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41 bis, avenue de l’Observatoire
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Abstract

The Total variance approach involves periodically extending a data sequence beyond its
normal measurement duration and in such a way that a particular time statistic is expected
to have the same value with extended data as without. For those statistics which estimate
components of broadband noise processes, the approach can significantly reduce the spread or
uncertainty in the result. We describe a Total variance approach for improving the confidence
of the estimation of the modified-Allan variance (Mvar) for the five common integer power-law
noises and which simultaneously has low, easily removable bias. We have found in simulation
studies that if a reflection-only extension procedure is applied to Mvar’s individual estimates,
we obtain a new estimate of Mvar which exhibits an increase in equivalent degrees of freedom
at mid- and long-term integration times.

1 Introduction

This writing assumes familiarity with the modified-Allan variance [1] defined as an expectation
value of a squared second-difference of averaged time-error measurements, whose maximum-overlap
estimator will be called “Mvar” [2]. The modified-Allan variance, like the traditional Allan variance
with its maximum-overlap estimator called “Avar,” is suited to processes with stationary second
increments. It is designed specifically to extract broadband oscillator and measurement-system
power-law noise models with spectral densities following [3]:

Sy ∼ const · fα, (1)

where Sy is the spectral density function in terms of fractional-frequency fluctuations {yt} and
−2 ≤ α ≤ +2.

Total variance, called “Totvar” (pronounced tōt´-vär) for short, characterizes typical white
(WH), flicker (FL), and random-walk (RW) frequency modulation (or f0, f−1, f−2 FM) noise and
drift, in addition to white or flicker phase modulation (PM) noise, with better confidence than Avar
in terms of equivalent degrees of freedom (edf) [4–6]. However, like Avar, Totvar cannot distinguish
white phase modulation (WHPM) noise, α = +2, from flicker phase modulation (FLPM) noise,
α = +1. The response to both is a τ−2 slope, thus Totvar (like Avar, see ref. [7]) separates
broadband power-law noise into four of the five noise models. Totvar is implemented as follows.
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A whole data run of length Tmax of time-difference measurements xt is extended at both the
beginning and end by attaching a sign-inverted and mirror-reflection copy of the original data
sequence, referred to as an “odd extension” type because of the sign inversion, in effect creating
a new virtual sequence x#

t of length nearly 3Tmax. Avar is computed using the extended virtual
sequence and the resulting estimator is denoted Totvar to show that the odd mirror-reflection
extension procedure is used. In the presence of FLFM and RWFM, Totvar with respect to Avar
has a modest negative bias in long term which can easily be removed. Totvar is a recommended
substitute for Avar if long-term measurements of frequency stability are important [8].

Mvar distinguishes WHPM noise, f+2 going as τ−3, from FLPM noise, f+1 going as τ−2,
and thus characterizes the full range of five integer power-law noise types. This property of Mvar
makes it ideal for evaluating oscillator instability within synchronization and time-transfer systems,
measurement systems dominated by phase-noise, and telecommunications networks [9].

Since the confidence improves for characterizing oscillator noises using Totvar, why not use its
routine applied to other time-domain statistics such as, for example, Mvar? The reason is that with
WHPM noise, the odd mirror-reflection extension introduces gross bias due to a step at the endpoint
match. The step can be eliminated by omitting the sign inversion, using what is called an even
mirror-reflection extension. Regrettably, this endpoint match is inappropriate for low-frequency
broadband noise such as RWFM. With RWFM noise, short-term τ -values have significant positive
bias using the even mirror-reflection extension. The even mirror-reflection extension is nevertheless
useful, primarily for characterizing synchronization systems in which RWFM is unlikely to be
present [10].

In exploring ways to reduce bias across all five common power-law noise types while still improv-
ing confidence in terms of edf, we have found a new statistical routine conceptually based on the
Total variance and its data extension idea to obtain a “Total modified Allan variance.” Rather than
extending the Tmax-length data run, creating series x#

t and calculating Mvar at varying τ -values
on this one sequence, we first remove a background slope associated with the subsequence of length
T = 3τ corresponding to each subestimate used to compute Mvar at a particular τ -value. This new
subsequence, denoted {◦xt,T }, is then extended by an uninverted, or even, mirror-extension, thus
creating a new, triple-length subsequence {◦x#

t,T } used to compute one “Total Mvar subestimate”
at that τ -value. Finally, we average all Total Mvar subestimates obtained from each triple-length
subsequence and available from the whole data run to calculate a new Mvar estimator called
“mod−Totvar” (at that τ -value). Although a bit more complicated than Totvar, this procedure
results in a modestly biased estimate of the modified-Allan variance having significantly increased
edf covering five integer power-law noise types, thus the range −2 ≤ α ≤ +2.

This paper reports results using simulation studies. Section 2 evaluates various types of data
extensions and establishes the best procedure for a Total approach to Mvar. Section 3 defines the
method of computing the estimator mod−Totvar (τ0, τ). Section 4 gives the responses, edf values
and bias associated with mod−Totvar (τ0, τ) as compared with the classical Mvar (τ0, τ). Section 5
discusses why the name “mod−Totvar (τ0, τ)” is suitable for the procedure found by the study
presented here.

2 Types of Data Extensions

Four candidate extensions are investigated. An original data sequence {xi} is referred to as a
subsequence consisting of Nxi measurements, thus T = (Nxi − 1)τ0. This is actually a piece of a
whole data run. It is extended to form a new, larger piece. The four types, each extension method
(only the right extension is formulated for simplicity), and period are as follows:



1. An uninverted or even mirror-reflection, (xN+i = xN−i+1), 2T -periodic.
2. A sign-inverted or odd mirror-reflection, (xN+i = 2xN − xN−i+1), 2T -periodic.
3. A straight periodic duplication, (xN+i = xi), T -periodic.
4. Same as type 3 with end-to-beginning connections, (xN+i = xi − x1 + xN ), T -periodic.

Figure 1 illustrates these extension types.

Figure 1: Types of data extensions are: (1) 2T -periodic uninverted or even mirror-reflection, (2)
2T -periodic sign-inverted or odd mirror-reflection, (3) T -periodic straight duplication, and (4) T -
periodic duplication with end-to-beginning connections.

The effect of random endpoint match on Mvar can now be observed by looking at time-shifted
calculations of Mvar which go beyond sampling interval T , namely into the extended portion, and
in increments of data spacing τ0. It is desirable for the average of all time-shifted Mvar values to be
least biased for all noise cases relative to the classical Mvar, which is the Mvar value corresponding
to a null shift.

Again, the subsequence {xi}, whose duration we have stated is a sampling interval T and whose
corresponding number of points is Nxi , does not necessarily represent the whole data run. For
clarity, Tmax, having Nxmax total number of points, will designate the duration of the whole data
run.

2.1 Reduction of Gross Bias: Selecting the Type of Data Extension

We compute a series of mean values of each subestimate of Mvar and the standard deviation of these
subestimates as a function of time-shifting through the extended subsequence. For illustration,
let a subsequence consist of Nx = 769 points with τ0-spacing. For example, if τ0 = 1s, then
T = 768s. Furthermore, set integration-time τ = 256τ0 = 256s, that is, its max of τ/T =
1/3. 1000 different i.i.d. noise realizations of WHPM, FLPM, WHFM, FLFM, and RWFM were
generated and followed by the application of each of four extension types in the previous section.
For example, Figures 2 to 4 are results of the type 1 extension and show mean values and associated
standard deviations (by the error bars) computed at each time-shift of 10τ0, that is, time-shifts
of 0s, 10s, 20s, ...750s, 760s, 770s, ...1520s, 1530s. Each mean value is an average of 1000 estimates,
and the first mean value is at a null-shift (0s) which corresponds to the classical Mvar result. This
value repeats at a time-shift of 768s or of 1536s, which respectively correspond to a T -periodic or
2T -periodic extension type and observed to be one full, or circular, period of the mean-value.
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Figure 2: Time-shifted Mvar mean and corresponding 1σ standard deviation of the mean (by the
error bars) after extending a simulated subsequence by even reflection (type 1) for subsequence
noise types white PM (left) and flicker PM (right).
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Figure 3: Same as Figure 2 for white FM (left) and flicker FM (right).

The departure of the mean-value of Mvar as a function of time-shift for various noise types is
readily visible using this procedure. Our goal is to find a minimum in the difference between the
classical, or null-shift, Mvar estimate indicated at time-shift of 0 and an average of all remaining
time-shifted subestimates. Each standard deviation, besides showing the uncertainty associated
with each time-shifted Mvar value, also serves to indicate the degree of correlation in the data at
that value of time-shift as compared to a null shift.

Extension types 2 and 4 introduce a very large bias in the presence of white PM, which is
positively peaked at time shifts corresponding to the endpoints. This is because a phase step is
very likely to occur at the endpoints. This step causes an undesirable positive shift in the mean for
the extended segments. Types 2 and 4 however give better results with random-walk FM because
the extended sequence is smooth, like the real data.

Extension types 1 and 3 work well with white PM but lack the smoothness typified by random-
walk FM. Of the remaining extension types (1 and 3), type 1 (even reflection only, whose results
are Figures 2 to 4) has lower departure, hence lower overall bias, as shown in a comparison in
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Figure 4: Same as Figure 2 for random-walk FM (left) and using the type 1 extension. For
comparison, the right plot shows results using a straight T -periodic extension (type 3) for random-
walk FM.

Figure 4 for the specific case of random walk FM noise. Moreover, type 1 involves a triply-
extended subsequence, and achieves a greater edf advantage than type 3 which involves only a
doubly-extended subsequence. We conclude that a data extension by even reflection (type 1) is the
best candidate for constructing Total Mvar.

2.2 The Effect of Frequency Difference and Drift

Each subsequence is likely to be characterized by an offset in frequency as a linear rate offset
or linear background in time-deviation data {xi}. This causes the evenly reflected subsequence,
resulting from a type 1 extension, to have an artificial up-down ramp-function oscillation with
period 2T . This artifact of the reflection-only extension of the subsequence is shown in Figure 1-
(Type 1). We can remove a linear fit to each subsequence to remove the linear background and
cancel this oscillation.

Removing a linear fit to time-error values in a subsequence is permitted because Mvar is invariant
to an overall shift in both phase and frequency. In other words, a first-degree polynomial c0 + c1i
which is added to the original subsequence xi does not change an Mvar result. Thus we are
at liberty to arbitrarily choose c0 and c1 in the subsequence. We will choose them primarily
to suppress this spurious spectral component at frequency 1/2T arising from reflection-only data
extension. Removing a linear fit suitably does this.

As a final note, all of the extension types cause Mvar to be more sensitive to linear frequency
drift, a quadratic function in terms of time-deviation. As is the usual practice, an estimate of
overall drift should be removed so not to mask the characteristic random noise level.

3 Method of Computation

Given a sequence of time deviates {xn}, n = 1, . . . ,Nxmax, with a sampling period between adjacent
observations given by τ0, we define the τ = mτ0-average time deviate as

xn(m) ≡ 1
m

m−1∑
j=0

xn+j. (2)



Let zn(m) = xn(m) − 2xn+m(m) + xn+2m(m). By definition

mod−σy
2(τ) =

1
2τ2

〈
z2
n(m)

〉
, (3)

where < · > denotes an infinite time average over n and mod−σy
2 actually depends on m, specifi-

cally both τ0 and τ . For simplicity, the τ0-dependence of mod−σy
2 is usually suppressed as in (3).

But this τ0-dependence is central to the advantage of using mod−σy
2, and figures prominently as

we now construct a Total version. zn(m) is computed from a data segment or subsequence of {xn},
consisting of 3m points. Define this subsequence {{xn}} = {xi}, i = n, ..., n + 3m − 1. Offset the
subsequence by removing a linear trend by making

◦xi = xi − c1i,

where c1 is a frequency offset which is removed to minimize
∑n+3m−1

i=n (◦xi− ◦xi)2, to satisfy a least-
squared-error criteria for the subsequence. In practice, it is sufficient to remove a background slope
computed by averaging the first and last halves of the subsequence divided by half the interval.
Now extend the “offset-removed” subsequence {◦xi} at both ends by an uninverted, even reflection.
Utility index l serves to construct the extensions as follows. For 1 ≤ l ≤ 3m, let

◦x#
n−l = ◦xn+l−1,

◦x#
n+3m+l−1 = ◦xn+3m−l, (4)

to form a new data subsequence denoted as {◦x#
i } consisting of the offset-removed data in its center

portion, plus the two extensions, and thus having a tripled range of n− 3m ≤ i ≤ n + 6m− 1 with
9m points. Now define

Totalmod−σy
2(τ0, τ) =

1
2τ2

〈
1

6m

n+3m−1∑
i=n−3m

(◦z#
i (m)

)2
〉

, (5)

where notation ◦z#
i (m) means that zn(m) above is derived from the new triply-extended subse-

quence {◦x#
i }. The braces designate that an average is taken over all available n-values (see eqn. (7)

below).
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Figure 5: Responses for white PM (left) and for flicker PM (right).
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Figure 6: Responses for white FM.
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Figure 7: Responses for flicker FM (left) and for random walk FM (right).

A hat “ ·̂ ” denotes a sample estimate of the function. The maximum-overlap sample estimator,
or ̂mod−σy

2
(τ0, τ, Tmax), is what we have been calling “Mvar” and is given by [1,2, 9]

̂mod−σy
2
(τ0, τ, Tmax) = Mvar (τ0,m,Nxmax) =

1
2 (mτ0)

2 (Nxmax − 3m + 1)

Nxmax−3m+1∑
n=1

(zn(m))2 , (6)

for 1 ≤ m ≤
⌊

Nxmax
3

⌋
and Tmax = (Nxmax−1)τ0, where bcc means the integer part of c. Equation (6)

is a simple average of Mvar subestimates given by 1
2(mτ0)2

(zn(m))2 in definition (3). “Maximum
overlap” means that subestimates (the summand terms in (6)) are overlapping for m > 1, and are
spaced by τ0 from which the simple average will have the best confidence in terms of edf [2]. At
largest integer m = Nxmax

3 , the summation in (6) consists of only one term, the whole data run
“subestimate,” thus representing one degree of freedom.

The corresponding subestimates of Totalmod−σy
2(τ0, τ) in definition (5) are given by

1
2(mτ0)2

1
6m

∑n+3m−1
i=n−3m

(
◦z#

i (m)
)2

. Like Mvar, a maximum-overlap estimator of Totalmod−σy
2(τ0, τ)



would be a simple average of its subestimates as

̂Totalmod−σy
2
(τ0, τ, Tmax) =

1
2 (mτ0)

2 (Nxmax− 3m+1)

Nxmax−3m+1∑
n=1

 1
6m

n+3m−1∑
i=n−3m

(◦z#
i (m)

)2

 . (7)

At largest integer m = Nxmax
3 , the outer summation in (7) consists of one term as in (6), but the

inner summation is comprised of 6m terms. Thus at long-term τ -values corresponding to large
values of m, ̂Totalmod−σy

2
has a sizeable number of estimates which act to reduce the dispersion

of variance results. This reduced dispersion is quantified by an increase in equivalent degrees
of freedom (see Section 4.2). ̂Totalmod−σy

2
is called “mod−Totvar” which will be regarded as

an improved estimator of the modified Allan variance. Note that its confidence will depend on
data spacing τ0. This conceptual difference between mod−Totvar and Mvar means that actual
measurements should be sampled at a fast rate, at least m(= τ/τ0) ≥ 8, especially for long-term
τ -values, in order to reap the greatest confidence advantage using mod−Totvar.

4 Simulation Study

4.1 Responses to Power-Law Noises

Plots in Figures 5 to 7 compare mod−Totvar, classical Mvar, and a theoretical response for the five
power-law noises. Each plot is based on 100 realizations of a particular noise in which Nxmax =
16, 384. The theoretical responses are as follows:

Noise Theoretical response of mod−σ2
y

WHPM 3h2/(8π2τ3)
FLPM (24 ln(2) − 9 ln(3)) h1/(8π2τ2)
WHFM h0/(4τ)
FLFM (27 ln(3) − 32 ln(2))h−1

RWFM 11π2τh−2/20

where hα is the noise level in terms of the spectral-density of fractional-frequency fluctuations, that
is, Sy(f).

4.2 Equivalent Degrees of Freedom

Equivalent degrees of freedom (edf) for statistics such as Mvar depend on m and Nxmax. Table 1
compares edf between Mvar and mod−Totvar again from 100 simulation trials in which Nxmax =
16, 384 for each of the five power-law noises. The increased edf using mod−Totvar is significant
as m gets large corresponding to long-term τ -values. Plots of Figures 5 to 7 include estimation
uncertainties (by error bars) assigned to mod−Totvar using edf values in Table 1 and chi-square
distribution properties. These error bars are conservative since the actual distributions are slightly
narrower, similar to those found using Totvar at longest integration times [4].

4.3 Bias

From the same set of simulation trials, the bias associated with using mod−Totvar(τ0, τ) as com-
pared to Mvar is essentially 0 for WHPM, within the uncertainty of the simulation, and progres-
sively goes negative for FLPM , WHFM, FLFM, and RWFM noises. A practical convenience is



Table 1: Comparison of edf’s of Mvar and mod−Totvar and bias of mod−Totdev with 100 simulation
trials of {xn} series consisting of Nxmax = 16, 384 points each, τ = mτ0.

———— Simulation Results ————

m : τ in units of τ0 Deg. of Freedom: Mvar | mod−Totvar Bias: | [1 −
√

mod−Totvar
Mvar ] × 100%

m WHPM FLPM WHFM FLFM RWFM
8 3129 |4584 |-1.6% 1691 |2071 |-9% 2633 |2931 |-14% 1709 |1843 |-16% 1537 |1596 |-18%
16 1363 |2084 |-2.2% 1001 |1183 |-10% 1087 |1246 |-14% 910 |960 |-16% 780 |810 |-18%
32 598 |867 |-2.3% 502 |618 |-10% 472 |536 |-14% 441 |472 |-16% 366 |381 |-18%
64 316 |458 |-2.4% 277 |334 |-10% 238 |265 |-14% 240 |252 |-16% 197 |203 |-18%
128 178 |252 |-2.7% 95.2 |118 |-10% 89.6 |101 |-14% 117 |125 |-16% 111 |115 |-18%
256 70.5 |101 |-2.5% 62.3 |73.2 |-9% 55.8 |62.6 |-14% 43.2 |47.1 |-16% 66.3 |68.6 |-18%
512 42.8 |62.6 |-2.5% 39.3 |46.1 |-10% 25.7 |29 |-14% 25.4 |26.8 |-16% 25.3 |26.6 |-17.5%
1024 18.1 |27.7 |-2.2% 16.7 |21 |-10% 14.9 |16.7 |-14% 13 |14.3 |-16% 10.6 |11.2 |-17%
2048 10.8 |15.1 |-2.5% 5.1 |6.3 |-9% 6.6 |7.9 |-13% 4 |4.5 |-16% 4.1 |4.4 |-17%
4096 3.2 |5.1 |-3.4% 2.1 |3.4 |-11% 1.8 |2.3 |-15% 1.4 |1.9 |-16% 1.8 |2.2 |-17%
5461 0.8 |4.2 |-2.8% 0.9 |1.9 |-12% 1.2 |2.1 |-17% 1.0 |2.0 |-17% 1.1 |2.0 |-17%

that mod−Totvar’s bias is modest and uniformly distributed across all τ -values. Table 1 gives the
resulting set of percentage errors in terms of usually-reported deviations, that is, percentage error
between mod−Totdev and classical Mdev.

5 Suggested Name: mod−Totvar (τ0, τ)

The terminology “modified” Allan variance, with estimator Mvar, has been used to distinguish
its function, namely extracting estimates of the levels of five power-law noises, in contrast to
the standard Allan variance, which separates four of the five. To minimize confusion and be
consistent with existing terminology, we will refer to the variance of this paper as the “modified
Total variance”, shortened to “mod-Totvar” to distinguish it from the standard Total variance.
Terminology such as “Total Mvar” is also appropriate and would not be confusing, but suggests
to someone getting acquainted with the total concept that the same procedure for Total variance
can be used equally for mod-Allan variance, which is not true. Classical Avar and classical Mvar
have very different statistical properties. Since modification to the standard Total variance routine
is considerable, the authors suggest the use of the name “modified Total variance”. Hence, the
usually-reported square-root of such a plot would be called “modified Total deviation.”

6 Conclusion

Total estimators have been based upon the hypothesis that for segment {x(t) : t0 ≤ t ≤ T},
reasonable extensions for t < t0 and t > T , can be formed by tacking on reversed versions of {x(t)}
at the beginning and end of this part of the function [11]. We have applied this approach to the
modified-Allan variance, resulting in improved confidence at mid- and long-term integration times.
Bias is small and easily removed.
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