to two effects: (1) the error of determination of the
parabolic parameters and (2) the error due the noise of
the clock. Obviously, both of these errors may be posi-
tive or negative, and the ensemble average of the TIE is
equal to zero. Moreover, it can be easily shown that the
distribution in TIE is Gaussian. Consequently, we only
need to estimate the variance of the TIE in order to define
its statistical characteristics.

The theoretical variance of the TIE versus the noise
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Fig. 3. Total Hadamard deviation, plain Hadamard deviation, and Allan
deviation for SV24 satellite clock data as the data run increases from 7
days (front plot) to 28 days (rear plot). The last (rightmost) values of
TotHdev for shorter data runs anticipates the underlying noise level of
longer runs compared to plain Hdev (arrowed lines are projected off 28-
day data run). The Allan deviation’s response to frequency drift masks
the long-term noise level.

levels has been calculated in Ref. 15 which shows that the
time prediction performance is directly linked to the ac-
curacy of the noise level estimation. The estimates of the
TIE standard deviation are distributed following a Stu-
dent law, and the edf of these estimates are the same as
the edf of the dominating noise level. If the time deviation
sequence contains a parabola with an amplitude that is
much higher than the random fluctuations, one must use
a noise level estimator which is insensitive to quadratic
drift while still sensitive to low frequency random noise.
The Total Hadamard variance described in this paper is
the most reliable estimator for such applications.

8. CONCLUSION

We have developed a significantly improved estima-
tor of the three-sample Hadamard frequency variance
based on the so-called “total” approach and denoted as

, for use in GPS operations and analysis. Practi-
cally speaking, we have reduced the long-term estima-
tion uncertainty in terms of edf by a factor of 1.3 to
3.4, depending on the noise type. Having confidence
greater than plain Hvar and even equal to or greater than
Avar, is a statistic that permits tuning of the
MCS Kalman filter with more accurately chosen clock-
estimation parameters (or ’s) that are linked to the most
recent measurements of frequency stability of each clock.
The increased confidence from TotHvar and shorter data
processing delays will play significant roles in adequately
managing future GPS system events. More generally, the
Total Hadamard variance may be used in any application

needing an accurate estimation of the low frequency noise
levels when a high level of frequency drift is present in
the signal.
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