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ABSTRACT
   We have detected long-range order (crystal lattices) in atomic ions confined in a Penning trap.
The crystals were observed by the Bragg scattering of nearly resonant laser light at small (1-5()
scattering angles.  Long-range order was observed in approximately spherical plasmas with as
few as 5×10  ions (plasma radius r�37a  where a�Wigner-Seitz radius).  With 2.7×104          5

o WS  WS

trapped ions (r�65a ), Bragg scattering patterns were obtained that were consistent with ao WS

body-centered cubic lattice.

1. Introduction

Charged particles in a trap form a realistic model of a classical one-component plasma
(OCP).  For example, in a Penning trap under conditions of thermal equilibrium the trapping
fields provide a uniform background of opposite charge.   With Doppler laser-cooling on1

trapped ions, temperatures of a few millikelvins can be obtained with densities greater than
10  cm  which results in couplings 
 = q /(4%� a k T) > 250.   Here q is the ion charge,8 -3       2   2,3

o WS B

�  is the permittivity of the vacuum, a  is the Wigner-Seitz radius, k  is Boltzmann'so       WS     B

constant, and T is the ion temperature.  These couplings are larger than the predicted liquid-
solid phase transition (
�172)  for an infinite OCP and enable trapped ion plasmas to be used4

to study strongly coupled one-component plasmas.  However, in the trapped ion experiments
to date, the boundary and relatively small size of the ion plasmas have strongly affected the
observed spatial correlations.  In plasmas where the smallest dimension is only a few
interparticle spacings, the ions form curved shells which approximately conform with the
boundary of the plasma.   These shell structures have been observed with imaging techniques5-7

in both the Penning and rf traps.8�10

In this manuscript we describe some recent experiments on approximately spherical
plasmas of up to 4.7×10  Be  ions whose dimensions are large compared to a .  Through5 +

WS

Bragg scattering we occasionally observe the presence of long-range order or crystal lattices
in the ion plasmas.  Crystal lattices have been observed in the shielded Coulomb systems of
colloidal suspensions  and dusty plasmas .  However, we believe this is the first11   12

observation  of crystal lattices in a pure Coulomb strongly coupled plasma.  We use the13



Penning trap in this work because it permits dimensionally large plasmas to be laser-cooled.
The Penning trap  uses a uniform, static magnetic field to confine ions in directions14

perpendicular to the magnetic field.  A static electric field is used to confine ions in the
direction parallel to the magnetic field.  Due to the axial magnetic field and the radial electric
field in a Penning trap, the ion plasma rotates about the magnetic field axis of the trap.  The
plasma rotation makes it difficult to directly image the ions in a crystal.  However, Bragg
scattering can still be used to observe the crystals.  In the final section of this manuscript we
also discuss a time-resolved experiment where the Bragg scattering signal is used to measure
the plasma rotation frequency.

In an infinite, homogeneous one-component plasma, the body-centered cubic (bcc),
face-centered cubic (fcc), and hexagonal close-packed (hcp) lattices have the same Madelung
energy within 1 part in 10 , with the bcc lattice the energetically favored configuration.   For4         15

a finite system, the surface energy and details of the boundary also determine the energetically
favored configuration.  Dubin  considered a zero-temperature model which was infinite and16

homogeneous in two dimensions but bounded and confined in the third direction by a
quadratic potential.  He found that if the system was greater than �60 lattice planes (in the
bounded direction), a bcc-like structure was the minimum energy configuration.  However,
with less than 60 lattice planes the minimum energy configuration depended sensitively on the
exact number of lattice planes.  This calculation indicates that a trapped ion plasma may need
to be larger than 60 lattice spacings along its smallest dimension to exhibit behavior which is
not strongly influenced by the plasma boundary.  A different analytical method developed by
Hasse gives a comparable prediction.   With a spacing of �1.5a  between typical low order17

WS

lattice planes,  a spherical plasma with a diameter of 60×1.5a  consists of �9×10  ions.  We16           4
WS

have observed long-range order (crystals) in approximately spherical plasmas with greater
than 5×10  ions.  With 2.7×10  ions, the observed Bragg scattering pattern was predominantly4    5

consistent with a bcc lattice, the expected infinite volume structure.

2. Experimental Set-up

Figure 1 shows a sketch of our experimental set-up.  The Penning trap is formed by
a 127 mm stack of cylindrical electrodes with 40.6 mm inner diameter, in a 10  Pa vacuum-8

(133 Pa = 1 Torr).  A superconductive magnet provides a uniform magnetic field (B =4.5 T)o

parallel to the symmetry axis ( Be  cyclotron frequency of 6/2%=qB /m=7.55 MHz, where9 +
o

m is the ion mass).  The static electric field is generated by applying V =1 kV between the endo

and central electrodes of the trap (a single ion oscillates at 7 /2%=795 kHz).z

The trapped Be  ions are laser-cooled and optically pumped into the 2s S (M =�3/2,9 +         2
½ I

M =�½) state by tuning the laser frequency (��313 nm) slightly below the 2s S (�3/2,�½)J             ½
2

� 2p P (�3/2, �3/2) resonance frequency.   A laser-cooled ion plasma in thermal2    2,18
3/2



Figure 1.  Schematic diagram (not to scale) of the experimental
set-up for detection of the Bragg scattering as described in the text.

equilibrium forms a uniform density
plasma (number density n ) witho

sharp boundaries.  In a Penning trap
with quadratic potential (0 =
m7 [2z -r ]/[2q]) and in whichz

2 2 2

image charge effects from the trap
electrodes are negligible, the
boundary is a spheroid given by
(x +y )/r  + z /z  = 1 (for a2 2 2  2 2

s   s

spherical plasma r =z�r ).  Thes s o

residual thermal motions of the ions
are superimposed upon a rigid
rotation of the plasma about the
magnetic field axis (z-axis) at a
frequency 7 .  The aspect ratior

��z /r  of the spheroid varies withs s

7 .   A laser beam directedr
18,19

normal to the z-axis (not shown in
Fig. 1 and turned off during the Bragg scattering) can exert a torque that changes 7  withinr

40.8 kHz < 7 /(2%) < 7.51 MHz, thus controlling the shape and density of the plasma.   Anr
19

f/5 imaging system along an axis perpendicular to the z-axis, with a laser beam along the z-
axis (beam waist�0.4 mm, power�200 µW), gives a side-view image of the ion plasma, thus
monitoring z  and r , which, in turn, yield �, 7 , n , a , and the number N of trapped ions.s  s       r  o  WS

19

Typical values for these parameters in the work described here are ��1, 7 /(2%)�125 kHz,r

n�4×10 , a �8.4 µm.  (The measurement of 7  and therefore most of these parameters iso  WS       r
8

significantly improved by an autocorrelation measurement of the Bragg-scattered light
described in the last section.)

The laser beam along the z-axis in Fig. 1 is used both to laser-cool the ions and also
to perform the Bragg scattering.  Because �/a  � 0.04, the diffraction pattern occurs at smallWS

angles (a few degrees) relative to the initial beam direction.  The main purpose of the Bragg
scattering apparatus in Fig. 1 is to detect the light scattered at small angles by the ions while
hiding from the forward-scattered light from the vacuum windows.  The incident laser beam
(k =2%ẑ/�) first passes through linear polarizer 1, and then into the vacuum chamber.  Uponi

exiting the ion trap, the laser beam is diverted away from the detector by a set of mirrors.
The photons scattered by the ions (k =(2%/�)k ) are collected by lens 1 (f=19 cm, z=25.5 cms s

^
from the ions), forming an image of the ions at a small aperture (A) to reduce the background.
The diffraction pattern is then relayed by lens 2 (f�24 cm) to the photocathode of a photon-
counting imaging tube (z�160 cm).  Linear polarizer 2 is inserted after the aperture.  The
polarization axes of polarizers 1 and 2 are crossed to attenuate, with extinction ratio > 10 ,5

stray light which leaks through the small aperture and has the same polarization as polarizer
1.  The photons from the ions are attenuated by only a factor of 2 since they are mainly
circularly polarized.  The angular acceptance of the system is limited by lens 1 to be ±5.4(.
For plasmas of a few hundred thousand ions, the ion fluorescence is strong enough that it was



necessary to insert a 10-20 dB attenuator in front of the photon-counting imaging tube.

3. Bragg Scattering Results

The following procedure was typically used in obtaining a Bragg scattering pattern.
First, the perpendicular (to the z-axis) laser beam was used to set the density and aspect ratio
of the cloud.  Typical densities were n�4×10  cm  with aspect ratios close to sphericalo

8 -3

(between 0.5 and 2).  The perpendicular beam was then blocked and the parallel beam
unblocked with its frequency well below atomic resonance where little scattering takes place.
The frequency of the parallel beam was then increased to near resonance and a Bragg
scattering pattern was recorded.  The laser frequency was then detuned and increased again
(or perhaps the laser was blocked and then unblocked) and another pattern was recorded.
The expansion of the plasma was slow enough that this process could be repeated many times
before the perpendicular beam was used to reset the plasma density and aspect ratio.  On
some occasions we observed Bragg scattering patterns that consisted of several sharp rings
such as shown in Fig. 2a.  Patterns like this with up to 9 narrow rings were observed with as
few as Nw6×10  trapped ions.  The circular intensity maxima in Fig. 2a are Bragg peaks.  The4

radius of a Bragg peak is inversely proportional to a , a fact which was verified by changingWS

the Wigner-Seitz radius using laser torque.  Figure 2b is a differential scattering cross section
generated from Fig. 2a by averaging the photon counts azimuthally about the z-axis (the laser
beam axis which is normal to the figure).  Figure 2b is qualitatively different from the static
structure factor S(q) in Fig. 2c for the quenched OCP fluid and shell structure,  both of20

which exhibit short range order characteristic of a fluid.  Here q=k -k =(4%/�)sin(�/2)i s

where � is the scattering angle.  The fluid-like patterns have only one strong narrow peak.
In contrast, Fig. 2b has 4 narrow peaks which indicate the formation of a crystal lattice.  As
mentioned earlier, such long-range order was not observed every time we cooled an ion
plasma.  We have not determined whether this was because a crystal had not formed or a
crystal had formed but was not observed (because, for example, the crystal orientation did not
produce Bragg peaks).

In order to compare the Bragg peak positions with the calculated positions for the
bcc, fcc and hcp lattices, the radii of the Bragg rings must be calibrated in terms of the
scattering angle.  This was done for a set of 14 diffraction patterns which were obtained on
a plasma of 2.7×10  ions.  For each pattern, a  was determined with about 5% uncertainty5

WS

from the measured �.  Figure 3a shows a histogram of the number of observed Bragg peaks
as a function of qa .  For qa  < 10, the histogram shows 5 groups of peaks.  These groupsWS    WS

are consistent with a bcc lattice but not an fcc lattice.  (They are also nominally consistent
with a subset of hcp peaks, but if many hcp crystals were forming randomly, we would expect
t o  see more groups or at least broader groups of peaks.) 
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Figure 2.  (a) Bragg scattering pattern observed from 2.7×10  ions showing the presence of a crystal(s). 5

The diffraction pattern is partially blocked by a rectangular shadow due to the laser beam deflector and a
square shadow due to a wire mesh.  (b) Differential cross-section obtained from an azimuthal average of (a)
about the z-axis.  © Fluid-like S(q) calculated for a super-cooled OCP and an N=5×10  ion cloud with3

shells.20

Comparison of the groups of peaks with different calculated Bragg peaks for qa  > 10 isWS

limited by the uncertainty in the determination of a .  However, if a  is determined by fittingWS     WS
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Figure 3.  The number of observed peaks (not intensity) from 14 diffraction patterns with Nw2.7×10  ions.  In5

(a) there are no adjustable parameters (a  is determined from the observed �).  In (b), a  is determined byWS          WS

fitting the diffraction patterns used in (a) to a bcc lattice.  The ticks indicate the location of Bragg peaks for the
simple cubic, hcp, fcc, and bcc lattices.

each diffraction pattern used in Fig. 3a to the calculated bcc peaks, we see from Fig. 3b that
with 2.7×10  trapped ions the Bragg peaks are consistent with a bcc lattice even as far as5

qa �14.WS

A lower limit on the size of the ion crystals can be obtained from the widths of the
Bragg peaks as observed in Fig. 2b.  A crystal with dimension L has a Bragg-peak width of
���/L, where � is the angular FWHM of the Bragg peak.  We find that, on average, ��2
mrad, which gives L�150 µm (�20a ) and a few thousand ions per crystal.  This is a lowerWS

limit, since the observed widths could be instrumentally broadened.  The negligible change
measured in � with N supports such broadening.  In addition, the intensity in the Bragg peaks
increased with N, which indicates that the crystal size is growing with the number of trapped
ions.  The crystallized region is probably surrounded by at least �20 shells (based on a
simulation with 2×10  ions).   For a plasma with 2.7×10  ions, this corresponds to about4 21      5

2.3×10  ions or a large fraction of the total plasma in these boundary shell layers.  The5

positions of these ions are correlated only over a few interparticle spacings and may be the
source of the background signal in Fig. 2b.  If the peaks in Fig. 2b are due to Bragg scattering
off a single crystal, we estimate that the crystal must contain �10  ions in order to produce4

peak intensities greater than the uncorrelated background due to 2.3×10  ions.5



4. Time-Resolved Experiments

The Bragg scattering pattern from a single, stationary crystal consists of dots (a Laue
pattern).  In our experiment the crystal rotates (7 /(2%)w125 kHz) about the magnetic fieldr

axis (which is aligned with the laser beam axis to within 0.5(). This rotation turns the Laue
pattern of dots into rings.  At any given point on a ring, the light intensity should be
modulated at the rotation frequency or a multiple of the rotation frequency if the ring consists
of more than one dot.  The experimental set-up in Fig. 1 was modified to look for a time
dependence of the Bragg-scattered light.  The camera in Fig. 1 was replaced with a mirror
which made a 45( angle with respect to the laser beam axis (the z-axis).  The mirror had a
small hole drilled parallel to the z-axis which could be positioned on one of the Bragg rings.
The light which passed through this hole was detected by a photomultiplier tube.  A pulse
from the photomultiplier triggered a multichannel scaler.  The multichannel scaler then
measured the arrival times of photomultiplier pulses for �0.5 ms after the trigger.  The Bragg
scattering pattern reflected from the 45( mirror was re-imaged onto the camera.  

Figure 4a shows an example of an autocorrelation pattern obtained on the first ring
from a plasma of 4.7×10  trapped ions.  The pattern indicates that the ring consists of 45

equally spaced dots of unequal intensity.  From the side-view image of the plasma, 2%/7  isr

determined within �15%, which unambiguously identifies the period of the autocorrelation
pattern.  However, a strong autocorrelation signal can be used to improve the measurement
of 7  to �0.1% with less than 10 s of averaging.  The output of the phototube was also usedr

to "trigger" the camera recording the Bragg-scattered light.  A pulse from the phototube
would enable the position of a photon to be recorded if it arrived within a window (duration
much less than 2%/7 ) that was a fixed delay after the photomultiplier pulse.  Figure 4b showsr

the gated image that was recorded simultaneously with the autocorrelation pattern in Fig. 4a.
The gated Laue pattern provides more information for determining the crystal type and the
crystal orientation relative to the laser beam.  So far most, but not all, of the Laue patterns
we have observed are consistent with a single crystal.  

The data in Fig. 4 can be understood as Bragg scattering off a single bcc or fcc crystal
as follows.  First, Bragg scattering is observed at small (1-5() scattering angles.  This means
that the planes which give rise to Bragg-scattered light are nearly vertical (parallel to the z-
axis).  Second, a Bragg ring with momentum transfer q will persist over an angular change
in crystal orientation of �(2%/L)/q.  For low-order planes, q�(2%/a), where a is the lattice
constant (a[bcc]=2.03a ; a[fcc]=2.56a ).  For our small crystals, this means the crystal canWS  WS

be tilted with respect to the z-axis over a range a/L�0.1 rad or 5( and still give rise to the
same Bragg peak.  This means a low order, nearly vertical plane will produce two Laue dots
separated by 180(.  The four equally spaced dots making up the first Bragg ring in Fig. 4 are
therefore produced by two vertical planes which are 90(from each other.  This rules out the
hcp lattice as a possibility; however the planes could be bcc 110 planes or fcc 200 planes
where the laser beam is approximately aligned with a 4-fold symmetry axis of the cubic cell.
The rest of the Laue pattern in Fig. 4b is consistent with this interpretation.  To distinguish
between bcc and fcc in this case, an absolute angular calibration of the rings must be done.



7LPH �µV�

� �� �� �� ��

,Q
WH
Q
V
LW
\

�

���

���

���

����

�D�

Figure 4.  (a) Autocorrelation pattern and (b) gated image simultaneously obtained on 4.7
× 10  trapped ions.  The photomultiplier tube was sampling counts from the first ring.5

We are doing this with the time resolved set-up as well as analyzing other Laue patterns.  This
will enable us to check with increased confidence that the lattice most frequently formed with
a few hundred thousand trapped ions is bcc.
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